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Abstract

F-measures are popular performance metrics,
particularly for tasks with imbalanced data
sets. Algorithms for learning to maximize
F-measures follow two approaches: the em-
pirical utility maximization (EUM) approach
learns a classifier having optimal performance
on training data, while the decision-theoretic
approach learns a probabilistic model and
then predicts labels with maximum expected
F-measure. In this paper, we investigate the
theoretical justifications and connections for
these two approaches, and we study the con-
ditions under which one approach is prefer-
able to the other using synthetic and real
datasets. Given accurate models, our results
suggest that the two approaches are asymp-
totically equivalent given large training and
test sets. Nevertheless, empirically, the EUM
approach appears to be more robust against
model misspecification, and given a good
model, the decision-theoretic approach ap-
pears to be better for handling rare classes
and a common domain adaptation scenario.

1. Introduction

F-measures (van Rijsbergen, 1974) or F-scores have
been commonly used in tasks in which it is important
to retrieve elements belonging to a particular class cor-
rectly without including too many elements of other
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classes. F-measures are usually preferred to accura-
cies as standard performance measures in information
retrieval (Manning et al., 2008), particularly, when rel-
evant items are rare. They are also popular in informa-
tion extraction tasks such as named entity recognition
(Tjong Kim Sang & De Meulder, 2003) where most of
the elements do not belong to a named class.

Various methods have been proposed for optimizing F-
measures. They fall into two paradigms. The empiri-
cal utility maximization (EUM) approach learns a clas-
sifier having optimal F-measure on the training data.
Optimizing the F-measure directly is often difficult
as the F-measure is non-convex. Thus approximation
methods are often used instead. Joachims (2005) gave
an efficient algorithm for maximizing a convex lower
bound of F-measures for support vector machines, and
showed it worked well on text classification. Jan-
sche (2005) gave an efficient algorithm to maximize
a non-convex approximation to F-measures using lo-
gistic regression models, and showed it works well on
a text summarization problem. A simpler method is
to optimize the F-measure in two stages: First learn a
score function using standard methods such as logistic
regression or support vector machines, then select a
threshold for the score function to maximize the em-
pirical F-measure. Though simple, this method has
been found to be effective and is commonly applied,
for example, in text categorization (Yang, 2001).

The decision-theoretic approach (DTA), advocated by
Lewis (1995), estimates a probability model first, and
then computes the optimal predictions (in the sense of
having highest expected F-measure) according to the
model. This method has not been commonly applied
for F-measures, possibly due to the high computa-
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tional complexity of existing algorithms for the predic-
tion step. Assuming the independence of labels, Lewis
showed that, in the optimal prediction, the probabili-
ties of being positive for irrelevant items are not more
than those for relevant items. He also gave a bound
for expected F-measures, which can be computed in
O(n) time, but can be very loose. Based on Lewis’s
characterization, Chai (2005) gave an O(n3) time al-
gorithm to compute optimal predictions, and he gave
empirical demonstration for the effectiveness of DTA.
Apparently unaware of Chai’s work, Jansche (2007)
solved the same problem in O(n4) time. For the gen-
eral case when the labels are not necessarily indepen-
dent, Dembczynski et al. (2011) gave an O(n3) time
algorithm given n2+1 parameters of the label distribu-
tion, but the parameters can be expensive to compute.
They also showed that the independence assumption
can lead to bad performance in the worst case, but
on the practical datasets used in their experiments,
methods assuming the independence assumption are
at least as good as those not assuming independence.

We have only discussed works on binary classification.
There are also algorithms for optimizing F-measures
for tasks with structured output (Tsochantaridis et al.,
2005; Suzuki et al., 2006; Daumé et al., 2009) and mul-
tilabel tasks (Fan & Lin, 2007; Zhang et al., 2010; Pet-
terson & Caetano, 2010).

Optimality in EUM and DTA are different. EUM
considers only instance classifiers (functions mapping
instances to labels), and roughly speaking, an opti-
mal classifier is an instance classifier having highest
F-measure on a very large test set among all instance
classifiers. On the other hand, DTA considers set clas-
sifiers (functions mapping sets of instances to sets of
labels), and an optimal classifier in DTA is a set clas-
sifier having maximum expected F-measure among all
set classifiers. Optimality in these two approaches are
also achieved differently using different learning objec-
tives. Unless otherwise stated, optimal classifiers refer
to EUM-optimal classifiers, and optimal predictions
refer to predictions by DTA-optimal classifiers.

