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Abstract

We present a flexible formulation for variable
selection in multi-task regression to allow for
discrepancies in the estimated sparsity pat-
terns accross the multiple tasks, while lever-
aging the common structure among them.
Our approach is based on an intuitive de-
composition of the regression coefficients into
a product between a component that is com-
mon to all tasks and another component that
captures task-specificity. This decomposition
yields the Multi-level Lasso objective that
can be solved efficiently via alternating opti-
mization. The analysis of the “orthonormal
design” case reveals some interesting insights
on the nature of the shrinkage performed
by our method, compared to that of related
work. Theoretical guarantees are provided on
the consistency of Multi-level Lasso. Simula-
tions and empirical study of micro-array data
further demonstrate the value of our frame-
work.

1. Introduction

We address the problem of variable selection in the
settings of multiple-output and multi-task regression.
Multiple-output regression extends the basic single-
output regression model to one involving multiple
output variables, while multi-task regression further
generalizes the classical regression model to enable
joint estimation of regression models for multiple tasks
(each model involving one or multiple outputs). Vari-
able selection in such settings is of significant inter-
est due to many relevant applications in fields rang-
ing from econometrics to computational biology. In
computational biology, for instance, the fundamen-
tal problem of understanding genome associations be-
tween expression data (predictors) and phenotypic
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data (response) is crucial in order to identify poten-
tial biomarkers for diseases. Since many diseases such
as cancer involve a variety of related phenotypes, it
is desirable to perform variable selection in multiple-
output regression across the related phenotypes, as in-
formation can then be shared among them. Also gene
association data is often available for multiple genes
within the same pathway, and it may thus be advanta-
geous to study the associations jointly on the multiple
genes, rather than performing separate studies.

A widely used approach to tackle the variable selec-
tion problem in multiple-output and multi-task regres-
sion models, is based on extending the Lasso formu-
lation (Tibshirani, 1994) to impose block-structured
regularization via the l;-l; norm with ¢ > 1 (Turlach
et al., 2005; Obozinski et al., 2006; Negahban & Wain-
wright, 2009; Lounici et al., 2009; Tropp et al., 2006).
Specifically, the Multi-task lasso (Obozinski et al.,
2006) encourages group-wise sparsity across multiple
tasks. The Multi-task lasso formulation can also be
applied to multiple-output regression. In this context
it is often referred to as simultaneous Lasso (Turlach
et al., 2005), as simultaneous feature selection is en-
couraged. Namely a given feature is either selected as
relevant for all the outputs simultaneously, or is ex-
cluded all-together for all the outputs. These methods
have been frequently used in genome-wide association
studies (Puniyani et al., 2010; Zhang et al., 2010) to
identify common mechanism of response.

The main limitation of this multi-task lasso formal-
ism is that a common structure is imposed across the
multiple regressions/tasks, as the features are selected
in an “all-in-all-out” manner. Namely the set of se-
lected features is identical across the multiple out-
puts/tasks, albeit allowing for different amplitude for
the selected regression coefficients. However, many
important problems require more flexibility. To effi-
ciently address the above issue, this paper proposes
a novel penalized regression framework, called Multi-
level Lasso, to allow for discrepancies in support be-
tween the multiple models, while preserving the com-
mon structure among them (and thus avoiding the loss
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of robustness if one were to estimate the models sep-
arately). Our approach is based on an intuitive de-
composition of the regression coefficients into a prod-
uct between a global component that is common to
all tasks and another component that captures task-
specificity. Such a decomposition is very natural from
the standpoint of variable selection, as it is “sparsity-
preserving”. Namely, a specific regression coefficient
is equal to zero if either of its two components is zero;
furthermore the global components control the global
sparsity pattern common to all tasks. We present an
efficient procedure to solve the resulting optimization
problem, and derive closed-form shrinkage formulae
for the Multi-level Lasso in the case of orthonormal
design. We also examine the shrinkage of another de-
composition method recently proposed to tackle the
same problem, the dirty model of (Jalali et al., 2010),
which re-parameterizes the regression coefficients as
a sum between two components (rather than a prod-
uct). This reveals some interesting insights on the dif-
ferences between the two methods. Another relevant
model of two-level sparsity was proposed in (Dhillon
et al., 2011) for an [y setting. As future work it would
certainly be interesting to compare our method with
such greedy approach. We demonstrate the strength
of the Multi-level Lasso on simulated data comparing
it against multitask-lasso, the dirty model, individual
lasso for each task, and lasso on an aggregated dataset.
Experiments on real microarray data further illustrate
the usefulness of our approach.

