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Abstract its variations (symmetric SNE, s-SNEook et al, 2007
Venna & Kaskj 2007 ¢-SNE: van der Maaten & Hinton
2008; kernel information embeddingiemisevic 2000);

and the elastic embedding (EEarreira-Pergian 2010.
Spectral methods have become very popular because they
have a unique solution that can be efficiently computed
by a sparse eigensolver, and yet they are able to unfold
nonlinear, convoluted manifolds. That said, their embed-
dings are far from perfect, particularly when the data has
nonuniform density or multiple manifolds. Better results
have been obtained by the nonconvex methods, whose ob-
jective functions better characterize the desired embed-
dings. Carreira-Pergian (2010 showed that several of
these methods (e.g. SNE, EE) add a point-separating term
to the Laplacian eigenmaps objective. This causes im-
proved embeddings: images of nearby objects are encour-
aged to project nearby but, also, images of distant objects
are encouraged to project far away.

Stochastic neighbor embedding (SNE) and re-
lated nonlinear manifold learning algorithms
achieve high-quality low-dimensional represen-
tations of similarity data, but are notoriously
slow to train. We propose a generic formulation
of embedding algorithms that includes SNE and
other existing algorithms, and study their rela-
tion with spectral methods and graph Laplacians.
This allows us to define several partial-Hessian
optimization strategies, characterize their global
and local convergence, and evaluate them empir-
ically. We achieve up to two orders of magni-
tude speedup over existing training methods with
a strategy (which we call thgpectral direction
that adds nearly no overhead to the gradient and
yet is simple, scalable and applicable to several
existing and future embedding algorithms.

However, a fundamental problem with nonconvex meth-
ods, echoed in most of the papers mentioned, has been
their difficult optimization. First, they can converge to
bad local optima. In practice, this can be countered
y using a good initialization (e.g. from spectral meth-
ods), by simulated annealing (e.g. adding noise to the up-
dates;Hinton & Roweis 2003 or by homotopy methods
(Memisevig 2006 Carreira-Pergian 2010. Second, nu-
merical optimization has been found to be very slow. Most
previous work has used simple algorithms, some adapted
from the neural net literature, such as gradient desceht wit
momentum and adaptive learning rate, or conjugate gradi-
ents. These optimizers are very slow with ill-conditioned
problems and have limited the applicability of nonlinear
embedding methods to small datasets; hours of training for
4 few thousand points are typical, which rules out interac-
tive visualization and allows only a coarse model selection

We consider a well-known formulation of dimensionality
reduction: we are given a matrix &f x N (dis)similarity
values, corresponding to pairs of high-dimensional point
y1,...,yn (objects), which need not be explicitly given,
and we want to obtain corresponding low-dimensional
pointsx,...,xy € R? (images) whose Euclidean dis-
tances optimally preserve the similarities. Methods df thi
type have been widely used, often for 2D visualization, in
all sort of applications (notably, in psychology). They in-
clude multidimensional scaling (originating in psychomet
rics and statisticsBorg & Groenen 2005 and its variants
such as Sammon’s mappinggmmon1969, PCA defined

on the Gram matrix, and several methods recently devel

cian eigenmapsBelkin & Niyogi, 2003 or locally linear
embedding Roweis & Saul 2000, convex formulations
such as maximum variance unfolding/¢inberger & Sayl  Our goal in this paper is to devise training algorithms that
2006, and nonconvex formulations such as stochastic@re not only significantly faster but also scale up to larger
neighbor embedding (SNHinton & Roweis 2003 and  datasets and generalize over a family of embedding algo-
_ ) o ) rithms (SNE,t-SNE, EE and others). We do this not by

Appearing inProceedings of the9*" International Conference simply using an off-the-shelf optimizer, but by understand

Machine L ingEdi h tl K, 2012. ight . . .
gglza;y Lﬂz aﬁ?ﬁg'r?g)/g\:\?r?:rr(%)_’ Scotland, UK, 2012. Copyrig ing the common structure of the Hessian in these algo-
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rithms and their relation with the graph Laplacian of spec-Spectral methods such as Laplacian eigenmaps or LLE

tral methods. Thus, our first task is to provide a general  define E7(X) = ngzl w |%n — %m||> and
formulation of nonconvex embeddings (sectijrand un- E~—(X) = 0, with nonnegative affinitie3V, but add
derstand their Hessian structure, resulting in severat opt quadratic constraints to prevent the trivial solution
mization strategies (sectid). We then empirically evalu- X = 0. SoE" is as in EE and SNE.