In this paper, we study the relative effectiveness of the
two approaches, and develop theories and algorithms
for this purpose. We focus on binary classification, as-
suming the data is independently and identically dis-
tributed (i.i.d.). The contributions of this paper are as
follows. In Section 2, we establish a consistency result
for empirical maximization of F-measures, together
with bounds on the rate of convergence. This provides
some insights into the factors affecting the convergence
rate in EUM. In particular, our bounds suggest that
rare classes require more data for performance guar-

antee, which is consistent with our intuition. We then
show that thresholding the true conditional distribu-
tion on a large i.i.d. test set can perform as well as
the best instance classifier, justifying the popular hy-
brid approach of learning a conditional distribution
followed by learning a threshold. We also show that
an EUM-optimal classifier and a DTA-optimal clas-
sifier are asymptotically equivalent if the probability
measure for any set of instances with the same condi-
tional probability of being relevant is negligible.

In Section 3, we give a new O(n2) time algorithm
for computing optimal predictions, assuming indepen-
dence of labels. Our algorithm can compute opti-
mal predictions on tens of thousand instances within
seconds, significantly faster than previous algorithms
which require hours or more. 1

In Section 4, we compare EUM and DTA on synthetic
and real datasets. Our theoretical results are useful
in explaining the experimental results. Empirically,
EUM seems more robust against model misspecifica-
tion, but given a good model, DTA seems better for
handling rare classes on small datasets and a common
scenario of domain adaptation.

2. Theoretical Analysis

Let X and Y denote the input and output random
variables. We assume there is a fixed but unknown
distribution P (X,Y ) that generates i.i.d. (X,Y ) pairs
during training and testing. We use X and Y to de-
note their domains as well. In this paper, Y = {0, 1},
with 0 for the negative or irrelevant class and 1 for the
positive or relevant class. I(·) is the indicator function.

Let Dn = {(x1, y1), . . . , (xn, yn)} be a set of n (pos-
sibly non-i.i.d.) examples, and let x and y denote
(x1, . . . , xn) and (y1, . . . , yn) respectively. If the pre-
dicted labels are s = (s1, . . . , sn), then precision p(s,y)
is the number of true positives over the number of
predicted positives, and recall r(s,y) is the number
of true positives over the number of positives. Fβ-
measure (van Rijsbergen, 1974) Fβ(s,y) is a weighted
harmonic mean of precision and recall. Formally,

Fβ(s,y) =
(1 + β2)

∑
i siyi

β2
∑
i yi +

∑
i si

, (1)

p(s,y) =
∑
i siyi/

∑
i si and r(s,y) =

∑
i siyi/

∑
i yi.

Thus, Fβ = (1 +β2)/(β2/r+p). In addition, F0 is the
precision and F∞ is the recall. F1 is most frequently
used in practice. Henceforth, we assume β ∈ (0,∞).

1See http://www.comp.nus.edu.sg/∼yenan/.

http://www.comp.nus.edu.sg/~yenan/
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2.1. Uniform Convergence and Consistency for
EUM

Consider an arbitrary classifier θ : X 7→ Y . Let
Fβ,n(θ) denote the Fβ score of θ on Dn. Let pij,n(θ)
be the empirical probability that a class i instance
is observed and predicted as class j by θ; that is,
pij,n(θ) =

∑n
k=1 I(yk = i ∧ θ(xk) = j)/n. Then

Fβ,n(θ) =
(1 + β2)p11,n(θ)

β2(p11,n(θ) + p10,n(θ)) + p11,n(θ) + p01,n(θ)

Let pij(θ) = E(I(Y = i∧θ(X) = j)), that is, the proba-
bility that a class i instance is predicted as class j by θ.
Under the i.i.d. assumption, for large i.i.d. sample, the
law of large numbers implies that pij,n(θ)’s converge
to pij(θ)’s. Thus Fβ,n(θ) is expected to converge to

Fβ(θ) =
(1 + β2)p11(θ)

β2π1 + p11(θ) + p01(θ)
, (2)

where πY denotes P (Y ). Hence we can define this
to be the Fβ-measure of the classifier θ. The above
heuristic argument is formalized below. We often omit
θ from the notations whenever there is no ambiguity.
All proofs are in the supplement (See foonote 1).