The Multi-level Lasso objective we propose is con-
vex with respect to each of its parameters but is not
jointly convex. We show, however, that the solutions
still enjoy attractive theoretical properties. In partic-
ular we characterize the asymptotic distribution of the
Multi-level Lasso estimator. Our theoretical analysis
together with our empirical findings are in line with
the recent body of work on non-convex penalties in
demonstrating their benefits as an alternative to tra-
ditional convex formulations. For instance (Fan & Li,
2001) proposed the Smoothly Clipped Absolute Devi-
ation (SCAD) penalty to circumvent the drawbacks of
the Lasso penalty, in particular with respect to bias.
Another pertinent case is that of the [, pseudo-norm
where 0 < ¢ < 1 which has been shown to provide
sparser solutions than the Lasso and for which several
theoretical guarantees exit on the accuracy of variable
selection (e.g. (Fu & Knight, 2000)).

Note that our work considers general cases where there
is no prior knowledge on the relatedness of the out-
puts. In cases where some knowledge is available, the
works (Kim & Xing, 2010; Lu et al., 2009) are rele-
vant approaches capable of accounting for discrepan-

cies in structure across datasets. Specifically (Kim &
Xing, 2010) addresses cases where outputs are related
by a known tree structure so the problem can then
be cast as a group lasso with groups induced by the
tree. The formulation of (Lu et al., 2009) is based on
(penalized) Hidden Markov Random Fields. In this
setting, each dataset corresponds to a node in a re-
lational graph, which embodies prior information on
the relatedness between tasks, and is assigned a hid-
den state by leveraging the relational graph. Another
noteworthy approach considers an adaptive multiple-
output Lasso formulation, where mixture weight are
introduced over the features (Lee et al., 2010) that are
estimated via a Bayesian framework. Note that the
formulation is presented for the multiple-output case,
not the full multi-task setting.

2. Problem Formulation: Multi-Level
Lasso

We formulate the problem for the multi-task setting.
The formulation for multiple-output regression follows
in a straightforward manner, as it corresponds to the
special case where all tasks share the same predictor
matrix. Assume that there are K tasks. Let X(¥) ¢
R"™**P denote the predictor matrix for the k' task,
whose rows are p-dimensional feature vectors for ny

training examples. Denote by X fjk ) the 4t observation

on the i*? feature. Similarly let Y*) € R™* denote the
response vector for the k™ task. For simplicity assume
that data has been standardized so that we need not
consider intercept terms. Consider the K-task linear
regression model:

y® = x®ak) L ) =1 .. K,

where 3(%) € R? are formed by the true regression co-
efficients one wishes to estimate, and ¢*) € R is the
error term. Let 3; = (Bi(l), . ,ﬁi(K))T, be the vector
formed by the concatenation of all the coefficients of
the i*" feature across all tasks. The multi-task Lasso
estimate is the solution to the following penalized re-
gression problem: ming 3 Y4, [Y*) — X*) g2
AY2_ 11Billa- Typical choices for o are 2 (Obozinski
et al., 2006) and oo (Zhang, 2006). Both encourage
a common sparsity pattern across the multiple tasks.
As we have stated earlier, such an “all-in-all-out” for-
mulation is too rigid in many situations.

2.1. The Multi-Level Lasso Objective

We now motivate our multi-level approach that is
based on decomposing the regression coefficients into
two components: one component reflects the part that
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is common across tasks, the second component ac-
counts for the part that is task-specific.

