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Abstract
Stochastic neighbor embedding (SNE) and re-
lated nonlinear manifold learning algorithms
achieve high-quality low-dimensional represen-
tations of similarity data, but are notoriously
slow to train. We propose a generic formulation
of embedding algorithms that includes SNE and
other existing algorithms, and study their rela-
tion with spectral methods and graph Laplacians.
This allows us to define several partial-Hessian
optimization strategies, characterize their global
and local convergence, and evaluate them empir-
ically. We achieve up to two orders of magni-
tude speedup over existing training methods with
a strategy (which we call thespectral direction)
that adds nearly no overhead to the gradient and
yet is simple, scalable and applicable to several
existing and future embedding algorithms.

We consider a well-known formulation of dimensionality
reduction: we are given a matrix ofN ×N (dis)similarity
values, corresponding to pairs of high-dimensional points
y1, . . . ,yN (objects), which need not be explicitly given,
and we want to obtain corresponding low-dimensional
pointsx1, . . . ,xN ∈ R

d (images) whose Euclidean dis-
tances optimally preserve the similarities. Methods of this
type have been widely used, often for 2D visualization, in
all sort of applications (notably, in psychology). They in-
clude multidimensional scaling (originating in psychomet-
rics and statistics;Borg & Groenen, 2005) and its variants
such as Sammon’s mapping (Sammon, 1969), PCA defined
on the Gram matrix, and several methods recently devel-
oped in machine learning: spectral methods such as Lapla-
cian eigenmaps (Belkin & Niyogi, 2003) or locally linear
embedding (Roweis & Saul, 2000), convex formulations
such as maximum variance unfolding (Weinberger & Saul,
2006), and nonconvex formulations such as stochastic
neighbor embedding (SNE;Hinton & Roweis, 2003) and
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its variations (symmetric SNE, s-SNE:Cook et al., 2007;
Venna & Kaski, 2007; t-SNE: van der Maaten & Hinton,
2008); kernel information embedding (Memisevic, 2006);
and the elastic embedding (EE;Carreira-Perpĩnán, 2010).
Spectral methods have become very popular because they
have a unique solution that can be efficiently computed
by a sparse eigensolver, and yet they are able to unfold
nonlinear, convoluted manifolds. That said, their embed-
dings are far from perfect, particularly when the data has
nonuniform density or multiple manifolds. Better results
have been obtained by the nonconvex methods, whose ob-
jective functions better characterize the desired embed-
dings. Carreira-Perpĩnán (2010) showed that several of
these methods (e.g. SNE, EE) add a point-separating term
to the Laplacian eigenmaps objective. This causes im-
proved embeddings: images of nearby objects are encour-
aged to project nearby but, also, images of distant objects
are encouraged to project far away.

However, a fundamental problem with nonconvex meth-
ods, echoed in most of the papers mentioned, has been
their difficult optimization. First, they can converge to
bad local optima. In practice, this can be countered
by using a good initialization (e.g. from spectral meth-
ods), by simulated annealing (e.g. adding noise to the up-
dates;Hinton & Roweis, 2003) or by homotopy methods
(Memisevic, 2006; Carreira-Perpĩnán, 2010). Second, nu-
merical optimization has been found to be very slow. Most
previous work has used simple algorithms, some adapted
from the neural net literature, such as gradient descent with
momentum and adaptive learning rate, or conjugate gradi-
ents. These optimizers are very slow with ill-conditioned
problems and have limited the applicability of nonlinear
embedding methods to small datasets; hours of training for
a few thousand points are typical, which rules out interac-
tive visualization and allows only a coarse model selection.

Our goal in this paper is to devise training algorithms that
are not only significantly faster but also scale up to larger
datasets and generalize over a family of embedding algo-
rithms (SNE,t-SNE, EE and others). We do this not by
simply using an off-the-shelf optimizer, but by understand-
ing the common structure of the Hessian in these algo-
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rithms and their relation with the graph Laplacian of spec-
tral methods. Thus, our first task is to provide a general
formulation of nonconvex embeddings (section1) and un-
derstand their Hessian structure, resulting in several opti-
mization strategies (section2). We then empirically evalu-
ate them (section3) and conclude by recommending a strat-
egy that is simple, generic, scalable and typically (but not
always) fastest—by up to two orders of magnitude over ex-
isting methods. Throughout we write pd (psd) to mean pos-
itive (semi)definite, and likewise nd (nsd).