Lemma 1. For any ε > 0, lim
n→∞

P(|Fβ,n(θ)−Fβ(θ)| <
ε) = 1.

By using a concentration inequality, such as the Ho-
effding’s inequality, in place of the law of large num-
bers, we can obtain a bound on the convergence rate.

Lemma 2. Let r(n, η) =
√

1
2n ln 6

η . When r(n, η) <

β2π1

2(1+β2) , then with probability at least 1− η, |Fβ,n(θ)−
Fβ(θ)| < 3(1+β2)r(n,η)

β2π1−2(1+β2)r(n,η) .

We now show that training to maximize the empirical
Fβ is consistent, using VC-dimension (Vapnik, 1995)
to quantify the complexity of the classifier class.

Theorem 3. Let Θ ⊆ X 7→ Y , d = V C(Θ),
θ∗ = arg maxθ∈Θ Fβ(θ), and θn = arg maxθ∈Θ Fβ,n(θ).

Let r̄(n, η) =
√

1
n (ln 12

η + d ln 2en
d ). If n is such that

r̄(n, η) < β2π1

2(1+β2) , then with probability at least 1− η,

Fβ(θn) > Fβ(θ∗)− 6(1+β2)r̄(n,η)
β2π1−2(1+β2)r̄(n,η) .

The above bound indicates that for smaller π1 and β,
more samples are probably required for convergence to

start occurring. When r(n, η) < β2π1

4(1+β2) , the difference

between Fβ,n(θ) and Fβ(θ) is at most 6(1+β2)
β2π1

r(n, η).

2.2. Optimality of Thresholding in EUM

We now consider a common EUM approach: learn-
ing a score function and then using a fixed threshold

on the score function. This threshold is obtained by
optimizing the F-measure on the training data.

Assume we know the true conditional distribution
P (Y |X). Consider the class T of probability thresh-
olding classifiers of the form Iδ(x) = I(P (1|x) > δ),
and the class T ′ containing I′δ(x) = I(P (1|x) ≥ δ).
2 T ∪ T ′ has VC dimension 1, so empirical maximiza-
tion of F-measure for this class is consistent. Although
T ∪ T ′ does not contain all possible classifiers on X,
an optimal classifier can be found in this class. Let
t∗ = arg maxh∈T ∪T ′ Fβ(h).

Theorem 4. For any classifier θ, Fβ(θ) ≤ Fβ(t∗).

Thresholding is often applied on a score func-
tion f : X 7→ R, rather than on the true condi-
tional distribution. For example, output of a sup-
port vector machine is commonly thresholded. Let
fδ(x) = I(f(x) > δ) and f ′δ(x) = I(f(x) ≥ δ). Func-
tion f is called an optimal score function if there is a δ
such that Fβ(f ′δ) = Fβ(t∗). We give a sufficient condi-
tion for a score function to be optimal. A score func-
tion f is rank-preserving if it satisfies f(x1) > f(x2) iff
P (1|x1) > P (1|x2) for all x1, x2 ∈ X. The sufficient
condition relates rank-preservation to optimality:

Theorem 5. A rank-preserving function is an optimal
score function.

By Theorem 5, we can sidestep learning the true dis-
tribution and instead try to learn a function which is
likely to be rank-preserving. An optimal score func-
tion may not be rank-preserving. For example, we can
swap the scores of x’s above the optimal threshold.

2.3. An Asymptotic Equivalence Result

We now investigate the connections between EUM-
optimal classifiers and DTA-optimal classifiers when
the true distribution P (X,Y ) is known. By definition,
a DTA-optimal classifier is expected to be better than
an EUM-optimal classifier if tested on many i.i.d. test
sets. We shall give an asymptotic equivalence result for
EUM-optimal classifiers and DTA-optimal classifiers
on large i.i.d test sets. In light of Theorem 4, we only
need to consider an optimal probability-thresholding
classifier as a representative EUM-optimal classifier.