The traditional approach in Bayesian statistics is to
employ a linear mized effects model, where the vector
of regression coeflicients for each task is rewritten as
a sum between a fized effect vector that is constant
across tasks, and a random effect vector that is task-
specific. Formally, for the coefficients corresponding
to the i*t feature, i € {1,...,p}, BF is rewritten as
Bi(k) = Ky —|—5§k), k=1,..., K. However, the classical
linear mixed effects model is not very natural from the
standpoint of variable selection. For instance if the ith
feature is irrelevant for all tasks, we would need k; = 0
and 5§k) =0 for all k.

A more natural setup would consist of having the
“main effect” variables control the “global” sparsity.
Namely it would be desirable to have the property that
ki =0= ﬁgk) = 0 Vk. We thus propose an alterna-
tive decomposition that satisfies the desired property
by rewriting 8F as:

ﬁz(k)zez’y'fk)a k:17"'7K7 i:17"'7p7

and consider 6; > 0, to remove ambiguity (i.e. for
model identifiability). As desired, for the i*" feature,

the 6;’s will induce the sparsity pattern common across
OF

tasks, while the ~;"’s will reflect task specificity.

We then propose to address multi-task variable selec-
tion via the following optimization problem:

K P P

1

S SICE SIRLE RSN 31
k=1 i=1 =1

K p
23 SThPL )

k=11i=1

min
6:20,7"

i

Let 0 = [0F,..., 0717, /0 = [({N)7T,..., (477,
v = [(YONT, ..., (v"ENT)T. With this notation, the
above objective can be rewritten as:

K P
1 k) 3 (k
guin 3 2 1V0 =3 60X IE 0l

Aside from the constraint that 6 should have non-
negative entries, the model penalty is the sum of two
I, penalties, one at a global level, one a task-specific
level, hence we call our formulation Multi-level Lasso.

2.2. Algorithm for the Multi-level Lasso

In this section we present a procedure to efficiently
solve the Multi-level Lasso problem. We adopt an al-
ternating optimization approach, where we iteratively

Algorithm 1 Alternate Optimization Algorithm for
the Multi-level Lasso
Input: Standardized training data X®) Y (*) g =
1,..., K, parameters Aq, Ag, € > 0.
Initialize m = 0, 6;(0) = 1, ¢ = 1,...,p and
7®0) = 4™ k = 1,..., K, where 4* is an ini-
tial estimate (e.g. the ordinary least estimate for
task k or the estimate from a ridge regression). Set
8;7(0) = 0;(0)7," (0) V.
for m=1... do
//Solve for v
Let W = 0,m—0X"® i=1,....p, k=1,... K.
Solve the Lasso problem (Pp): ~(m) =
arg min.é Zszl ||Y(k)fo=1fy§k)Wi(k) 13+ X271
//Solve for 0
Let Zi = [({"m) X)), (W m) X FO)T]7, i =
1L,...,p, Y = [(YOHT . (yEHTIT,
Solve the non-negative Garrote problem (Ps):

O(m) = argmingso3||Y — Y0, 00203 +
Adl0]lx
//Update 3

Set 5" (m) = 6:(m)y " (m)
If R(B(m—1))—R(B(m)) < e break, where R(3)
denotes the squared loss over all tasks.

end for

solve for either v or 6, while fixing the other. Min-
imizing the Multi-level Lasso objective with respect
to v while fixing 6 boils down to solving a classical
Lasso problem, which can be efficiently solved (e.g.
using (Efron et al., 2004) or (Friedman et al., 2007)).
Minimizing the objective with respect to 6 while fixing
v reduces to solving a classical non-negative Garrote
objective (Breiman, 1995), which can also be solved ef-
ficiently (e.g. via (Yuan & Lin, 2007), (Cantoni et al.,
2006)). The alternating optimization procedure is
stated as Algorithm 1. Note that each step of the
algorithm decreases the original objective (1). Hence
the procedure necessarily converges.

2.3. Orthonormal Design Case and
Relationship with the Dirty Model
decomposition

As advocated in (Tibshirani, 1994), inspecting the spe-
cial case of an orthonormal design sheds light on the
nature of the shrinkage.