ate them (sectioB) and conclude by recommending a strat-

egy that is simple, generic, scalable and typically (but notThis formulation suggests previously unexplored algo-
always) fastest—by up to two orders of magnitude over extithms, such as using an Epanechnikov kernel, &k,
isting methods. Throughout we write pd (psd) to mean poser using homotopy algorithms for SNESNE, where we

itive (semi)definite, and likewise nd (nsd). follow the optimal pathiX(\) from A = 0 (whereX = 0)
to A = 1. It can also be extended to closely related
1. A General Embeddings Formulation methods for embedding (kernel information embedding;
Memisevig 2006 and metric learning (neighborhood com-
Call X = (xi,...,xy) thed x N matrix of low-dimen-  ponent analysisGoldberger et al2005, among others.

sional points, and define an objective function: . . . .
P ) We express the gradient and Hessian (written as matrices of

E(X;)\) = EY(X) + AE~ (X) A>0 (1) dxNandNdx Nd,resp.)interms of Laplacians, follow-

] ) o ~ing Carreira-Pergian (2010, as opposed to the forms used
where £ is theattractive term which is often quadratic i, the SNE papers. This brings out the relation with spectral
psd and minimal with coincident points, aid is there-  methods and simplifies the task of finding pd terms. Given
pulsive term which is often nonlinear and minimal when 5o v « N symmetric matrix of weight® = (w,,,), we
points separate infinitely. Optimal embeddings balancgjefine its grth Laplacian matrix &= D — W where
both forces. Both terms depend ddthrough Euclidean py _ diag (X0 wym) is the degree matrix. Likewise we
distances between points and thus are shift and rotation "b‘etL+ from u&; La fromw?, | etc. L is psd if W is non-

variant. We obtain several important special cases: negative (sincar”’Lu = % S W (U — )2 >

) ) o _ 0). The Laplacians below always assume summation over
Normalized symmetric methods minimize the KL diver-  hoints, so that the dimension-dependsit x Nd Lapla-
gence between a posterior probability distribut@n  cjanL*= (from weightsw?® . )is really anN x N Lapla-

m,J

over each point pair normalized by the sum over allgjan for each(s, j) point dimension. All other Laplacians

point pairs (wherdt is a kemel function): are dimension-independent, 8f x N. Using this conven-
2 tion, we have for normalized symmetric models:
q _ K(”Xn _XT)'L” ) q —0
nm N PNE nn — .
Zn’,rn’:l K(Hxn’ - Xm/ || ) VE = 4XL (2)

271 TT T
and a distribution? analogously defined on the data v £ = 4L ® Iq+8L™ —16Avec (XL?) vec (XLY)
Y (thus constant wrtX) with possibly a differ-  \herel, is thed x d identity matrix and we define the
. + _ N 2 '
IngE (X) - _Znﬂnzlpnm IOgK(HXn _XmH )' , , ”
E~(X) = log ¥,y K(Ix0 —x[*) andx =1 K =kemel Ky = (log K)f = K'/K, K3 =K7/K
in eq. (1). Particular cases are s-SNEdoK et al, Ko = (logK)" = (KK" — (K')?)/K* = Ky — K}
2007 and¢-SNE, with Gaussian and Student’&er-

nels, resp. We will calp,,,,, = w;",,, from now on. and weights I(; meansk’ (||x, — x.,||°), etc.)
Normalized nonsymmetric methodsconsider  instead Wym = =K1 (Prm — Agnm) wi, = K1 ¢um

per-point distributions?, and@,,, as in the original Wiy 5 = — (K1 pnm — AK2 gnm) X

SNE (Hinton & Roweis 2003. Their expressions ' (@in — im) (@ — Tm)

are more complicated and we focus here on the e T AT

symmetric ones. In particular, for s-SNE the weights are as follows:
Unnormalized models dispense with distributions and Wnm = Pnm — Mnm wl. = —Qnm

are simpler. For a Gaussian kernel, in the elas- wWET L — ) N oy

: . : = . jm = Anm (Tin = Tim) (Tjn — Tjm)

tic embedding (EE;Carreira-Perfian, 2010 we s S

have E+(X) = Zg’m:l w ||x, — x,||> and  and fort-SNE they are K meansl/(1 + ||x,, — X |[?)):

E=(X) = SN ey Wime 7", where Wt
and W~ are symmetric nonnegative (with;!, = o )
W, = 0,n=1,..., N) Win,jm = _(pnm - 2/\qnm)(mln - wlm)(x]n - x]’m)K .