1. A General Embeddings Formulation

Call X = (x1, . . . ,xN ) thed × N matrix of low-dimen-
sional points, and define an objective function:

E(X;λ) = E+(X) + λE−(X) λ ≥ 0 (1)

whereE+ is theattractive term, which is often quadratic
psd and minimal with coincident points, andE− is there-
pulsive term, which is often nonlinear and minimal when
points separate infinitely. Optimal embeddings balance
both forces. Both terms depend onX through Euclidean
distances between points and thus are shift and rotation in-
variant. We obtain several important special cases:

Normalized symmetric methods minimize the KL diver-
gence between a posterior probability distributionQ
over each point pair normalized by the sum over all
point pairs (whereK is a kernel function):

qnm =
K(‖xn − xm‖2)

∑N

n′,m′=1
K(‖xn′ − xm′‖2)

, qnn = 0

and a distributionP analogously defined on the data
Y (thus constant wrtX) with possibly a differ-
ent kernel and width. This is equivalent to choos-
ing E+(X) = −

∑N

n,m=1
pnm logK(‖xn − xm‖2),

E−(X) = log
∑N

n,m=1
K(‖xn − xm‖2) andλ = 1

in eq. (1). Particular cases are s-SNE (Cook et al.,
2007) andt-SNE, with Gaussian and Student’st ker-
nels, resp. We will callpnm = w+

nm from now on.

Normalized nonsymmetric methodsconsider instead
per-point distributionsPn andQn, as in the original
SNE (Hinton & Roweis, 2003). Their expressions
are more complicated and we focus here on the
symmetric ones.

Unnormalized models dispense with distributions and
are simpler. For a Gaussian kernel, in the elas-
tic embedding (EE;Carreira-Perpĩnán, 2010) we
have E+(X) =

∑N

n,m=1
w+

nm ‖xn − xm‖2 and
E−(X) =

∑N

n,m=1
w−

nme−‖xn−xm‖2

, whereW+

and W− are symmetric nonnegative (withw+
nn =

w−
nn = 0, n = 1, . . . , N ).

Spectral methods such as Laplacian eigenmaps or LLE
define E+(X) =

∑N

n,m=1
w+

nm ‖xn − xm‖2 and
E−(X) = 0, with nonnegative affinitiesW, but add
quadratic constraints to prevent the trivial solution
X = 0. SoE+ is as in EE and SNE.

This formulation suggests previously unexplored algo-
rithms, such as using an Epanechnikov kernel, or at-EE,
or using homotopy algorithms for SNE/t-SNE, where we
follow the optimal pathX(λ) from λ = 0 (whereX = 0)
to λ = 1. It can also be extended to closely related
methods for embedding (kernel information embedding;
Memisevic, 2006) and metric learning (neighborhood com-
ponent analysis;Goldberger et al., 2005), among others.

We express the gradient and Hessian (written as matrices of
d×N andNd×Nd, resp.) in terms of Laplacians, follow-
ing Carreira-Perpĩnán(2010), as opposed to the forms used
in the SNE papers. This brings out the relation with spectral
methods and simplifies the task of finding pd terms. Given
anN ×N symmetric matrix of weightsW = (wnm), we
define its graph Laplacian matrix asL = D − W where
D = diag (

∑N

n=1
wnm) is the degree matrix. Likewise we

getL+ fromw+
nm,Lq fromwq

nm, etc.L is psd ifW is non-
negative (sinceuTLu = 1

2

∑N

n,m=1
wnm(un − um)2 ≥

0). The Laplacians below always assume summation over
points, so that the dimension-dependentNd × Nd Lapla-
cianLxx (from weightswxx

in,jm) is really anN ×N Lapla-
cian for each(i, j) point dimension. All other Laplacians
are dimension-independent, ofN ×N . Using this conven-
tion, we have for normalized symmetric models:

