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Abstract

We analyze the size of the dictionary con-
structed from online kernel sparsification, us-
ing a novel formula that expresses the ex-
pected determinant of the kernel Gram ma-
trix in terms of the eigenvalues of the co-
variance operator. Using this formula, we
are able to connect the cardinality of the
dictionary with the eigen-decay of the co-
variance operator. In particular, we show
that under certain technical conditions, the
size of the dictionary will always grow sub-
linearly in the number of data points, and,
as a consequence, the kernel linear regressor
constructed from the resulting dictionary is
consistent.

1. Introduction

Kernel least squares (KLS) is a simple non-parametric
regression method widely used in machine learning
(e.g., see Schölkopf and Smola, 2002). Standard KLS
requires storing and computing the (pseudo) inverse
of the Gram matrix, and thus its complexity scales at
least quadratically in the number of data points, ren-
dering the method intractable for large data sets. In
order to reduce the computational cost and avoid over-
fitting, it is common to replace the Gram matrix with a
low rank approximation formed by projecting all sam-
ples1 onto the span of a chosen subset or dictionary
of samples. Using such an approximated Gram ma-
trix can greatly reduce the computational cost of KLS,
sometimes to linear in the number of data points. Gen-
erally speaking, there are two approaches to construct-
ing the dictionary. The first is the Nyström method

1With a little abuse of notation, we use samples to re-
fer to elements in some reproducing kernel Hilbert space
(RKHS), i.e., samples are the images of the feature map of
the data points.
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(Williams and Seeger, 2000), where a randomly se-
lected subset is used. The second, which is the con-
cern of this paper, is called Online Kernel Sparsifica-
tion (OKS; Engel et al. 2004), where the dictionary is
built up incrementally by incorporating new samples
that cannot be represented well (in the least squares
sense) using the current dictionary.

Since being proposed, OKS has found numerous appli-
cations in regression (Duy and Peters, 2010), classifica-
tion (Slavakis et al., 2008) and reinforcement learning
(Engel, 2005; Xu, 2006). Despite this empirical suc-
cess, however, the theoretical understanding of OKS
is still lacking. Most of the theoretical analysis has
been done by Engel et al. (2004), who showed that
the constructed dictionary is guaranteed to represent
major fraction of the leading eigenvectors of the Gram
matrix (Theorem 3.3, Engel et al. 2004). It was also
proven that the dictionary stays finite if the set of pos-
sible samples is compact, and thus admits a finite cov-
ering number (Theorem 3.1, Engel et al. 2004). Yet,
an important question remains open:

How does the size of the dictionary scale with
the number of samples if the set of possi-
ble samples does not admit a finite covering
number, or if the covering number is too large
compared to the size of the data set?

Answering this question allows us to: (1) estimate
the computational complexity of OKS, and therefore
the associated KLS method, more accurately, and (2)
characterize the generalization capability of the KLS
regression function obtained, as the usual risk bounds
are controlled by the quotient between the size of the
dictionary and the number of samples (e.g., see Györfi
et al., 2004).

In this paper, we address this question theoretically.
Our analysis proceeds in two steps:

1. We provide a novel formula expressing the ex-
pected Gram determinant over a set of i.i.d. sam-
ples in terms of the eigenvalues of the covariance
operator. We then prove that the expected Gram
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determinant diminishes with the cardinality of the
set faster than any exponential function.

2. We observe that the Gram determinant over the
OKS dictionary is lower bounded by some expo-
nential function in the size of the dictionary. How-
ever, since step 1 concludes that the chance of a
finding a big Gram matrix with large determi-
nant is exceedingly small, the size of the dictio-
nary must also stay small with high probability.
Specifically, we show that the size of the dictio-
nary will always grow sub-linearly in the number
of data points, which implies consistency of KLS
regressors constructed from the dictionary.

The rest of the paper is organized as follows: Section 2
describes the first step of our analysis, establishing a
number of theoretical properties concerning the Gram
determinant, including its expectation, decay, and mo-
ments. In section 3, we proceed to step 2, and analyze
the growth of the size of the dictionary in OKS using
the results from section 2. Section 4 briefly discusses
the results and directions for future research.