2
Wnm = (pnm - /\QMn)K wglm = —Qnm K
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For the elastic embedding (an unnormalized model): (K(t) = et Ky = —1, K3 = 1, K31 = 0) and¢-SNE
(K(t) = %-Hf’ K, = -K, Ky = 2K2, Ko = Kz) For
VE=4XL V’E=4L@I;+8L"  (3)  EE (an unnormalized model with () = ¢~*), we follow

Wy = Wi — Awgmef\\xrrxmlﬁ an analogous but simpler process: the Hessian lacks some
of the nsd parts in normalized models, e.g.the(-) term,
so it should afford better psd Hessian approximations.

TT _”xn,_xm‘l2<
in,jm

w = \w,,,€ Tin — Tim ) (Tjn — Tjm).
Note the Hessian of the spectral method (i.e.,Xo= 0,  The Spectral Direction (SD) We have found that in most
with constant weights!, ) is constantV2E = 4L ®1,. cases a particular partial Hessian strikes the best compro-
mise between deep descent and efficient computation, and
2. Partial-Hessian Strategies yields what we call thespectral direction(SD). It is con-
structed purely from the attractive Hessi®iE+(X) =
Our goal is to achieve search directions that are fast to comtL*+ ® I, which as noted earlier is psd, and consistg of
pute, scale up to largeW, and lead to global, fast con- identical diagonal blocks oV x N. For EE and s-SNE
vergence. This rules out computing the entire Hessianthis amounts to taking = 0 and so using the Hessian of
Carreira-Pergian (2010 derived pd directions for EE by the spectral method, thus it would achieve quadratic con-
using splits of the gradient such &F = 4X(D* +  vergence in that case. We find it works surprisingly well
(L — D*)) = 0 (whereD™ is the degree matrix of for A > 0. Effectively, we “bend” the exact gradient of the
Lt = DT — W), then deriving a fixed-point iterative nonlinearE using the curvature of the spectiat-.
scheme & la Jacobi) such aX = X(D* — L)(D*)~!
and a search directio(D* — L)(D*)~! — X. Here we h
use a more general approach that illuminates the merits (ﬁ
each method, by directly working with the HessRE. u
We define directionp;, € RV of the formB,py = —g
whereg;. is the gradient at iteratioh andBy, is a pd ma-
trix (this ensures a descent directigny; g, < 0), and use
a line search on the step siag > 0 satisfying the Wolfe
conditions to obtain the next iteratg, .1 = xx + axPx
(Nocedal & Wright 2006. This defines a range of meth-

ods fromB; = I (gradient descent, very slow) B, = : ) . A .
2 e diranti ; ; _ and it need only be factorized once in the first iteration. If
VZE(X) (Newton's direction, which would require mod LT depends oK, as int-SNE, scalability is achieved by

ification to ensure descent but is too expensive anyway), .~ " n ”
We construcBy, as a psd part of the Hessiansat (our taking it constant (e.d.™ atX = 0). (3) We allow the user

WA ) e
partial Hessian. Inspection of the very special structure of to sparsifyL™ through (say) a:-nearest-neighbor graph,

V2E in egs. @) and @) immediately shows what parts we which is often available as part of the data (the affinities

o N Wy, OF probabilitiesp,,,,). This establishes a family from
can use. Our driving principle is to use as much Hessian in ~ N (no sparsity), which yieldB), = L+, to = 0

formation as possible that is psd, fast to compute and lea ost sparsity), which yieldB, — diag (L) = D* (the

to an efficient solution of the,, linear system (e.g. sparse . : . : -
or constanB},). Note computing? or V E is O(N2d), but diagonal fixed-point method @ arreira-Pergian 2010.