Shrinkage for the Multi-Level Lasso: In the or-
thonormal design case, closed-form solutions are read-
ily available for each step of the alternating optimiza-
tion algorithm 1, as it is well know that both lasso
and non-negative garrote estimators are equivalent to
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soft-thresholding operators in the orthonormal case.
Let A% = (X")Ty®) v k. Namely j if the ordi-
nary least square estimate. Similarly as in (Tibshirani,
1994) we obtain for the step (P;) of Algorithm 1:

(P) 7P (m) 19 m — 1> OJsign(5*)

X P h i
Ofm =1  [Ofm - D |

and for the step (P») of Algorithm 1:

(P3) 6i(m) =T[[[yi(m)[l > 0]

. . A
0;(v(m), B:)— _ ;
: ( ! <25_1<v§’“’<m>>2>3/2<oi<w<m>,@)))

A 3y — Zis M)t
Where el(y(m), /81) = m
Focusing on (Pj), first note that if m — 1) = 0
for the i*" feature, then all the task-specific coeffi-
(k)

cients -,

. /(m) for that feature are also set to zero,

which is desirable. Noting that 'yi(k) is “comparable”

300
to 2 +—, we can see that (P]) has the effect of shrink-

ing ’yi(k) towards zero, by a quantity proportional to
1/[0:(m — 1)]°. Intuitively, this reflects the fact that
since a large value for the estimated 6; indicates that
the ith feature is considered to be significant, the
task-specific coefficients for that feature should not be
shrunk by a large amount.

Focusing on (Py), note that if all the task-specific co-
efficients for the i*" feature are zero, then so is 6;,
as desired. Also, noting that 0; is “comparable” to
0:((m), ;) (since the latter is a weighted average of
BD )y B (m), ..., B )45 (m)), we can see that the ef-

fect of (Py) is to shrink the estimate for 6; towards 0
(k)

by a quantity whose dependence on ;" is of the order

of 1/(y")2. Again this is consistent with the intuition
that the larger the task-specific coefficients for the ith
feature, the lesser shrinkage should be applied to 6;.

Shrinkage for the dirty model: We now examine
the nature of the shrinkage for the dirty block sparse
method of (Jalali et al., 2010), which re-parameterizes
the regression coefficients as a sum of two coefficients:
Bfk) = sgk) + bgk), and imposes different regularization
to the resulting vectors s*) and (). While the former
are encouraged to have task-specific sparsity patterns,
the latter are encouraged to exhibit identical sparsity
patterns. Notice that our model involves (p + 1)K
parameters, whereas the dirty model involves 2pK pa-
rameters, as both sets of coefficients depend on task
and feature. Formally the dirty block sparse method

+

solves " ) ()
. K ; ; :
THIL () g (6 3 2k Y =370 (557 +0,7) X7 |12
+ Al[Slla + A2l Bll1,cos
where S and B are the matrices formed by the coef-

ficients sgk) and bgk) respectively, [[S]li1 =2, |sgk)|7

and [|B|1,00 = Y _; max; \bz(-k)|. The objective can be
solved by alternating minimization fixing B and S re-
spectively. We now examine the method’s behavior
under orthonormal design. Unfortunately there is no
closed-form shrinkage formula for the /; oo norm. To
shed light on the nature of the shrinkage we use the
l1,2 norm as a proxy and consider instead

min ) o0 5 Sy [V = S (55 +0f) X2
+ 1Sl + Ao B2,

k 2
where || B2 = 3, (32, b)) /2.
At iteration m, fixing B, we get:
(D1) 57 (m) = sign(B"b 1)) (|30 (m—1)}a0) +.
Then, fixing S we get:

(Do) bi(m) = (1= =22 )" (B — salm).

Noting that s(*) is comparable to B(k) —b®) | we can see
that (D7) is comparable to sgk) (m) = sign(sl(.k)(m -
1))(|s§k)(m — 1)] = A\1)*", and hence the amount of
shrinkage applied to sgk) is similar across features and
tasks. Similarly noting that b*) is comparable to set-

ting B®) — s we can see that (D2) is comparable

+
to setting b;(m) = (1 — m> (bi(m —1)), and
(k)

%

hence the amount of shrinkage applied to b;"” is similar

across tasks.