∇E = 4XL (2)

∇2E = 4L⊗ Id + 8Lxx − 16λ vec (XLq) vec (XLq)
T

whereId is the d × d identity matrix and we define the
following scalar functions (′, ′′ are derivatives):

K = kernel, K1 = (logK)′ = K ′/K, K2 = K ′′/K

K21 = (logK)′′ = (KK ′′ − (K ′)2)/K2 = K2 −K2
1

and weights (K1 meansK1(‖xn − xm‖2), etc.)

wnm = −K1 (pnm − λqnm) wq
nm = K1 qnm

wxx
in,jm = − (K21 pnm − λK2 qnm)×

(xin − xim)(xjn − xjm).

In particular, for s-SNE the weights are as follows:

wnm = pnm − λqnm wq
nm = −qnm

wxx
in,jm = λqnm(xin − xim)(xjn − xjm)

and fort-SNE they are (K means1/(1 + ‖xn − xm‖2)):

wnm = (pnm − λqnm)K wq
nm = −qnmK2

wxx
in,jm = −(pnm − 2λqnm)(xin − xim)(xjn − xjm)K2.
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For the elastic embedding (an unnormalized model):

∇E = 4XL ∇2E = 4L⊗ Id + 8Lxx (3)

wnm = w+
nm − λw−

nme−‖xn−xm‖2

wxx
in,jm = λw−

nme−‖xn−xm‖2

(xin − xim)(xjn − xjm).

Note the Hessian of the spectral method (i.e., forλ = 0,
with constant weightsw+

nm) is constant:∇2E = 4L+⊗Id.

2. Partial-Hessian Strategies

Our goal is to achieve search directions that are fast to com-
pute, scale up to largerN , and lead to global, fast con-
vergence. This rules out computing the entire Hessian.
Carreira-Perpĩnán (2010) derived pd directions for EE by
using splits of the gradient such as∇E = 4X(D+ +
(L − D+)) = 0 (where D+ is the degree matrix of
L+ = D+ − W+), then deriving a fixed-point iterative
scheme (̀a la Jacobi) such asX = X(D+ − L)(D+)−1

and a search directionX(D+ − L)(D+)−1 −X. Here we
use a more general approach that illuminates the merits of
each method, by directly working with the Hessian∇2E.
We define directionspk ∈ R

Nd of the formBkpk = −gk

wheregk is the gradient at iterationk andBk is a pd ma-
trix (this ensures a descent direction:pT

k gk < 0), and use
a line search on the step sizeαk > 0 satisfying the Wolfe
conditions to obtain the next iteratexk+1 = xk + αkpk

(Nocedal & Wright, 2006). This defines a range of meth-
ods fromBk = I (gradient descent, very slow) toBk =
∇2E(Xk) (Newton’s direction, which would require mod-
ification to ensure descent but is too expensive anyway).
We constructBk as a psd part of the Hessian atxk (our
partial Hessian). Inspection of the very special structure of
∇2E in eqs. (2) and (3) immediately shows what parts we
can use. Our driving principle is to use as much Hessian in-
formation as possible that is psd, fast to compute and leads
to an efficient solution of thepk linear system (e.g. sparse
or constantBk). Note computingE or∇E isO(N2d), but
solving a Hessian nonsparse linear system isO(N3d3).

Search directions For normalized symmetric (and non-
symmetric) models (2), we consider functionsK with a
nonnegative argumentt ≥ 0 and satisfyingK(t) > 0 and
K ′(t) < 0, i.e., positive and decreasing. The term onL

contains a psd part−K1pnm (which is constant for SNE
and EE) and a nsd partλK1qnm; the term onLxx is only
guaranteed to contain a psd part fori = j and depend-
ing on the signs ofK2 andK21; and the term onLq is
always nsd. These psd parts can be used to construct de-
scent directions1. Two important existing cases are s-SNE

1The functionsK that result in the simplest Hessians would
haveK21 = 0 orK2 = 0, which imply the Gaussian or Epanech-
nikov kernels, respectively. The functionsK that result in the
Hessians having most pd parts would haveK1 ≤ 0 (always sat-

(K(t) = e−t, K1 = −1, K2 = 1, K21 = 0) andt-SNE
(K(t) = 1

1+t
, K1 = −K, K2 = 2K2, K21 = K2). For

EE (an unnormalized model withK(t) = e−t), we follow
an analogous but simpler process: the Hessian lacks some
of the nsd parts in normalized models, e.g. thevec (·) term,
so it should afford better psd Hessian approximations.