In the following, let x = (x1, . . . , xn) ∈ Xn be an
i.i.d. sequence of observations. For any classifier θ, let
θ(x) = (θ(xi))i. All expectations, denoted by E(·), are
taken under the conditional distribution P (y|x). The
following theorem says that for an arbitrary classifier

2 Any θ ∈ T can be approximated by members in T ′

with arbitrary close Fβ , and vice versa, but T ′ may contain
θ′ such that Fβ(θ) 6= Fβ(θ′) for all θ ∈ T , implying T ′ 6= T .
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θ, when n is large enough, then for any x, the expected
F-measure of θ(x) is close to Fβ(θ).

Theorem 6. For any classifier θ, any ε, η > 0, there
exists Nβ,ε,η such that for all n > Nβ,ε,η, with proba-
bility at least 1− η, |E[Fβ(θ(x),y)]− Fβ(θ)| < ε.

Such approximation holds uniformly for the class T .3

Lemma 7. For any ε, η > 0, there exists Nβ,ε,η such
that for all n > Nβ,ε,η, with probability at least 1− η,
for all δ ∈ [0, 1], |E[Fβ(Iδ(x),y)]− Fβ(Iδ)| < ε.

The above uniform approximation result leads to the
following asymptotic equivalence result.

Theorem 8. Let s∗(x) = maxs E[Fβ(s,y)], with s
satisfying {P (1|xi) | si = 1} ∩ {P (1|xi) | si = 0} = ∅.
Let t∗ = arg maxt∈T Fβ(t). Then for any ε, η > 0,
(a) There exists Nβ,ε,η such that for all n > Nβ,ε,η,
with probability at least 1 − η, E[Fβ(t∗(x),y)] ≤
E(Fβ(s∗(x),y)) < E[Fβ(t∗(x),y)] + ε.
(b) There exists Nβ,ε,η such that for all n > Nβ,ε,η,
with probability at least 1 − η, |Fβ(t∗(x),y) −
Fβ(s∗(x),y))| < ε.

Part (a) says that the t∗(x) and s∗(x) have almost the
same expected Fβ , and Part (b) says that for a large
i.i.d. test set (x,y), t∗ and s∗ have almost identical Fβ .

The constraint on s ensures that instances with the
same probability of being positive are placed in the
same class. In general, optimal predictions may not
satisfy this constraint (Lewis, 1995). However, if
the underlying distribution satisfies that P (P (1|X) =
δ) = 0 for any δ, then the above result is essentially
this: given P , an optimal prediction and the prediction
using the optimal threshold are asymptotically equiv-
alent. This is demonstrated empirically in Section 4.

3. Algorithms

We first discuss approximations to EUM, then discuss
DTA and present a new efficient prediction algorithm.

3.1. Approximations to the EUM Approach

Exact empirical optimization of F-measures for a para-
metric family is difficult due to its complex piecewise
linear nature, and typically only approximations of the
F-measures are maximized. We discuss three methods.

In view of the optimality of probability threshold-
ing classifiers, it is natural to first learn an estimate
p(Y |X) for P (Y |X), and then learn an optimal thresh-
old δ. If p(Y |X) is chosen from a parametric family

3Both Lemma 7 and Theorem 8 hold for T ∪ T ′ as well.
We consider T to simplify the presentation.

using the maximum likelihood (ML) principle, then
under very general conditions, the learned distribution
follows an asymptotically normal convergence to the
model with smallest KL-divergence to the true distri-
bution (White, 1982). Thus when the model family is
well-specified, the resulting classifier is asymptotically
optimal. We call this the MLδapproximation. Strictly,
this is a combination of the conditional probability es-
timation and F-measure optimization of the threshold,
and the convergence rate in Theorem 3 does not apply.

Jansche (2005) learned a logistic regression model
p(Y |X,φ) by maximizing the empirical Fβ in eq. 1, but
with each binary decision si replaced by the predic-
tive probabilities pi = p(1|xi, φ). The eventual classi-
fier uses the rule h(x) = I(p(1|x) > 0.5). It is unknown
whether this method is consistent or whether it follows
any asymptotic convergence. There is also no apparent
reason to use 0.5 as the threshold, so we shall optimize
the threshold on the training data in addition to esti-
mating φ. We call this the Fδ approximation.