2. The Determinant of a Gram matrix

Let H be a separable Hilbert space endowed with inner
product 〈·, ·〉, and P be a distribution over H. Assume

Eφ∼P ‖φ‖2 < ∞, and let C = Eφ∼P [φ⊗ φ] be the
(non-centered) covariance operator, where ⊗ denotes
the tensor product. Let λ1 ≥ λ2 ≥ · · · be the eigen-
values of C sorted in descending order, then

∑
λi <∞

(Theorem 2.1, Blanchard et al. 2007).

Given i.i.d. samples φ1, . . . , φk ∼ P , let Gk (φ1:k) be2

the k×k Gram matrix with (i, j)-th entry 〈φi, φj〉, and
let detGk be the determinant of Gk. Clearly, detGk
is a random variable from Hk to R. Moreover, detGk
has bounded expectation since from Hadamard’s in-
equality

0 ≤ E [detGk] ≤ E
[∏k

i=1
‖φi‖2

]
=
(
E ‖φ‖2

)k
.

Let λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃k denote the eigenvalues of
k−1Gk (and thus those of the empirical covariance op-

erator C̃k = k−1
∑k
i=1 φi ⊗ φi) sorted in descending

order. We assume the following condition.

Assumption 1 limk→∞
∑∞
i=1

∣∣∣λ̃i − λi∣∣∣ = 0, a.s.,

where we take λ̃i = 0 for i > k.

The validity of this assumption will be discussed later
in Section 4.1.

2We use φ1:k as a short hand for φ1, . . . , φk.

2.1. A Formula for the Expectation of the
Gram Determinant

Before presenting our first main result (Theorem 1), we
introduce some additional notation. The elementary
symmetric polynomial3 of order k over n variables is
defined as

νn,k (λ1:n) = k!
∑

1≤i1<i2<···<ik≤n

λi1λi2 · · ·λik ,

where the summation runs over all k-subsets of
{1, . . . , n}. We denote the infinite extension of νn,k
as

νk (λ1, λ2, . . . ) = k!
∑

1≤i1<i2<···<ik

λi1λi2 · · ·λik ,

whenever the infinite sum exists. For simplicity, νk
and νn,k denote both the function and their respec-
tive values with default argument (λ1, λ2, . . . ), and we
only write down the arguments when they differ from
(λ1, λ2, . . . ). Some of the useful properties of νn,k and
νk are summarized in the following Lemma.

Lemma 1 We have

a) νn,k ≥ νn−1,k ≥ 0, and limn→∞ νn,k = νk.

b) νn,k = kλnνn−1,k−1 + νn−1,k,

c) ν2k ≥ νk−1νk+1 (Newton’s inequality),

d) ν
1
k

k ≥ ν
1

k+1

k+1 (Maclaurin’s inequality).

Proof. We only prove the limit in a) exists. The
other properties can be derived easily using the limit
argument and the properties of elementary symmetric
polynomials (e.g., see Niculescu, 2000). In particular,
c) is a direct consequence of Newton’s inequality, and
d) is a rephrase of Maclaurin’s inequality.

Note that νn,k is a non-decreasing sequence of n.
Moreover,

νn,k = k!
∑

1≤i1<i2<···<ik≤n

λi1 · · ·λik < k!

(
n∑
i=1

λi

)k
is bounded because

∑
λi < ∞. Therefore the limit

exists.

Note that property b) enables us to compute νn,k in
O (nk) time using dynamic programming. More pre-
cisely, this is done by initializing i) ν1,1 = λ1, ii) νi,1 =
νi−1,1 + λi for i = 1, . . . , n, and iii) νi,i = iλiνi−1,i−1
for i = 1, . . . , k, and then applying the recursion in b).

The following theorem gives an explicit representation
of the expectation of detGk in terms of the eigenvalues
of C.

3Note that the standard definition does not have the k!
term.
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Theorem 1 E [detGk (φ1:k)] = νk

That is, the expectation of the determinant of a Gram
matrix built from k samples is equal to the k−th order
elementary symmetric polynomial over the eigenvalues
of the covariance operator.

Proof. 4 Let φ1, . . . , φn ∼ P , and Gn = Gn (φ1:n) be

the corresponding Gram matrix. Denote λ̃1, . . . , λ̃n
the eigenvalues of n−1Gn, so that nλ̃i are the eigen-
values of Gn. The characteristic polynomial of Gn is
given by f (λ) = det (Gn − λI). By definition,

f (−λ) =

n∏
i=1

(λ+ nλi)

=

n∑
k=0

nk

 ∑
1≤i1<···<ik≤n

λi1 · · ·λik

 · λn−k
=

n∑
k=0

nk
νn,k

(
λ̃1:n

)
k!