solving a Hessian nonsparse linear syste@(&/3d?). We explored further variations in the experiments, such
o ) ] as updating the diagonal &, with the pd diagonal part
Search directions For normalized symmetric (and non- of the full Hessian, with little improvement. Using the
symmetric) models2), we consider functionss” with @ technique ofCarreira-Pergian (2010 of fixed-point iter-
nonnegative argument> 0 and satisfyingk'(1) > 0 and  ation from gradient splitsyan der Maater{2010) derives
K'(t) < 0, i.e., positive and decreasing. The termlon 5 nonsparse spectral direction fe8NE, but he overlooks
contains a psd part K1pn., (Which is constant for SNE  tne fact that the resulting linear system is psd. In order
and EE) and a nsd paki’; g,,,; the term o™ is only o introduce spectral information during the optimization
guaranteed to contain a psd part for= j and depend-  Memisevic & Hinton (2005 use a search direction where
ing on the signs ofX’; and &»;; and the term oril? is B! (rather tharBy,) is the Laplacian. This can improve

always nsd. These psd parts can be used to construct dgyer the gradient but, as one would expect, experimentally
scent direction’s Two important existing cases are s-SNE it is not competitive with our spectral direction.

This basic direction is refined as follows. (1) Owing to the
ift invariance ofFE, the resulting linear system is not pd
t psd. To prevent numerical problems we add a smdll

to it (uxy = 10~ min (L;},) works well). (2) Instead of
B.pr = —g (Which isO(N3d)) we solve two triangular
systemR] (Ry.pr) = —gr (Which isO(N?2d)) whereRy,

is the upper triangular Cholesky factor Bfy; it can be
computed in place iﬂ)(%N?’) with standard linear algebra
routines, and is sparse By, is sparse. This is crucial for
scalability. For Gaussian kernels (SNE, HE) is constant

'The functionsk’ that result in the simplest Hessians would From the user point of view this yields a simple recipe that,
haveK>; = 0 or K2 = 0, which imply the Gaussian or Epanech-

nikov kernels, respectively. The functiod$ that result in the isfied), K21 < 0 and K> > 0; the Gaussian or Epanechnikov
Hessians having most pd parts would hdve < 0 (always sat-  kernels also satisfy these conditions.
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given the gradient of7, does not need the more complex 3. Experimental Evaluation
Hessian ofE~. The only user parameter is the sparsity i )
level : (number of neighbors) to tune the speed of conver Ve have explored a number of partial Hessians as well
gence; convergence itself is guaranteed forally th.2.1 as different strategies for efficient linear system solu-
x should be simply tuned to as large as computation willlion: in datasets with S'SNE"S'\::E an(lj EE. I|-|er'e Weh
allow, while thresholding otherwise negligible values.eTh report a _representatlve sul_)set of results, Inc “9"”9 W at
cost of computing the direction 8(N2d), the same order we consider the overall_wmner (the spectrgl direction).
(less if sparse) than computing the gradientdn the line W compare the following methods: gradient descent
search, and we find its overhead negligible in practice. Thi$CD) used in SNEHiinton & Roweis 2003 and{-SNE

affords directions that descend far deeper than gradient (:Q’an_ der Maaten & !—hntonzoog; f|xed-Bomt diagonal it-
diagonal-Hessian at the same cost per iteration. eration (FP), used in ERCarreira-Perpian, 2010, much
faster than GD; the diagonal of the full Hessian (DiagH);
In summary, the spectral direction works as follows. Be-nonlinear conjugate gradients (CG) and L-BFGS (typical
fore starting to iterate, compute the attractive Hessiarthoices for large problems); spectral direction (SD), pos-
V2E*(X) = 4L* ® 1, sparsified tos nearest neighbors, sibly sparsified and caching the Cholesky factor before
add the small.I to it, and cache its sparse Cholesky factorthe first iteration; and a partial Hessidl, ™ + SALZ®
R. Atiterationk, given the gradieng;,, do two backsolves (which we call SD-). The latter consists of positive block-
R”(Rpy) = —g to obtain the spectral directiqpy.. diagonal elements GfAL** corresponding to entries asso-

| ciated with the same dimension € j in w7 ;). This

Convergence The following theorem guarantees globa d . . d adds inf . b
convergence (to a stationary point from any initgl). It ensures a psd approximation and adds information about

can be derived from Zoutendijk's condition and exerciseN€ Hessian of the repulsive tedsT (X). Except for GD.’
3.5 inNocedal & Wright(2006 p. 39,63). FP and CG, all the other methods have not been applied to

SNE-type methods that we know. Several of these methods
require the user to set parameter values. For L-BFGS we
tried several values for its user parametefthe number of
vector pairs to store in memory) and found= 100 best.