Comparing (P) and (Pj) to (D) and (D2) reveals
that the shrinkage of the global and task-specific co-
efficients are more tightly coupled for our multi-level
lasso model than for the dirty model. The product
decomposition used in our model is more natural from
the standpoint of variable selection, whereas the dirty
model employs an additive decomposition, which sim-
ilarly to the linear mixed effects model is not spar-
sity preserving: under the dirty model the ith fea-

ture is excluded from task k, if both of its compo-
(k) Q)

nent coefficients s;”’ and

sgk) = sz(-k). An additional advantage of our multi-
level Lasso model is that its global coefficients have a
useful interpretation with respect to “sure screening”
as the sparsity pattern of the global coefficients induces
the removal of the features irrelevant to all tasks.

are equal to zero, or if

2.4. Extensions for Variable Grouping and
Multi-task Multiple-output Regression

Our formulation can be readily extended to incor-
porate input variable grouping. Consider G groups
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and denote by Xék) the columns of X®*) corre-
sponding to the g¢*™ group. Consider the de-
composition @k) = vaék), where ﬁék) and ’yék)
are coefficient vectors for the ¢ group, and 6,
is a scalar controlling the group-sparsity across

tasks. Then the multi-level group lasso objective
. . K G k) _(k
is: ming o o0 3 0, YR = 0 6,576 3 +

YD DT TP ED DA Dty o710 9

Algorithm 1 can be extended in a straightforward man-
ner: Solving for yék) boils down to a classical group-
lasso problem, while solving for 6, can still be reduced
to a non-negative garrote problem by considering Z,; =
(XANT L (xSOINTIT g =1, G. Inad-
dition, note that out Multi-level Lasso objective can
also be generalized in a straightforward manner to han-
dle the case where each task involves a multiple-output
regression. Namely for each k, Y(¥) is an n; x ¢ ma-
trix and S%) is a p x ¢ regression coefficient matrix. A
similar re-parametrization is used in (Guo et al., 2011)
for learning multiple graphical models, but the proce-
dure and algorithm depart significantly from ours, as
the objective cannot be solved directly and local linear
approximation of the penalty is performed.

3. Theoretical Guarantees

The Multi-level objective of (1) is convex with respect
to each of its parameters 6 and ~ individually but it is
not jointly convex. However the local solutions still
enjoy attractive theoretical properties. In this sec-
tion we characterize the asymptotic distribution of the
Multi-level Lasso estimator. Details of the proofs are
skipped due to space constraint, but will be provided
in a longer version of this manuscript. The first step
is to show that the Multi-level Lasso objective can be
reformulated as an alternate optimization problem as
follows.

Proposition 1 Solving the Multi-level Lasso problem
of (1) is equivalent to solving

K
1
min -3 [[Y® - xOO|E+AT(8),  (2)
k=1
with A = Li‘zﬂ‘z and where T is defined as

P K
7(8) = > VBl with Bl = > 18] (3)
=1 k=1

The proof of the proposition follows a reasoning similar
to to (Lin & Zhang, 2006).

We will state the convergence theorem in terms of
the equivalent objective (2). Before we do so we

need to introduce the following relevant quantities.
Let R(B) = 534 BIY® — sOX(R)[3, be the
risk corresponding to the (unpenalized) squared loss
L(B) = £ S, [Y® — B9 X (k)|3. Let 5 be the min-
imizer of the risk: 3 = argming R(f). Let B()) be a
solution of (2). Let

J(B)
= E[VsL(B)VsL(B)"]
(v (D_x (D) 5O Tx () (D _x (M50 Tx (1)
—E : : (4)

y () _x (K GO Tx (K \ (3 (B _x () (RO T (K)

Let H be the Hessian of the risk R. Since we are
dealing with the squared loss, the Hessian is constant
and does not depend on 3. We have

H = diag(ExVO xO_ EXEOT x®) (5

Let Gg(u) = limp, o w, where T is defined
in (3). Denote by T the set of indices 4 for which 3; is
not all zero. We obtain

K
AT P sin (AN # 0)

€L k=1
k 5(k
+HulM LB = 0). (6)

The following theorem characterizes the asymptotic
distribution of the Multi-level Lasso estimator and
shows that it is \/n consistent.