· λn−k.

Alternatively, we can express f (−λ) using the deter-
minants of the principal submatrices (see for example
Meyer, 2001, pp.494), which are Gram matrices by
themselves:

f (−λ) =

n∑
k=0

∑
I∈[n]k

detGk (φI) · λn−k,

where [n]k is the family of k-subsets in {1, . . . , n},
and φI denotes {φi}i∈I . Divide the coefficients before

λn−k by binomial coefficient
(
n
k

)
to get the identity:

(
n

k

)−1 ∑
I∈[n]k

detGk (φI) =
(n− k)!nk

n!
νn,k

(
λ̃1:n

)
.

The l.h.s. is a U-statistic (Serfling, 1980) with kernel
detGk. Since E [detGk] <∞, the law of large numbers
for U-statistics (Hoeffding, 1961) asserts that

E [detGk] = lim
n→∞

(
n

k

)−1 ∑
I∈[n]k

detGk (φI) , a.s.

Now consider the r.h.s. For the first term

lim
n→∞

(n− k)!nk

n!
= lim
n→∞

n

n− 1
· · · n

n− k + 1
= 1.

4An alternative proof may be derived using the gener-
ator function of E [detGk] (Martin, 2007). Unfortunately,
the result is only briefly alluded to in the slides, and no de-
tailed documentation has been made available up to now.

For the second term, we have

νn,k

(
λ̃1:n

)
− νk

=

n∑
i=1

(
νn,k

(
λ1:i−1, λ̃i:n

)
− νn,k

(
λ1:i, λ̃i+1:n

))
+ (νn,k (λ1, . . . , λn)− νk) .

Note that∣∣∣νn,k (λ1:i−1, λ̃i:n)− νn,k (λ1:i, λ̃i+1:n

)∣∣∣
=
∣∣∣k (λ̃i − λi) νn−1,k−1 (λ1:i−1, λ̃i+1:n

)∣∣∣
≤ k

∣∣∣λ̃i − λi∣∣∣ νn,k−1 (λ1:i−1, λi, λ̃i+1:n

)
≤ k

∣∣∣λ̃i − λi∣∣∣ ν∗n,k−1,

where

ν∗n,k−1 = νn,k−1

(
max

{
λ̃1, λ1

}
, . . . ,max

{
λ̃n, λn

})
is bounded as

∑
max

{
λ̃i, λi

}
<∞. Therefore∣∣∣νn,k (λ̃1:n)− νk∣∣∣

≤ kν∗n,k−1
n∑
i=1

∣∣∣λ̃i − λi∣∣∣+ |νn,k (λ1, . . . , λn)− νk|

→ 0, a.s.

The first summand vanishes because of Assumption 1,
and the second one diminishes because of Lemma 1 a).
As a result,

lim
n→∞

(n− k)!nk

n!
νn,k

(
λ̃1:n

)
= νk.

2.2. The Decaying Speed of E [detGk]

It is not immediately obvious how νk = E [detGk] be-
haves with increasing k. Here we provide a direct link
between the speed with which νk approaches zero and
the tail behavior of {λi}. The analysis is based on the
following lemma.

Lemma 2 Let λ(0) =
∑
λj, and λ(k) =

∑
j>k λj.

Then

log νk+s − log νk ≤ s log λ(k) + log

(
k + s

k

)
.

Proof. Note that

νk+s =
(k + s)!

k!s!
k!
∑

1≤i1<···<ik

λi1 · · ·λik · s!
∑

ik<j1<···js

λj1 · · ·λjs

=

(
k + s

k

)
k!
∑

1≤i1<···<ik

λi1 · · ·λik · νs (λik+1, λik+2, . . . )
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Since λi is decreasing and ik ≥ k, we have for all ik

νs (λik+1, λik+2, . . . ) ≤ νs (λk+1, λk+2, . . . )

≤
(∑

j>k
λj

)s
,

where the last inequality is from Lemma 1 d). There-
fore,

νk+s ≤
(
k + s

k

)(
λ(k)

)s
· νk.

Taking the logarithm gives the desired result.

An immediate consequence is that νk converges to 0
faster than any exponential function.

Corollary 1 For any α > 0, limk→∞ α−kνk = 0.