The Spectral Direction (SD) We have found that in most
cases a particular partial Hessian strikes the best compro-
mise between deep descent and efficient computation, and
yields what we call thespectral direction(SD). It is con-
structed purely from the attractive Hessian∇2E+(X) =
4L+ ⊗ Id, which as noted earlier is psd, and consists ofd
identical diagonal blocks ofN × N . For EE and s-SNE
this amounts to takingλ = 0 and so using the Hessian of
the spectral method, thus it would achieve quadratic con-
vergence in that case. We find it works surprisingly well
for λ > 0. Effectively, we “bend” the exact gradient of the
nonlinearE using the curvature of the spectralE+.

This basic direction is refined as follows. (1) Owing to the
shift invariance ofE, the resulting linear system is not pd
but psd. To prevent numerical problems we add a smallµkI

to it (µk = 10−10 min (L+
nn) works well). (2) Instead of

Bkpk = −gk (which isO(N3d)) we solve two triangular
systemsRT

k (Rkpk) = −gk (which isO(N2d)) whereRk

is the upper triangular Cholesky factor ofBk; it can be
computed in place inO( 1

3
N3) with standard linear algebra

routines, and is sparse ifBk is sparse. This is crucial for
scalability. For Gaussian kernels (SNE, EE)L+ is constant
and it need only be factorized once in the first iteration. If
L+ depends onX, as int-SNE, scalability is achieved by
taking it constant (e.g.L+ atX = 0). (3) We allow the user
to sparsifyL+ through (say) aκ-nearest-neighbor graph,
which is often available as part of the data (the affinities
wnm or probabilitiespnm). This establishes a family from
κ = N (no sparsity), which yieldsBk = L+, to κ = 0
(most sparsity), which yieldsBk = diag (L+) = D+ (the
diagonal fixed-point method ofCarreira-Perpĩnán, 2010).

We explored further variations in the experiments, such
as updating the diagonal ofRk with the pd diagonal part
of the full Hessian, with little improvement. Using the
technique ofCarreira-Perpĩnán (2010) of fixed-point iter-
ation from gradient splits,van der Maaten(2010) derives
a nonsparse spectral direction fort-SNE, but he overlooks
the fact that the resulting linear system is psd. In order
to introduce spectral information during the optimization,
Memisevic & Hinton(2005) use a search direction where
B−1

k (rather thanBk) is the Laplacian. This can improve
over the gradient but, as one would expect, experimentally
it is not competitive with our spectral direction.

From the user point of view this yields a simple recipe that,

isfied),K21 ≤ 0 andK2 ≥ 0; the Gaussian or Epanechnikov
kernels also satisfy these conditions.



Partial-Hessian Strategies for Fast Learning of Nonlinear Embeddings

given the gradient ofE, does not need the more complex
Hessian ofE−. The only user parameter is the sparsity
levelκ (number of neighbors) to tune the speed of conver-
gence; convergence itself is guaranteed for allκ by th.2.1.
κ should be simply tuned to as large as computation will
allow, while thresholding otherwise negligible values. The
cost of computing the direction isO(N2d), the same order
(less if sparse) than computing the gradient orE in the line
search, and we find its overhead negligible in practice. This
affords directions that descend far deeper than gradient or
diagonal-Hessian at the same cost per iteration.

In summary, the spectral direction works as follows. Be-
fore starting to iterate, compute the attractive Hessian
∇2E+(X) = 4L+ ⊗ Id, sparsified toκ nearest neighbors,
add the smallµI to it, and cache its sparse Cholesky factor
R. At iterationk, given the gradientgk, do two backsolves
RT (Rpk) = −gk to obtain the spectral directionpk.