We considered learning a rule h(x) = I(p(1|x, φ) > δ)
directly, where φ, δ are parameters, by approximating
the empirical Fβ in eq. 1 using si = Iγ(p(1|xi, φ)− δ),
where Iγ(t) = 1/(1 + e−γt) approximates I(t > 0) for
large γ. However, this seemed to overfit easily, and it
rarely yielded better performance than the MLδ and
Fδ approximations in our preliminary experiments.
We will not consider it further.

3.2. Maximizing Expected F-measure

Given a utility function U(s,y), the decision-theoretic
optimal prediction for x maximizes Ey∼P (·|x)(U(s,y)).
In general, the true distribution P is not known and
is estimated. The approach that involves first esti-
mating true distributions using maximum likelihood
(ML) and then making decision-theoretic optimal pre-
dictions will be called the MLE approach. We discuss
the two steps in MLE , then we present an efficient
algorithm for computing the optimal predictions.

First, the asymptotic convergence of ML (White, 1982)
implies the MLE approach is asymptotically optimal
when estimating with sufficient training examples in
a well-specified family. In practice, we will not know
whether the model family is well-specified. Neverthe-
less, as we shall see in Section 4.1, the MLE approach
can yield results indistinguishable from the optimal if
the model family is misspecified but contains a reason-
able approximation to the true distribution.

Second, for arbitrary utility function U , computing the
expectation can be computationally difficult. But for
the case when the utility function is an F-measure, and
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Algorithm 1 Compute fβ;1, . . . , fβ;n, where β2 = q/r

1: For 0 ≤ i ≤ n, set C[i] as the coefficient of xi in
[p1x+ (1− p1)] . . . [pNx+ (1− pN )];

2: For 1 ≤ i ≤ (q + r)n, S[i]← q/i;
3: for k = n to 1 do
4: fβ;k ←

∑n
k1=0(1 + r/q)k1C[k1]S[rk + qk1];

5: Divide C by pkx+ (1− pk);
6: for i = 1 to (q + r)(k − 1) do
7: S[i]← (1− pk)S[i] + pkS[i+ q];
8: end for
9: end for

P (y|x) =
∏n
i=1 P (yi|xi), efficient algorithms can be

designed by exploiting the following characterization
of an optimal prediction. Let pi = P (1|xi).
Theorem 9. (Probability Ranking Principle for F-
measure, Lewis 1995) Suppose s∗ = maxs E(Fβ(s,y)).
Then min{pi | s∗i = 1} ≥ max{pi | s∗i = 0}.

Thus the decision-theoretic optimal prediction con-
tains the top k instances that are most likely to be pos-
itive for some k ∈ {0, . . . , n}. This reduces the number
of candidate predictions from 2n to n+1. We shall use
this result to give an efficient algorithm for computing
the optimal predictions.

3.2.1. A Quadratic Time Algorithm

We give an O(n3) time algorithm for computing the
optimal predictions, then improve it to O(n2) when
β2 is rational, which is often the case.

Let Fβ;k(y) be the Fβ-measure when the first k
instances are predicted as positive, then we have
Fβ;k(y) = (1 + β2)

∑k
i=1 yi/[k + β2

∑n
i=1 yi]. Let

fβ;k =
∑

y P (y)Fβ;k(y), and Si:j =
∑j
l=i yl. For y’s

satisfying S1:k = k1 and Sk+1:n = k2, their Fβ ’s are
(1 + β2)k1/(k + β2(k1 + k2)), and the probability this
happens is P (S1:k = k1)P (Sk+1:n = k2), thus

fβ;k =
∑

0≤k1≤k
0≤k2≤n−k

P (S1:k = k1)P (Sk+1:n = k2)(1 + β2)k1

k + β2(k1 + k2)
.

One can show that P (S1:k = i) and P (Sk+1:n = i)

are the coefficients of xi in
∏k
j=1[pjx + (1 − pj)] and∏n

j=k+1[pjx+(1−pj)] respectively. Thus, each fβ;k can

be computed in O(n2) time using O(n) space. Hence
computing all fβ;k’s takes O(n3) time and O(n) space.