Proof. Assume k is fixed and s is large. From Stir-
ling’s formula

log

(
k + s

k

)
= k log

(
1 +

s

k

)
+ s log

(
1 +

k

s

)
+O (log s) < s+O (log s) ,

where we use log (1 + x) < x for all x > −1.

By Lemma 2,

log νk+s − (k + s) logα

≤ s
[
1− logα+ log λ(k)

]
+O (log s) .

Since
∑
λi < ∞, we can pick a k∗ such that

log
(∑

j>k∗ λj

)
< −2 + logα, then

lim
k→∞

log νk − k logα = lim
s→∞

(log νk∗+s − (k∗ + s) logα)

< lim
s→∞

(−s+O (log s)) = −∞,

and thus limk→∞ α−kνk = 0.

Remark 1 We can also bound νk in terms of λ(k)

using Lemma 2. For exponential decay, i.e., λi ∼
O
(
σ−i
)
, we take s = 1, then

log νk < −
k2

2
log σ + log k! +O (k) .

The bound is tight since for λi = σ−i, direct computa-
tion gives

νk = k!

∞∑
i1=1

λi1 · · ·
∞∑

ik=ik−1+1

λik =
k!σ−k∏k

i=1 (σi − 1)
.

Taking the logarithm and applying some algebra we get

log νk = −k
2

2
log σ + log k! +O (k) .

For polynomial decay, i.e., λi ∼ O
(
i−(1+p)

)
,∑

i≥k i
−(1+p) ∼ k−p

p , we set s = k, then

log ν2k − log νk ≤ k log λ(k) + log

(
2k

k

)
.

Using Stirling’s formula,

log (2k)!− 2 log k! = k log 4 +O (log k) .

Therefore,

log
ν2k
νk
≤ −pk log k + k log

4

p
+O (log k) ,

which characterizes the convergence of νk.

2.3. Bounding the Moments of the Gram
Determinant

In this section we prove a simple result concerning the
moment E [(detGk)

m
], with the additional assumption

thatH is the reproducing kernel Hilbert space (RKHS)
associated with some bounded Mercer kernel ` (x, x′).
Note that for any m ≥ 1, `(m) (x, x′) = (` (x, x′))

m
is

still a bounded Mercer kernel. Let H(m) be the RKHS
associated with `(m) and denote λ

(m)
1 ≥ λ(m)

2 ≥ · · · the
eigenvalues of the corresponding covariance operator
in H(m). We have the following bound.

Theorem 2 E [(detGk)
m

] ≤ νk

(
λ
(m)
1 , λ

(m)
2 , . . .

)
for

m = 2, 3, . . . .

Proof. Let A ◦B be the Hadamard product of A and
B. We use the well-known fact: If A, B are positive
semi-definite, then

det (A ◦B) ≥ det (A) det (B) .

Repeating the process in the proof of Theorem 1, and
applying

detG
(m)
k ≥ (detGk)

m

gives the result.

Remark 2 Theorem 2 allows us to estimate empiri-
cally the bound of E [(detGk)

m
] without enumerating

all subsets of size k. Moreover, for RBF and polyno-
mial kernels, `(m) stays RBF and polynomial, respec-

tively. However, it remains unknown how λ
(m)
i behaves

in the general case.
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3. Analyzing Online Kernel
Sparsification

In OKS, the dictionary D is initially empty. When a
new sample φ arrives5, it is added to the dictionary if

detGD∪{φ}

detGD
> α,

where GD and GD∪{φ} are the respective Gram ma-
trices of D and D ∪ {φ}, and α > 0 is a user-defined
constant controlling the approximation error. Note
that our notation is equivalent to the form originally
proposed by Engel et al. (2004) as

detGD∪{φ}

detGD
= 〈φ, φ〉 − g>G−Dg = min

ψ∈spanD
‖φ− ψ‖2

where g =
[
〈φ, φ1〉 , . . . ,

〈
φ, φ|D|

〉]>
for D ={

φ1, . . . , φ|D|
}

, and G−D is the inverse of GD. The

new φ can be added in O(|D|2) time if G−D is up-
dated incrementally, for a total computational com-
plexity O(|D|2 n) for n samples.

Our analysis is based on the key observation that

detGD > α|D|.

Since we have shown in the previous section that
α−kE [detGk]→ 0, the chance of finding a subset with
the property that detGD > α|D| will diminish as |D|
grows, making a large dictionary unlikely.