Convergence The following theorem guarantees global
convergence (to a stationary point from any initialx0). It
can be derived from Zoutendijk’s condition and exercise
3.5 inNocedal & Wright(2006, p. 39,63).

Theorem 2.1. Consider the iterationxk+1 = xk + αkpk

wherepk = −B−1

k gk, gk is the gradient,Bk is symmetric
pd andαk satisfies the Wolfe conditions fork = 0, 1, 2 . . .
If E is bounded below inRNd and continuously differen-
tiable in an open setN containing the level set ofx0, ∇E
is Lipschitz continuous inN , and the condition number of
Bk is bounded inN , then‖∇E(xk)‖ → 0 ask → ∞.

In our case, we can ensure the condition number is bounded
by simply addingµkI to Bk with µk ≥ µ > 0 (since∇2E
is bounded), which we do in practice anyway since some
of our Bk are psd. The other conditions hold for theE
functions we use. From eq. (10.30) inNocedal & Wright
(2006) and with bounded condition number, it follows that

‖xk + pk − x∗‖ . r ‖xk − x∗‖+O(‖xk − x∗‖2)

wherex∗ is a minimizer ofE, H(x∗) andB(x∗) its Hes-
sian and matrixB, andr =

∥

∥B−1(x∗)H(x∗)− I
∥

∥. Thus
the iterations have locally linear convergence with rater if
we use unit step sizes (which we see in practice). The better
the Hessian approximationB the smallerr and the faster
the convergence. This is quantified in the experiments.

Other Partial-Hessians Bk These typically need to
solve a nontrivial linear systemBkpk = −gk. This can be
accelerated in several ways: (1) by solving the system in an
inexact way using linear CG initialized at the previous iter-
ation’s solution, exiting the solver after a certain tolerance
ǫ > 0 is achieved. (2) By updatingBk and its Cholesky
factor everyT ≥ 1 iterations. The user has control on the
exactness of the solution throughǫ orT . The gradient is al-
ways updated at each iteration. For the experiments in this
paper we will focus on strategies withǫ > 0 andT = 1.

3. Experimental Evaluation

We have explored a number of partial Hessians as well
as different strategies for efficient linear system solu-
tion, in datasets with s-SNE,t-SNE and EE. Here we
report a representative subset of results, including what
we consider the overall winner (the spectral direction).
We compare the following methods: gradient descent
(GD), used in SNE (Hinton & Roweis, 2003) and t-SNE
(van der Maaten & Hinton, 2008); fixed-point diagonal it-
eration (FP), used in EE (Carreira-Perpĩnán, 2010), much
faster than GD; the diagonal of the full Hessian (DiagH);
nonlinear conjugate gradients (CG) and L-BFGS (typical
choices for large problems); spectral direction (SD), pos-
sibly sparsified and caching the Cholesky factor before
the first iteration; and a partial Hessian4L+ + 8λLxx

i∗,i∗

(which we call SD–). The latter consists of positive block-
diagonal elements of8λLxx corresponding to entries asso-
ciated with the same dimension (i = j in wxx

in,jm). This
ensures a psd approximation and adds information about
the Hessian of the repulsive termE−(X). Except for GD,
FP and CG, all the other methods have not been applied to
SNE-type methods that we know. Several of these methods
require the user to set parameter values. For L-BFGS we
tried several values for its user parameterm (the number of
vector pairs to store in memory) and foundm = 100 best.
For SD–, we solve the linear system with linear CG, exiting
early when the relative toleranceǫ drops below0.1 or we
reach50 linear CG iterations. Generally, these parameters
are hard to tune and there is little guidance on which values
are the best. This is an important reason why the spectral
direction, which requires no parameters to tune and per-
forms very well, is our preferred method.

We also tried other methods that were not generally com-
petitive and do not report them, to keep the presentation
clearer. For example, adding to the SD Hessian the diago-
nal of the full Hessian (which depends onX and so varies
over iterations), and solving the linear system by approxi-
mately updating the Cholesky factorization or by using CG.