For rational β2, we can improve the computation to
O(n2) time and O(n) space. The key is to note that

fβ;k =

k∑
k1=0

(1 + β−2)k1P (S1:n = k1)s(k, kβ−2 + k1),

where s(k, α) =
∑n−k
k2=0 P (Sk+1:n = k2)/(α + k2). For

rational β, the s values required for the fβ;k’s are
shared. To compute s, use s(n, α) = 1/α, and

s(k − 1, α) = pks(k, α+ 1) + (1− pk)s(k, α),

which follows from P (Sk:n = i) = pkP (Sk+1:n = i −
1) + (1− pk)P (Sk+1:n = i).

The pseudo-code is given in Algorithm 1, with q/r as
the reduced fraction of β2. Correctness can be seen by
observing that at line 3, S[i] = s(k, i/q), and C[k1] =
P (S1:k = k1). In practice, polynomial division can be
numerically unstable, and it is preferred to precompute
all the C[i]’s using O(n2) time and space first.

4. Experiments

We empirically demonstrate that EUM can be more ro-
bust against model misspecification, but DTA can be
better for rare classes on small datasets and a common
scenario of domain-adaptation. We use a synthetic
dataset, the Reuters-21578 dataset, and four multil-
abel classification datasets.

4.1. Mixtures of Gaussians

We consider a mixture of Gaussians on D dimensions:
P (X,Y ) = πYN(X;µY ,ΣY ), with Σ1 = Σ0 = ID,
µ1 = (S +O)1/

√
4D and µ0 = −(S −O)1/

√
4D,

where S and O are non-negative constants. Thus S
is the distance between the centers. We shall vary S,
O, D, π1 and the number of training examples Ntr.
All instances are i.i.d. The optimal F1 achievable
by a classifier θ can be computed (see eq. 2), and it
depends only on S and π1. Ntr determines how close
the estimated distribution is to the optimal model;
and the number of test examples, Nts, affects the gap
in the performance between the thresholding method
and the expectation method (Theorem 8).

We train logistic regression (LR) models using three
different attribute vector representations: R0 consists
of the coordinates only, R1 is R0 with an additional
dummy attribute fixed at 1, and R2 is R1 with ad-
ditional all degree two monomials of the coordinates.
LR with R2 includes the true distribution. The meth-
ods compared are MLδ, Fδ, MLE , Truthδ and TruthE ,
where last two methods use the true model P (X,Y )
for thresholding and expectation.

The first column in Table 1 lists the parameter set-
tings. For the row headed by Default, we use D = 10,
S = 4, O = 0, Ntr = 1000, Nts = 3000, and π1 = 0.5.
This dataset is low dimensional, almost noiseless, bal-
anced and has sufficiently many train and test in-
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Table 1. Performance of different methods for optimizing F1 on mixtures of Gaussians

MLE MLδ Fδ

Setting R0 R1 R2 R0 R1 R2 R0 R1 R2 TruthE Truthδ Theory

Default 97.87 97.84 96.02 97.84 97.87 96.15 97.62 97.55 96.37 97.87 97.91 97.72

S=0.4 66.86 66.86 63.77 66.32 66.31 63.55 66.03 66.09 65.72 66.39 65.82 66.88

D=100 94.12 94.14 88.05 94.09 94.08 87.86 95.96 95.98 88.23 97.53 97.53 97.72

Ntr=100 95.43 95.48 91.36 94.78 94.69 91.33 95.55 95.34 91.57 97.80 97.36 97.72

π1=0.05 75.19 90.79 84.07 91.84 90.17 84.21 92.36 89.56 85.21 92.72 92.26 91.73

O=50 66.01 67.83 96.10 65.44 89.29 96.10 97.04 96.88 97.41 97.87 97.91 97.72

stances.4 Each of the remaining rows uses the same
set of parameters, except for the one parameter indi-
cated on the first column. LR with R0 or R1 contains
a good approximation to the true distribution for all
settings except π1 = 0.05 and O = 50. For π1 = 0.05,
the class is imbalanced and such imbalance cannot be
modelled without the dummy attribute. Thus R0 will
not give a good model, but R1 will. For O = 50, the
centers are far from the origin, and this makes both
R0 and R1 inadequate for density estimation.