For SD—, we solve the linear system with linear CG, exiting
o . . ) . early when the relative toleraneedrops below0.1 or we

'S L!psch|tz con_tmuous in/, and the condition number of reag/h50 linear CG iterations. Generglly, these parameters
B is bounded iV, then|[VE(xy)|| — 0 ask — co. are hard to tune and there is little guidance on which values

In our case, we can ensure the condition number is boundedf€ the best. This is an important reason why the spectral
by simply addingu,I to By, with u1, > p > 0 (sincev2E  direction, which requires no parameters to tune and per-
is bounded), which we do in practice anyway since somdorms very well, is our preferred method.

of our By, are psd. The other conditions hold for the  \ve also tried other methods that were not generally com-
functions we use. From eq. (10.30) Mocedal & Wright  petitive and do not report them, to keep the presentation
(2009 and with bounded condition number, it follows that cjearer. For example, adding to the SD Hessian the diago-
x5 + pr — x| S 7 llxi — x| + O(Jxx, — x*[|?) nal of the full Hessian (which depends Bhand so varies
over iterations), and solving the linear system by approxi-
mately updating the Cholesky factorization or by using CG.

Theorem 2.1. Consider the iteratiorx; 11 = x; + Pk
wherep, = —B;lgk, g is the gradientB. is symmetric
pd anday, satisfies the Wolfe conditions for=0,1,2...
If £ is bounded below ilRN? and continuously differen-
tiable in an open sed/ containing the level set ofy, VE

wherex* is a minimizer ofE, H(x*) andB(x*) its Hes-
sian and matriB, andr = ||B~!(x*)H(x*) — I||. Thus
the iterations have locally linear convergence with ratie ~ Once the direction is obtained for a given method, we use a
we use unit step sizes (which we see in practice). The bettdracktracking line searciNpcedal & Wright 2009 to find
the Hessian approximatioB the smaller- and the faster @ step size satisfying the first Wolfe condition (sufficient
the convergence. This is quantified in the experiments. ~ decrease). As initial step size we always try the natural ste

a = 1 (recommended for quasi-Newton updates). How-
Other Partial-Hessians B, These typically need to gyer, we observed that some methods (in particular SD)
solve a nontrivial linear systeiB.p;. = —gx. Thiscanbe  tang to settle to accepted step sizes that are somewhat less
accelerated in several ways: (1) by solving the system in aghan 1. For such cases we used an adaptive strategy: the
inexact way using linear CG initialized at the previous-iter jjitia| backtracking step at iteratioh equals the accepted
ation’s solution, exiting the solver after a certain tolera step from the previous iteratiott, — 1. This is a conser-
¢ > 0 is achieved. (2) By updatinB; and its Cholesky yative strategy because once the step decreases it cannot
factor everyl” > 1 iterations. The user has control on the jhcrease again, but it compensates in saving line searches
exactness of the solution throughbr T'. The gradientis al-  \yith require expensive evaluations of the erddr For

ways updated at each iteration. For the experiments in thigonjinear CG, we use Carl Rasmussen’s implementation
paper we will focus on strategies with> 0 and7 = 1.
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S0z ||\ D , o o
® NG co formation the better the direction, as long as the iteration
8 102\ U are not too expensive. Note how the method using most
a N . . . . .
5 1015 - Hessian information, SD—, uses the fewest iterations (left

0

10 NUll’(:;bel’lC())]i iterg’;onsﬂ"w’l Rulr(l);ime l(iecorﬁs) panels), but these are also the slowest, which shifts its run

] S T _time curves right. For all the other methods, computing the
Figure 1.COIL-20 dataset, optimization with fixed initial and fi- ;e fion costs less than computing the gradient itself. FP
nal points, for EE (top) and s-SNE (bottom). Learning curves asIS very similar to DiagH. GD was the only method that did
a function of the number of iterations (left) and runtime (right). not reach the Converger.me value even aftel00 iterations

. . . . (20 minutes runtime).
m ni m ze. m which uses a line search that is more sophls—( )

ticated than backtracking, and allows steps longer than 1.L-BFGS is a leading method for large-scale problems. It
estimates inverse Hessian information through rank-2 up-
Hates, which gives better directions than the gradient, and
obtains the direction from a series of outer products rather
than solving a linear system, which is fast. The main prob-
lems of L-BFGS Nocedal & Wright 2006 p. 180,189) are
that it converges slowly on ill-conditioned problems and
that, with largeNd, it requires an initial period of many

The COIL-20 dataset contains rotation sequences of obferations before its Hessian approximation is good. While
jects everys degrees, so each data point is a grayscale imfor the small problem of figl L-BFGS is almost compet-
age of 128 x 128 pixels. We selected sequences for tenitive with the SD, in the larger problem of fig.it is not:
objects for a total ofV = 720 points inD = 16384 dimen- 70 iterations (for EE) give a rank40 approximation to a
Sionsy Corresponding to ten |oops (1D closed manifo'ds) ”'flok x 40k Hessian matl’iX, which fails to decrease the error.