More specifically, let φ1, . . . , φn be n i.i.d. samples
from P , and let Dn be the dictionary constructed from
φ1:n. Denote [n]k to be the family of all k-subsets of
{1, . . . , n}. For A ∈ [n]k, let

ρk (φA) = I
[
detGk (φA) > αk

]
,

where I [·] is the indicator function. Define

k∗n = argmax
k

 ∑
A∈[n]k

ρk (φA) > 0

 .

Then clearly |Dn| < k∗n, and we may study k∗n instead
of |D|. Intuitively, k∗n characterizes the dimensionality
of the linear space spanned by φ1:n, because for any
subset larger than k∗n there will be some φ which can be
represented within error α by the linear combination
of φ1:n.

To characterize k∗n we study P [k∗n ≥ k]. The following
lemma shows that this probability is equal to the prob-
ability of the existence of k-subsets A with ρk(A) = 1.

5In practice φ are often features in some RKHS induced
by a kernel, and we store samples in the original domain.
However we assume D is made of features for conceptual
simplicity.

Lemma 3 P [k∗n ≥ k] = P
[∑
A∈[n]k

ρk (φA) > 0
]
.

Proof. By definition

P

 ∑
A∈[n]k

ρk (φA) > 0

 ≤ P

 ⋃
k′≥k

 ∑
A∈[n]k′

ρk′ (φA) > 0




= P [k∗n ≥ k] .

Therefore the equality is not trivial.

From Theorem 5 in Cover and Thomas (1988),(
detGk+1 (φ1:k+1)

αk+1

) 1
k+1

≤ 1

k + 1

∑
A∈[k+1]k

(
detGk (φA)

αk

) 1
k

.

Therefore,
∑
A∈[n]k

ρk (φA) = 0 implies∑
A∈[n]k′

ρk′ (φA) = 0 for all k′ ≥ k, and thus

P

 ∑
A∈[n]k

ρk (φA) = 0

 ≤ P

 ⋂
k′≥k

 ∑
A∈[n]k′

ρk′ (φA) = 0


 .

Taking the complement on both sides,

P

 ∑
A∈[n]k

ρk (φA) > 0

 ≥ P

 ⋃
k′≥k

 ∑
A∈[n]k′

ρk′ (φA) > 0




= P [k∗n ≥ k] .

We may now proceed to bound k∗n, using basic tools
from probability theory.

Theorem 3 P [|Dn| ≥ k] ≤ P [k∗n ≥ k] < α−k
(
n
k

)
νk.

Proof. Note that

E

 ∑
A⊂[n]k

ρk (φA)

 =

(
n

k

)
E [ρk] =

(
n

k

)
P
[
detGk > αk

]
.

From Markov’s inequality,

P
[
detGk > αk

]
<

E [detGk]

αk
.

It then follows

P [k∗n ≥ k] = P

 ∑
A∈[n]k

ρk (φA) ≥ 1


≤ E

 ∑
A⊂[n]k

ρk (φA)

 < (n
k

)
E [detGk]

αk
.

Here we use the fact that ρk is {0, 1}-valued, and apply
Markov’s inequality again.
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Note that the proof only uses Markov’s inequality,
which usually provides bounds that are by no means
tight. The possibility of strengthening the bound is
discussed in the next section. However, even with this
simple analysis, some interesting results for the size of
D can be obtained. The first is the following corollary.

Corollary 2 For any ε ∈ (0, 1],

lim
n→∞

P
[
k∗n
n
≥ ε
]

= 0.

Proof. For simplicity assume εn is an integer. Let
k = nε, then (

n

k

)
νk
αk

=

(
ε−1k

k

)
νk
αk

.

Using Stirling’s formula,

log

(
ε−1k

k

)
= log

(
ε−1k

)
!− log k!− log

((
ε−1 − 1

)
k
)
!

= γk +O (log k) ,

where

γ =
1

ε
log

1

ε
−
(

1

ε
− 1

)
log

(
1

ε
− 1

)
.

Therefore, following Corollary 1 and Theorem 3,

lim
n→∞

P
[
k∗n
n
≥ ε
]
< lim
n→∞,k=εn

(
n

k

)
E [detGk]

αk

= lim
k→∞

(
ε−1k

k

)
νk
αk

= 0.