Theorem 1 Consider a sequence A\, = 27”\1”")\2",
with n = Zszl ng such that A\pn=/2 — X > 0 as
n — oo. Let Vz(w,u) = v Hu+ w'u+ AG(u),where
u € RPX and v € RPK, H and Gy(u) are defined in
(5) and (6) respectively. There exists a random vector

W ~ N(0,J(B)), where J is defined in (4), such that

Vi(Ba(An) — B) % arg min Vs (W, u)

In particular if A\, — 0 and the error terms are i.i.d.
with mean zero and variance (c™)2, k=1,..., K we
get

Vi(Ba () = B) B —HT'W ~ N(0,5°H ),
where ¥ = diagloM1,, ..., a5 1,).

The proof follows easily from Theorem 4 in (Rocha
et al., 2009). As remarked in (Rocha et al., 2009), lo-
cal minima may exist for finite sample, yet asymptoti-
cally the penalty is negligible compared to the squared
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loss and the minimizer is unique. Though the penalty
in (3) is concave, computation of the Hessian of the
full objective (risk + penalty) reveals that there are
regions where the objective is locally convex. We plan
to characterize these regions as future work (in the
spirit of (Breheny & Huang, 2011)).

4. Experimental Results
4.1. Synthetic Data

We evaluate the performance of Multi-level Lasso
against Multi-task Lasso (abbreviated as “Multi-
task”), the dirty model estimator, running Lasso in-
dependently for each task (referred to as “indLasso”),
and running Lasso on the aggregated dataset formed
by combining data for all task (referred to as “al-
ILasso”). As a measure of variable selection accu-
racy, we use the F} measure, which is the harmonic
mean of precision and recall (The F; measure is be-
tween 0 and 1; the larger Fi, the higher the accu-
racy). For all methods, we consider the “holdout val-
idated” estimates, namely we select the penalty pa-
rameters that minimize the average squared error on
a validation set. We remark that for the multi-level
Lasso, the coefficient vectors v and 6 for the multi-
level Lasso are combined multiplicatively. Therefore
only one of the two regularization parameter is nec-
essary, since one can always multiply « by a constant
and divide 6 by the same constant. Thus, one does
not need to search over a 2-D grid of regularization
parameters, while such a search cannot be avoided
for the dirty model. We consider the K-tasks regres-
sion model Y(¥) = X(#)g(k) 4 (k) | =1 ... K. For
each task we generate a n x p predictor matrix X *),
where the rows are generated independently according
to N,(0,8), with S, ; = 0.7"=7. The noise vector for
each task is generated according to N(0,1). The true
regression coefficients for each task are generated as a
p x K matrix B, where Bi,k = Bi(k). We consider two
setups. The first setup is as follows. All the entries of
B are first set to zero. Next we generate a row-wise
sparsity pattern that will determine which features are
irrelevant to all tasks. Specifically, the row-wise spar-
sity is determined by selecting |p- p,] rows at random
to contain non-zero coefficients (the remaining rows
are 0 for all tasks), where p, is a simulation parame-
ter. For each of the selected rows, we introduce some
amount of disagreement between tasks with respect
to the within-row sparsity pattern. We do so by ran-
domly selecting | K - p | entries to be set to 0, where
pk is a simulation parameter. Then for each non-zero
entry of B, independently, we set its value according
to N(0,1). Note that px=0 corresponds to the case

where the relevant predictors are common to all tasks,
a setting that should be favorable to Multitask Lasso.
Our second setup is for the extreme case where the
sparsity pattern is arbitrary (no task sharing), which
should be favorable to Lasso. For that setup, we ran-
domly select p.,,pK entries of B to contain non-zero
coeflicients, where p,;p, is a simulation parameter. For
each setting, we ran 50 runs. We set training and
evaluation sample sizes t0 Nirain = Neval = 50, feature
size to p = 20. We considered various combinations for
the values of (K, pp, px, Parb), SO as to enforce more or
less discrepancies in the sparsity pattern across tasks,
S0 as to consider models of varying sparsity, and vary-
ing ratios between feature dimensionality and number
of tasks. The results are presented in Table 1.