P . e _ . o o
R™. In all the experiments we used SNE affinities with Nonjinear CG is generally inferior to L-BFGS and this is
perflexnyk = 20, resulting in a nonspars¥ x N matrix  seen in the figure too. (Our results unfairly favor CG be-
W, and reduced dimension #b= 2, so visual inspection  case jtsmi ni mi ze. mimplementation uses a better line

could be used to assess the quality of the result. For SD Wgaarch than in our implementation of the other methods.)
used no sparsification: (= N).

We evaluated these methods in a small dataset in three co
ditions (converging to the same minimum, converging to
different minima, and homotopy training), and in a large
dataset. For EE we used= 100.

3.1. Small dataset: COIL-20 image sequences

From the beginning, the SD has an exact part of the Hessian
Convergence to the same minimum from the same ini- that is pd, and obtains the direction from triangular back-
tial X We determined embeddind&, andX ., suchthat solves (same cost as matrix-vector product, and dominated
X o is @ minimum of £(X) andX is close enough tX ., by the cost of computing the gradient). The only overhead
that all methods converged M., when initialized from is in the initial Cholesky decomposition, which is small,
X,. Thus, all methods have the same initial and final desand progress thereafter is consistently fast.
tination. This allows us to reduce effects due to different
local minima of the erros having possibly different char- Convergence from random initial X to possibly differ-
acteristics. Figl shows learning curves for EE and s-SNE ent minima We generated 50 random poinks, (with
as a function of the number of iterations and the runtime. Irsmall values) and ran each method initialized from each
decreasing runtime, the methods can be roughly ordered 8§,, stopping after 20 seconds runtime. Fyshows the
GD > (FP,DiagH)> (CG,SD-)> (L-BFGS,SD), with GD  error EZ and number of iterations for each initialization, for
being over an order of magnitude slower than FP, and FEEE and s-SNE. They confirm the previous observations, in
about an order of magnitude slower than SD (note the logarticular SD and L-BFGS achieve the lower errors, but SD
X axis). The runtime behavior and the number of iterationsdoes so more reliably (less vertical spread). GD (outside
required agrees with the intuition that the more Hessian inthe plot) barely moved from the initi&.
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Figure 3.COIL-20. Homotopy optimization of EH.eft final convergence point for nearly all method3entral two plots number of
iterations and runtime required to achieve the target tolerance fored&ight total number of error function evaluations and runtime.

Homotopy optimization for EE The EE error function As noted in sectior?, for EE and s-SNE the Hessian of
E(X; \) can be optimized by homotopy, by starting to min- E*(X) (i.e., the matrix.™) is constant, so we cache its
imize overX at A = 0, whereF is convex, and following Cholesky factor before starting to iterate. FeBNE, this

a path of minima to a desiredl by minimizing overX as  Hessian depends dX, and recalculating it and solving a

A increasesCarreira-Periian, 2010. This is slower than linear system (even sparse and using linear CG) at each
directly minimizing at the desired from a random initial  iteration is too costly. Thus, we fix it to the Hessian at the
X, but usually finds a deeper minimum. We used 50 log-nitial X and cache its Cholesky factor just as with EE. This
spaced values of from 10~* to 102 and minimizedFE at still gives descent directions that work very well.

each) value until the relative error decrease was less tha
10~% or we reached0? iterations. Tracking the patk(\)

so closely, we were able to have all methods converge to e
sentially the same embedding (shown in 8Y.except for
GD, whose embedding was still evolving (it would have re-
quired many more iterations to converge). Bghows the
runtime and the number of iterations for eachalue.