Once the direction is obtained for a given method, we use a
backtracking line search (Nocedal & Wright, 2006) to find
a step size satisfying the first Wolfe condition (sufficient
decrease). As initial step size we always try the natural step
α = 1 (recommended for quasi-Newton updates). How-
ever, we observed that some methods (in particular SD)
tend to settle to accepted step sizes that are somewhat less
than 1. For such cases we used an adaptive strategy: the
initial backtracking step at iterationk equals the accepted
step from the previous iteration,k − 1. This is a conser-
vative strategy because once the step decreases it cannot
increase again, but it compensates in saving line searches
with require expensive evaluations of the errorE. For
nonlinear CG, we use Carl Rasmussen’s implementation
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Figure 1.COIL-20 dataset, optimization with fixed initial and fi-
nal points, for EE (top) and s-SNE (bottom). Learning curves as
a function of the number of iterations (left) and runtime (right).

minimize.m, which uses a line search that is more sophis-
ticated than backtracking, and allows steps longer than 1.

We evaluated these methods in a small dataset in three con-
ditions (converging to the same minimum, converging to
different minima, and homotopy training), and in a large
dataset. For EE we usedλ = 100.

3.1. Small dataset: COIL-20 image sequences

The COIL-20 dataset contains rotation sequences of ob-
jects every5 degrees, so each data point is a grayscale im-
age of128 × 128 pixels. We selected sequences for ten
objects for a total ofN = 720 points inD = 16 384 dimen-
sions, corresponding to ten loops (1D closed manifolds) in
R

D. In all the experiments we used SNE affinities with
perplexityk = 20, resulting in a nonsparseN ×N matrix
W+, and reduced dimension tod = 2, so visual inspection
could be used to assess the quality of the result. For SD we
used no sparsification (κ = N ).

Convergence to the same minimum from the same ini-
tial X We determined embeddingsX0 andX∞ such that
X∞ is a minimum ofE(X) andX0 is close enough toX∞

that all methods converged toX∞ when initialized from
X0. Thus, all methods have the same initial and final des-
tination. This allows us to reduce effects due to different
local minima of the errorE having possibly different char-
acteristics. Fig.1 shows learning curves for EE and s-SNE
as a function of the number of iterations and the runtime. In
decreasing runtime, the methods can be roughly ordered as
GD≫ (FP,DiagH)> (CG,SD–)> (L-BFGS,SD), with GD
being over an order of magnitude slower than FP, and FP
about an order of magnitude slower than SD (note the log
X axis). The runtime behavior and the number of iterations
required agrees with the intuition that the more Hessian in-
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Figure 2.COIL-20 dataset, optimization ran for 20 s from 50 ran-
dom initializations, for EE (left) and s-SNE (right).

formation the better the direction, as long as the iterations
are not too expensive. Note how the method using most
Hessian information, SD–, uses the fewest iterations (left
panels), but these are also the slowest, which shifts its run-
time curves right. For all the other methods, computing the
direction costs less than computing the gradient itself. FP
is very similar to DiagH. GD was the only method that did
not reach the convergence value even after10 000 iterations
(20 minutes runtime).

L-BFGS is a leading method for large-scale problems. It
estimates inverse Hessian information through rank-2 up-
dates, which gives better directions than the gradient, and
obtains the direction from a series of outer products rather
than solving a linear system, which is fast. The main prob-
lems of L-BFGS (Nocedal & Wright, 2006, p. 180,189) are
that it converges slowly on ill-conditioned problems and
that, with largeNd, it requires an initial period of many
iterations before its Hessian approximation is good. While
for the small problem of fig.1 L-BFGS is almost compet-
itive with the SD, in the larger problem of fig.4 it is not:
70 iterations (for EE) give a rank-140 approximation to a
40k×40k Hessian matrix, which fails to decrease the error.

Nonlinear CG is generally inferior to L-BFGS and this is
seen in the figure too. (Our results unfairly favor CG be-
cause itsminimize.m implementation uses a better line
search than in our implementation of the other methods.)