Overall, Multi-level Lasso performs better than all
the comparison methods in multitask settings with
some amount of discrepancy across tasks. In addi-
tion, our method is remarkably competitive with Lasso
and Multitask Lasso for the extreme cases of “no task-
sharing” (red rows in Table 1) and “full-sharing” (blue
rows in Table 1) respectively.

4.2. Application to Microarray Data Analysis

We apply our method to the analysis of gene ex-
pression data using a microarray dataset pertaining
to isoprenoid biosynthesis in Arabidopsis thaliana (A.
thaliana) provided by (Wille et al., 2004). A. thaliana
is a small flowering plant widely used as a model
organism for studies in genetics and molecular biol-
ogy. Isoprenoids play a key role in major plant pro-
cesses including photosynthesis, respiration and de-
fense against pathogens. They are also important com-
ponents in a variety of drugs (e.g. against cancer and
malaria), fragrances (e.g. menthol) and food colorants
(carotenoids). Understanding the mechasnisms of iso-
prenoid synthesis is thus highly relevant to a large
spectrum of applications. Of particular relevance is
to develop an understanding of the crosstalks between
the two isoprenoid pathways: the mevalonate pathway
an the plastidial pathway. In the dataset considered
the predictors are the expression levels of 21 genes in
the mevalonate pathway, the responses are the expres-
sion levels of 19 genes in the plastidial pathway. There
are 131 samples. All variables are log transformed.
The predictors are centered and standardized to unit
variance.

We first evaluated the predictive accuracy of our
method and the comparison methods by randomly
partitioning the data into training and test sets, using
90 observations for training and the remainder for test-
ing. The tuning parameters were selected via 5-fold
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K Pp PK Parb Multi-level Dirty model Multi-task indLasso allLasso