rI]—'ig. 4 shows the resulting learning curves for EE ar®NE
as a function of the number of iterations and the runtime.
Bome methods’ deficiencies that were already detectable
in the small-scale experiments become exaggerated in the
larger scale. The SD- direction, while still able to produce
good steps, now takes too much time per iteration (even
though it is solved inexactly by CG), and is able to com-
The results again demonstrate a drastic improvemerplete only 37 iterations for EE and 13 fetSNE within
of our SD over existing methods (GD and FP from the allotted time (1 hour). Note SD- does worse than SD
Carreira-Pergian, 2010, and confirm that more Hessian in number of iterations even though it uses more Hessian
information results in fewer iterations and function evalu information; this is likely due to the inexact linear system
ations required. Also, we observe that the SD step sizesolution. In general, all methods run more iterations for
decrease from for A < 0.02 to 0.1 for the final A (even  EE than for s-SNE anttSNE, indicating EE’s simpler er-
though we reset to 1 the initial backtracking step every timeor function E is easier to minimize. GD is omitted, be-
we increase\). Presumably, a& increases, so does the ef- cause it showed no decrease of the objective function. For
fect of the termE~ (X), which the SD Hessian ignores.  both EE and:-SNE we never observe any decrease with
L-BFGS within 1 hour, although we have tried various val-

3.2. Large dataset: MNIST handwritten digit images ues form (m = 5, 50, 100); it does decrease a little after 3

) o ) hours. This is due to the long time needed to approximate
While more Hessian information enables deeper decreasg§e enormous Hessian. Nonlinear CG does decrease the
of the error per |terat|on, this comes at the price of S,‘Olv'”gobjective function for EE, but most of the computational
a more complex linear system. To see how the differentgegqrces are spent on the line search. Thus CG did least
optimization methods scale up, we tested them on a datasgf, per of iterations compared to other methods. Our SD

copsidgrably larger than thos_e in the literatuke € 6 000 has mostly converged already in 15 minutes. SD has a rea-
points invan der Maaten & Hinton200§. We usedV = gqnapie setup time of 5 min. in both EE an8NE to com-

20000 MNIST images of handwritten digits (€acl&x28 4o the Cholesky factorization (this time can be conteblle

pixel grayscale image, i.e., of dimensidh = 784). We it the sparsificatiom), and it is amply compensated for
“§Ed S.NE affinities with perple.x|ty = 50 and rgduced by the speed of the sparse backsolves in computing the di-
dimension tol = 2. All our experiments were runina 1.87 rocion at each iteration (which are essentially for fremeo

GHz workstation, without GPUs or parallel processing. Wep 5164 to computing the gradient). SD decreases the objec-
ran several optimization methods (GD, FP, L-BFGS, SDe consistently and efficiently from the first iteratioi&®
SD-) for 1 hour each, for both EE anéSNE. Forthe SD a5 scale up in terms of cost per iteration, but, as in the

we used a sparde matrix with . = 7. small dataset, each step makes considerably less progress
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than a SD step. In summary, FP, SD- and L-BFGS arescalable, based on the Cholesky factors of the (sparsified)
clearly not competitive with SD, which is able to scale its attractive Laplacian. This adds a negligible overhead to
computational requirements and still achieve good steps. the computation of the gradient and objective function but
improves existing algorithms by 1-2 orders of magnitude.
The quadratic cost of the gradient and objective functien re
énains a bottleneck which future work may address. Code
implementing the algorithms is available from the authors.

Fig. 4 also shows the resulting embeddings for FP from
(Carreira-Pergian 2010 (itself much better than GD) and

SD at an intermediate stage (after 20 runtime for EE an
1 hour fort-SNE). The difference is qualitatively obvious.
The SD embedding already separates well many of the dig-

its, in particular zeros, ones, sixes and eights. The FP emAcknowledgements

bedding shows no structure whatsoever. Work funded in part by NSF CAREER award 11S-0754089.

4. Discussion References

Given the exceedingly long runtimes of grafjient.descen.tBeMn, M. and Niyogi, P. Laplacian eigenmaps for dimensional-
we suspect some of the embeddings obtained in the lit- ity reduction and data representatidteural Computationl5
erature of SNE using gradient descent could be actually (6):1373-1396, 2003.

far from a minimum, thus underestimating the power ofgorg | and Groenen, Rodern Multidimensional Scaling: The-
SNE. The optimization methods we present, in particular ory and Application Springer-Verlag, second edition, 2005.

the spectral direction, should improve this situation. Carreira-Pergian, M. The elastic embedding algorithm for di-

Experimentally, no single method is always the best. If Mensionality reduction. IFCML, pp. 167-174, 2010.

we weigh efficiency, robustness (to user parameters) angook, J., Sutskever, I., Mnih, A., and Hinton, G. Visualizing
simplicity (of implementation using existing linear alge-  similarity data with a mixture of maps. IISTATS2007.