From the beginning, the SD has an exact part of the Hessian
that is pd, and obtains the direction from triangular back-
solves (same cost as matrix-vector product, and dominated
by the cost of computing the gradient). The only overhead
is in the initial Cholesky decomposition, which is small,
and progress thereafter is consistently fast.

Convergence from random initial X to possibly differ-
ent minima We generated 50 random pointsX0 (with
small values) and ran each method initialized from each
X0, stopping after 20 seconds runtime. Fig.2 shows the
errorE and number of iterations for each initialization, for
EE and s-SNE. They confirm the previous observations, in
particular SD and L-BFGS achieve the lower errors, but SD
does so more reliably (less vertical spread). GD (outside
the plot) barely moved from the initialX0.
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Figure 3.COIL-20. Homotopy optimization of EE.Left: final convergence point for nearly all methods.Central two plots: number of
iterations and runtime required to achieve the target tolerance for eachλ. Right: total number of error function evaluations and runtime.

Homotopy optimization for EE The EE error function
E(X;λ) can be optimized by homotopy, by starting to min-
imize overX atλ ≈ 0, whereE is convex, and following
a path of minima to a desiredλ by minimizing overX as
λ increases (Carreira-Perpĩnán, 2010). This is slower than
directly minimizing at the desiredλ from a random initial
X, but usually finds a deeper minimum. We used 50 log-
spaced values ofλ from 10−4 to 102 and minimizedE at
eachλ value until the relative error decrease was less than
10−6 or we reached104 iterations. Tracking the pathX(λ)
so closely, we were able to have all methods converge to es-
sentially the same embedding (shown in fig.3), except for
GD, whose embedding was still evolving (it would have re-
quired many more iterations to converge). Fig.3 shows the
runtime and the number of iterations for eachλ value.

The results again demonstrate a drastic improvement
of our SD over existing methods (GD and FP from
Carreira-Perpĩnán, 2010), and confirm that more Hessian
information results in fewer iterations and function evalu-
ations required. Also, we observe that the SD step sizes
decrease from1 for λ < 0.02 to 0.1 for the finalλ (even
though we reset to 1 the initial backtracking step every time
we increaseλ). Presumably, asλ increases, so does the ef-
fect of the termE−(X), which the SD Hessian ignores.

3.2. Large dataset: MNIST handwritten digit images

While more Hessian information enables deeper decreases
of the error per iteration, this comes at the price of solving
a more complex linear system. To see how the different
optimization methods scale up, we tested them on a dataset
considerably larger than those in the literature (N = 6000
points invan der Maaten & Hinton, 2008). We usedN =
20 000 MNIST images of handwritten digits (each a28×28
pixel grayscale image, i.e., of dimensionD = 784). We
used SNE affinities with perplexityk = 50 and reduced
dimension tod = 2. All our experiments were run in a 1.87
GHz workstation, without GPUs or parallel processing. We
ran several optimization methods (GD, FP, L-BFGS, SD,
SD–) for 1 hour each, for both EE andt-SNE. For the SD
we used a sparseL matrix withκ = 7.

As noted in section2, for EE and s-SNE the Hessian of
E+(X) (i.e., the matrixL+) is constant, so we cache its
Cholesky factor before starting to iterate. Fort-SNE, this
Hessian depends onX, and recalculating it and solving a
linear system (even sparse and using linear CG) at each
iteration is too costly. Thus, we fix it to the Hessian at the
initial X and cache its Cholesky factor just as with EE. This
still gives descent directions that work very well.