5 0.5 0.5 N/A 0.809 £ 0.007 0.731 £ 0.008 0.645 £ 0.006 0.685 £ 0.009 0.457 £ 0.010
5 0.2 0.5 N/A 0.811 £ 0.005 0.765 £ 0.005 0.697 £ 0.009 0.623 £ 0.007 0.392 £ 0.008
5 0.5 0.2 N/A 0.855 £+ 0.003 0.833 £ 0.006 0.771 £ 0.005 0.689 £ 0.009 0.572 £ 0.009
5 0.2 0.2 N/A 0.908 £ 0.004 0.845 £ 0.003 0.813 £ 0.005 0.636 £ 0.003 0.557 £ 0.004
5 0.5 0 N/A 0.883 £ 0.004 0.856 £ 0.005 0.913 £ 0.003 0.693 £ 0.004 0.660 £ 0.004
5 0.2 0 N/A 0.901 £ 0.004 0.880 £ 0.006 0.938 £ 0.005 0.655 £ 0.004 0.524 £ 0.004
5 N/A N/A 0.5 0.753 £ 0.002 0.693 £ 0.003 0.668 £+ 0.001 0.754 £+ 0.002 0.666 £ 0.002
5 N/A N/A 0.2 0.676 £+ 0.005 0.676 £+ 0.003 0.430 £ 0.005 0.681 + 0.006 0.335 £+ 0.007
10 0.5 0.5 N/A 0.801 £ 0.008 0.730 £ 0.007 0.622 £ 0.006 0.650 £ 0.008 0.421 £ 0.008
10 0.2 0.5 N/A 0.825 £+ 0.003 0.727 £ 0.004 0.667 £ 0.008 0.587 £ 0.005 0.372 £ 0.004
10 0.5 0.2 N/A 0.889 £ 0.002 0.836 £ 0.008 0.845 £ 0.008 0.679 £ 0.004 0.587 £ 0.005
10 0.2 0.2 N/A 0.913 £+ 0.007 0.926 £ 0.005 0.834 £ 0.006 0.600 £ 0.007 0.525 £ 0.007
10 0.5 0 N/A 0.871 £ 0.003 0.852 £ 0.004 0.938 £+ 0.005 0.702 £ 0.006 0.664 £ 0.006
10 0.2 0 N/A 0.932 £ 0.003 0.913 £ 0.005 1.000 + 0.006 0.659 £ 0.004 0.601 £ 0.004
10 N/A N/A 0.5 0.733 £ 0.001 0.687 £+ 0.001 0.667 £+ 0.002 0.708 £+ 0.005 0.663 £ 0.008
10 N/A N/A 0.2 0.628 £+ 0.004 0.636 + 0.006 0.372 £+ 0.004 0.625 £+ 0.005 0.333 £+ 0.009
20 0.5 0.5 N/A 0.799 £ 0.003 0.793 £ 0.002 0.653 £ 0.007 0.628 £ 0.004 0.400 £ 0.003
20 0.2 0.5 N/A 0.821 £ 0.006 0.739 £ 0.005 0.667 £ 0.009 0.593 £ 0.003 0.388 £ 0.003
20 0.5 0.2 N/A 0.886 + 0.004 0.799 £ 0.004 0.875 £ 0.009 0.703 £ 0.006 0.601 £ 0.008
20 0.2 0.2 N/A 0.898 + 0.005 0.849 £ 0.008 0.889 £ 0.003 0.638 £+ 0.007 0.518 £+ 0.016
20 0.2 0 N/A 0.917 £+ 0.005 0.846 + 0.007 1.000 + 0.004 0.644 £+ 0.009 0.575 + 0.011
20 0.5 0 N/A 0.838 £+ 0.001 0.797 £+ 0.004 0.995 £+ 0.003 0.704 £+ 0.007 0.665 £+ 0.012
20 N/A N/A 0.5 0.743 £+ 0.004 0.683 £ 0.004 0.667 £+ 0.004 0.703 £+ 0.001 0.667 £+ 0.018
20 N/A N/A 0.2 0.641 £+ 0.003 0.579 £+ 0.004 0.349 £+ 0.007 0.632 + 0.003 0.333 £+ 0.009

Table 1. Average F1 score for the models output by Multi-level Lasso and representative comparison methods on simulated
data. (Larger values indicate higher accuracy)

Method MSE
Multi-level | 0.22 +0.01
Dirty Model | 0.35+ 0.03
Multi-task 0.64 4+ 0.05
indLasso 0.36 £0.08
all Lasso 0.93 £0.06

Table 2. Test MSEs under different methods based on 100
random partitions of the microarray dataset into training
and test sets. (Smaller values indicate higher predictive
accuracy.

cross-validation. We computed the prediction MSE
for the testing set. The average MSEs based on 100
random partitions are presented in Table 2. We can
see that overall the predictive performance of the Mul-
tilevel Lasso is superior to the other methods.

We now proceed with an analysis of the associations
identified by our method between genes from the
mevalonate pathways (predictors) and those from the
plastidial pathway (responses), using the full dataset.
We apply bootstrap resampling to determine the sta-
tistical confidence of the associations identified. The
associations identified using the full dataset that also
appear more than 70 percent of the time in the boot-
strap datasets are depicted in Figure 1. We note
that several of our findings are consistent with find-
ings from the biological literature. For instance, con-
nections between genes MK and GGPPS 6 & 12, be-
tween genes FPPS2 and IPPLI, and between genes
DPPS2 and PPDS1 have also been reported in (Wille
et al., 2004). The absence of connections stemming
from genes GGPPS1,3,4,5,8,9 is also consistent with
findings in (Wille et al., 2004). The above insights il-

GGPPS1mt

GGPPS3

GGPPS4

GGPPS5

GGPPS8

Figure 1. Associations identified by the Multi-level Lasso
method between genes from the mevalonate isoprenoid
pathway (in blue) and those from the plastidial pathway
(in red).

lustrate the value of our approach for gene association
discovery. We plan to apply our method on a variety
of datasets in this domain, and hope to shed light on
important aspects of the regulatory mechanisms.
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