Remark 3 By definition, Corollary 2 indicates that
n−1k∗n → 0 in probability, or the size of the dictio-
nary grows only sub-linearly with the number of sam-
ples. Assuming finite variance of the response variable,
it immediately follows that the ordinary linear regres-
sor constructed using features obtained from OKS is
consistent, as the generalization error is controlled by
n−1 |D| (e.g., see Györfi et al., 2004).

The next corollary provides a bound given a finite
number of samples.

Corollary 3 For arbitrary δ > 0 and

n <
αk

e

(
δ

νk

) 1
k

,

we have P [|Dn| > k] < δ.

Remark 4 It is possible to give a bound in k rather
than n. However, such a bound requires the inversion
of νk and complicates the notation.

Proof. Assume n = ε−1k. Rewrite Theorem 3 as

P [|Dε−1k| ≥ k] < α−k
(
ε−1k

k

)
νk.

Using the simple relation
(
ε−1k
k

)
<
(
ε−1e

)k
, we have

logα−k
(
ε−1k

k

)
νk < k (1− logα)− k log ε+ log νk.

Letting the r.h.s. equal log δ, it follows that

log
e

α
+

1

k
log

νk
δ

= log ε, and ε =
e

α

(νk
δ

) 1
k

.

Using Corollary 3, an upper bound on the dictionary
size can be derived using {λi}, and the impact of α on
the dictionary size can be analyzed.

From the previous discussion, if λi ≤ σ−i, then

νk ≤
k! (σ)

−k∏k
i=1 (σi − 1)

=
k! (σ)

−k

σ
k(k+1)

2

∏k
i=1 (1− σ−i)

,

and some elementary manipulation gives

k∑
i=1

log
(
1− σ−i

)
> − σ

(σ − 1)
2 .

Therefore,

1

k
log νk > −

k

2
log σ + log k − 3

2
− log σ − 1

k

σ

(σ − 1)
2 .

Plugging this into Corollary 3, n < α
β δ

1
k σ

k
2 , where β

is some constant depending on σ, which implies k ∼
O (log (n)). Similarly, for polynomial decay n−(1+p),
we have for large k

1

k
log

ν2k
νk

< −p log k + log
4

p
,

and then n > αδ
1
k k1+p. Therefore, the dictionary size

grows approximately at the rate of n
1

1+p . Note that the
order of magnitude of these bounds coincides with the
number of eigenvalues above certain threshold (Bach
and Jordan, 2002, Table 3).

4. Discussion

This paper presented a rigorous theoretical analysis
of how the dictionary in online kernel sparsification
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scales with respect to the number of samples, based
on properties of the Gram matrix determinant. This
work should lead to a better understanding of OKS,
both in terms of its computational complexity, and the
generalization capabilities associated with kernel least
squares regressors. Three additional points are dis-
cussed below concerning a) the validity of Assumption
1, b) how our results relate to the Nyström method,
and c) how the analysis can be potentially developed
further.

4.1. On Assumption 1

Under the mild condition Eφ∼P ‖φ‖2 < ∞, it can
be seen that 〈·, ·〉 is a Mercer kernel in the sense of
Definition 2.15 in Braun (2005), and subsequently by
Theorem 3.26 therein, it follows that the δ2 distance

(Koltchinskii and Giné 2000, pp. 116) between
{
λ̃i

}
and {λi} vanishes almost surely.

However, the convergence of the spectrum in δ2 metric
is insufficient for Theorem 1 to hold, and the stronger
L1 convergence of the eigenspectrum is needed. It is
possible to drop Assumption 1 altogether and base the
discussion on limn→∞ νn,k instead, where the limit al-
ways exists and equals to E [detGk]. Otherwise, fol-
lowing the analysis by Gretton et al. (2009), we may
provide sufficient conditions6 to Assumption 1 using
the following extension of the Hoffman–Wielandt in-
equality (Theorem 3, Bhatia and Elsner 1994)∑

i

∣∣∣λ̃i − λi∣∣∣ ≤ ∥∥∥C̃k − C∥∥∥
1

,

where ‖·‖1 denotes the trace norm. Using Proposi-
tion 12 in Harchaoui et al. (2008), the convergence of∥∥∥C̃k − C∥∥∥

1
to zero can be established provided that i)

H is a separable RKHS (e.g., an RKHS induced by a
continuous kernel over a separable metric space; Stein-
wart et al. 2006) induced by some bounded kernel, and

ii) the eigenspectrum of C satisfies
∑
i λ

1
2
i <∞.