Fig.4shows the resulting learning curves for EE andt-SNE
as a function of the number of iterations and the runtime.
Some methods’ deficiencies that were already detectable
in the small-scale experiments become exaggerated in the
larger scale. The SD– direction, while still able to produce
good steps, now takes too much time per iteration (even
though it is solved inexactly by CG), and is able to com-
plete only 37 iterations for EE and 13 fort-SNE within
the allotted time (1 hour). Note SD– does worse than SD
in number of iterations even though it uses more Hessian
information; this is likely due to the inexact linear system
solution. In general, all methods run more iterations for
EE than for s-SNE andt-SNE, indicating EE’s simpler er-
ror functionE is easier to minimize. GD is omitted, be-
cause it showed no decrease of the objective function. For
both EE andt-SNE we never observe any decrease with
L-BFGS within 1 hour, although we have tried various val-
ues form (m = 5, 50, 100); it does decrease a little after 3
hours. This is due to the long time needed to approximate
the enormous Hessian. Nonlinear CG does decrease the
objective function for EE, but most of the computational
resources are spent on the line search. Thus CG did least
number of iterations compared to other methods. Our SD
has mostly converged already in 15 minutes. SD has a rea-
sonable setup time of 5 min. in both EE andt-SNE to com-
pute the Cholesky factorization (this time can be controlled
with the sparsificationκ), and it is amply compensated for
by the speed of the sparse backsolves in computing the di-
rection at each iteration (which are essentially for free com-
pared to computing the gradient). SD decreases the objec-
tive consistently and efficiently from the first iterations.FP
does scale up in terms of cost per iteration, but, as in the
small dataset, each step makes considerably less progress
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than a SD step. In summary, FP, SD– and L-BFGS are
clearly not competitive with SD, which is able to scale its
computational requirements and still achieve good steps.

Fig. 4 also shows the resulting embeddings for FP from
(Carreira-Perpĩnán, 2010) (itself much better than GD) and
SD at an intermediate stage (after 20 runtime for EE and
1 hour fort-SNE). The difference is qualitatively obvious.
The SD embedding already separates well many of the dig-
its, in particular zeros, ones, sixes and eights. The FP em-
bedding shows no structure whatsoever.

4. Discussion

Given the exceedingly long runtimes of gradient descent,
we suspect some of the embeddings obtained in the lit-
erature of SNE using gradient descent could be actually
far from a minimum, thus underestimating the power of
SNE. The optimization methods we present, in particular
the spectral direction, should improve this situation.

Experimentally, no single method is always the best. If
we weigh efficiency, robustness (to user parameters) and
simplicity (of implementation using existing linear alge-
bra code and of user parameter setting), we believe that
the spectral direction with cached Cholesky factor, possibly
sparsified, is the preferred strategy. It achieves good steps
and can be computed in less time than the gradient and ob-
jective functionE. However, in really large problems even
computingE and∇E may be too time consuming. Note
that, for SNE andt-SNE, even ifpnm are sparse in the at-
tractive term, the negative term is still a fullN ×N matrix
(though the matrix itself need not be stored forE or∇E to
be computed). One solution to this is to use there a sparse
graphW− as in EE. However, the quality of the resulting
embedding may be affected depending on the sparsity level.
(Note this would not affect the construction of our spectral
direction, since it does not depend onE−.) Another way to
accelerate the computations of sums of many Gaussians,
needed inE and ∇E, is to use fast multipole methods
(Greengard & Strain, 1991; Raykar & Duraiswami, 2006),
which can reduce the time toO(N) if the dimensiond is
low (which should be the case in practice).

5. Conclusion

We have provided a generalized formulation of embed-
dings resulting from the competition between attraction
and repulsion that includes several important existing al-
gorithms and suggests future ones. We have uncovered
the relation with spectral methods and the role of graph
Laplacians in the gradient and Hessian, and derived sev-
eral partial-Hessian optimization strategies. A thorough
empirical evaluation shows that among several competitive
strategies one emerges as particularly simple, generic and

scalable, based on the Cholesky factors of the (sparsified)
attractive Laplacian. This adds a negligible overhead to
the computation of the gradient and objective function but
improves existing algorithms by 1–2 orders of magnitude.
The quadratic cost of the gradient and objective function re-
mains a bottleneck which future work may address. Code
implementing the algorithms is available from the authors.
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Figure 4.MNIST dataset,20 000 points, for EE (left) andt-SNE (right).Top: learning curves for different methods as a function of the
number of iterations (left panels) and runtime (right panels).Bottom: embeddings achieved after 20 minutes (EE) and 1 hour (t-SNE)
runtime using the fixed point iteration and spectral direction. Only 500 digits shown to avoid clutter.