bra code and of user parameter setting), we believe th%oldberger, J., Roweis, S., Hinton, G., and Salakhutdinov, R.

the spectral direction with cached Cholesky factor, pdgsib  Neighbourhood components analysis NIPS 2005.
sparsified, is the preferred strategy. It achieves goodstep

and can be computed in less time than the gradient and oés_rge_ngard, L. and Strain, J. The fast Gauss transf@aM J.
S . - ci. Stat. Compuyt12(1):79-94, 1991.

jective functionE. However, in really large problems even

ComputingE andVE may be too time Consuming_ Note Hinton, G. and Roweis, S. Stochastic neighbor embedding. In
that, for SNE and-SNE, even ifp,,,,, are sparse in the at-  NIPS pp. 857-864, 2003.

tractive term, the negative term is still a fiM x N matrix ~ Memisevic, R. Kernel information embeddings. I@ML, pp.
(though the matrix itself need not be stored for VE to 633-640, 2006.

be computed). One solution to this is to use there a spars@emisevic, R. and Hinton, G. Improving dimensionality reduc-
graphW™ as in EE. However, the quality of the resulting  tion with spectral gradient descemeural Networks18(5—6):
embedding may be affected depending on the sparsity level. 702-710, June-July 2005.

(Note this would not affect the construction of our spectralygcedal, J. and Wright, SNumerical Optimization Springer-
direction, since it does not depend Bn.) Another way to Verlag, second edition, 2006.

accelerate the computations of sums of many Gaussian&,

. . . aykar, V. and Duraiswami, R. The improved fast Gauss trans-
needed inE' and VE, is to use fast multipole methods form with applications to machine learning. Large Scale

(Greengard & Strain1991, Raykar & Duraiswami2006), Kernel MachinesMIT Press, 2006.
which can reduce the time ©(N) if the dimensiond is
lo hich should be the Cagoe('n) ractice Roweis, S. and Saul, L. Nonlinear dimensionality reduction by
w (whi u in practice). locally linear embeddingScience290:2323—-2326, 2000.
. Sammon, Jr., J. A nonlinear mapping for data structure analysis.
5. Conclusion IEEE Trans. Computerd 8(5):401-409, 1969.

We have provided a generalized formulation of embed-van der Maaten, L. Fast optimization foiSNE. Workshop on
dings resulting from the competition between attraction Challenges in Data Visualization at NIPS, 2010.

and repulsion that includes several important existing alvan der Maaten, L. and Hinton, G. Visualizing data usifS\NE.
gorithms and suggests future ones. We have uncovered JMLR, 9:2579-2605, 2008.

the relfit'onlw'th sPeCt_ral methods and the role (_)f gI’aplﬁ\/enna, J. and Kaski, S. Nonlinear dimensionality reduction as
Laplacians in the gradient and Hessian, and derived sev- jnformation retrieval. IPAISTATSpp. 568-575, 2007.

eral partial-Hessian optimization strategies. A thorough . . . :

empirical evaluation shows that among several competitivélve'nberger’ K. and Saul, L. Unsupervised learning ofimage man-

. . ; . ifolds by semidefinite programmingnt. J. Computer Vision
strategies one emerges as particularly simple, generic and 70(1):77-90, 2006.



Partial-Hessian Strategies for Fast Learning of Nonlinear Embeddigs

100
> 68.05
_E 463
5 3151
S 2144
%= 1459
9.93
6.76)

alue

Objective
5

w
[
w

Elastic Embedding (EE)

FP
SD
SD-
L-BFGS
CG

t-Stochastic Neighbor Embedding$NE)

10 20 30 40 50 60
Number of iterations

700 5 10 15 20 25 30 35 40 45 50 55 60
Runtime (minutes)

5 10 15 20 25
Number of iterations

300 5 10 15 20 25 30 35 40 45 50 55 60
Runtime (minutes)

w

Fixed-point iteration Carreira-Pergian 2010

| | |
w N L o L

|
I

|
N o N S

Spectral direction (this paper)

|
IS

! ! ! ! |

Figure 4 MNIST dataset20 000 points, for EE (left) and-SNE (right). Top learning curves for different methods as a function of the

40 50

number of iterations (left panels) and runtime (right pandBgjttom embeddings achieved after 20 minutes (EE) and 1 heS8NE)
runtime using the fixed point iteration and spectral direction. Only 500 digd®/s to avoid clutter.