4.2. Comparison with Nyström Method

A similar approach to OKS for reducing the computa-
tional cost of kernel methods is the Nyström method
(Williams and Seeger, 2000), where the dictionary con-
sists of a subset of samples chosen at random. One dis-
tinction of the two methods, following from the anal-
ysis before, is that the dictionary from OKS satisfies
detGD > α|D|, while the randomly selected subset D̃,

satisfies detGD̃ � α|D̃| for larger D. Therefore,

detGn
detGD

� detGn
detGD̃

.

6We thank the anonymous reviewers for pointing this
out.

From an information theoretic point of view, log detGn

detGD̃
can be interpreted as the conditional entropy (Cover

and Thomas, 1988), which indicates that D̃ captures
less information about the data sets.

The theoretical study of the Nyström method
by Drineas and Mahoney (2005) suggests that
O
(
α−4k

)
samples are needed to approximate the first

k eigenvectors well, which is linear in k, irrespec-
tive of the sample size. A recent study (Jin et al.,
2012) shows that assuming bounded kernel, the spec-
tral norm of the approximation error between the true
and the approximated Gram matrix scales at a rate

of O
(
n |D|−

1
2

)
, and in the case of λi ∼ i−p, an

O
(
n |D|1−p

)
rate may be obtained. In contrast, the

results in this paper are over the dictionary size |D|,
and the approximation error is controlled by α. In par-
ticular, assuming bounded kernel, the (i, j)-th entry
of the difference between the true and approximated
Gram matrix using OKS is bounded by

|〈φi, φj〉 − 〈ΠDφi,ΠDφj〉| < 2 sup ‖φ‖
√
α,

where ΠD denotes the projection operator into the
space spanned by D and the inequality follows from
the Cauchy-Schwartz inequality. Using the fact that
‖A‖2 ≤

√
‖A‖1 ‖A‖∞ for arbitrary matrix A, where

‖·‖2, ‖·‖1 and ‖·‖∞ respectively denote the spectral
norm, maximum absolute column sum norm and max-
imum absolute row sum norm, we conclude that the
spectral norm of the approximation error is controlled
by O (n

√
α), which is a non-probabilistic bound and

does not explicitly depend on the dictionary size.

4.3. On Strengthening the Bound

The proof of Theorem 2 uses Markov’s inequality to
bound both P

[
detGk > αk

]
, and the probability of∑

A∈[n]k
ρk (A) 6= 0. In practice, this bound is hardly

satisfying. One possibility is to strengthen the bound
by incorporating information from higher order mo-
ments (Philips and Nelson, 1995), i.e.,

P
[
detGk > αk

]
≤ inf
m∈{1,2,...}

E [detGmk ]

αkm

≤ inf
m∈{1,2,...}

ν
(
λ
(m)
1 , λ

(m)
2 , . . .

)
αkm

.

However, analyzing λ
(m)
i is difficult in general, and

remains an open research question.

It is also possible to improve the second step, using
concentration inequalities for configuration functions
(Boucheron et al., 1999). Let ψ1, . . . , ψk be a sub-
sequence of φ1:n. We say ψ1:k is α-compatible, if for
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j = 1, . . . , k,

detG{ψ1,...,ψj}

detG{ψ1,...,ψj−1}
> α.

Note that the dictionary constructed by OKS is α-
compatible, and the property of α-compatibility is
hereditary, i.e., ψ1:k being α-compatible implies that
all sub-sequences are also α-compatible. To see this,
let ψi1 , . . . , ψis be a sub-sequence of ψ1:k, then

detG{ψi1
,...,ψis}

detG{ψi1 ,...,ψis−1}
= min
ψ∈span{ψi1 ,...,ψis−1}

‖ψis − ψ‖
2

≥ min
ψ∈span{ψ1,...,ψis−1}

‖ψis − ψ‖
2

=
detG{ψ1,...,ψis}

detG{ψ1,...,ψis−1}
> α.

As a result, let Zn denote the length of the longest sub-
sequence in φ1:n that is α-compatible, then |Dn| < Zn.
By Theorem 2 in Boucheron et al. (1999), Zn concen-
trates sharply around E [Zn]. Therefore, it is unlikely
that |Dn| exceeds E [Zn] by much. However, providing
tight bounds for E [Zn] is difficult and requires further
study.
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