In Table 1, the F1 results for TruthE , Truthδ and The-
ory (the theoretical optimal F1) are similar. These are
expected according to Theorem 8. Most other scores
are close to the optimal scores. For MLE and MLδ,
these scores are expected due to the presence of a good
approximation to the true distribution in the model
family, and the asymptotic convergence property of
MLδ and MLE given sufficiently many examples, as
discussed in Section 3. For Fδ, although we lack its
theoretical convergence to an optimal classifier, the re-
sults suggest that such convergence may hold.

The scores obtained using R2 are generally lower than
scores obtained using R0 and R1 under the settings
Default, S = 0.4, D = 100, and Ntr = 100, though R2

gives a well-specified model class while R1 and R0 do
not. Thus, a well-specified model class is not necessar-
ily better. This is because a misspecified model class
with a small VC dimension can converge to the opti-
mal model within the class using fewer samples than a
well-specified model class with a higher VC dimension.
To choose a class of the right complexity, one may fol-
low the structural risk minimization principle (Vapnik,
1995). This requires bounds like those in Lemma 2 and
Theorem 3. However, the given bounds cannot be used
because they only apply for large samples.

The gaps between R2 scores and the optimal score for
Default is significantly smaller than the gaps for S =

4We have verified that the sizes are large enough to give
the same conclusions for other i.i.d. data of the same sizes.

0.4, D = 100, Ntr = 100, and π1 = 0.05. This suggests
that higher noise level, higher model class complexity,
smaller training size, and smaller positive ratio make it
harder to learn a good classifier. Note that Theorem 3
already suggests that in EUM, smaller positive ratio
can make learning more difficult.

For the setting π1 = 0.05, using R0, MLE performs
poorly, while MLδ is close to optimal. MLE ’s poor per-
formance is expected due to poor quality of the learned
distribution, and MLδ’s performance can be justified
by Theorem 5: the thresholding method can remain
optimal when the score function is rank-preserving but
not close to the true probability distribution. For the
setting O = 50, both MLE and MLδ perform poorly
using R0, but MLδ is much better than MLE using
R1. Thus although MLδ can still be severely affected
by model misspecification, it is still relatively robust.
In addition, for π1 = 0.05 and O = 50, Fδ has much
higher or at least comparable scores than MLE and
MLδ. This suggests that if the model class is severely
misspecified, then EUM can be more robust than DTA.

We also compare MLE and MLδ on small test sets
with Nts = 100 (Theorem 8 only holds for large test
set size). We observed similar performances from MLδ

and MLE when π1 is high, but MLE seems signifi-
cantly better than MLδ when π1 is small. To illus-
trate, Table 2 gives the results when the same setting
as π1 = 0.05 in Table 1 is used to generate the data.
It shows that, with a sufficiently accurate model, MLE

can be better than MLδ and Fδ on rare classes.

4.1.1. Effect of Model Quality

We also perform experiments to study the effect of
incorrect probability models on MLE . We use the De-
fault setting in the previous section, with π1 = 0.5 and
S = 4 changed to S = 2, as the true distribution, to
generate a set of 3000 i.i.d. test instances. We make op-
timal predictions using an assumed distribution which
is the same as the true one except that we vary π1.
For each π1, we compute the F1 and the Kullback-
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Table 2. The means and standard deviations of the F1 scores in percentage, computed using 2000 i.i.d. trials, each with
test set of size 100, for mixtures of Gaussians with D = 10, S = 4, O = 0, Ntr = 1000 and π1 = 0.05.

MLE MLδ Fδ

R0 R1 R2 R0 R1 R2 R0 R1 R2 TruthE Truthδ

Mean 36.70 63.00 58.80 60.78 62.01 58.31 61.40 59.98 53.16 63.32 60.71
Std. dev. 13.04 20.67 21.49 23.69 21.34 21.87 22.18 22.04 23.02 20.46 23.72
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(c) True π1 = 0.9

Figure 1. Effect of the quality of probability model on the decision-theoretic method. The x-axes are the π1 values for
the assumed distribution, and the y-axes are the corresponding 1− F1 and KL values.

Leibler-divergence (KL) from the true to the assumed
distribution on the test set. These are plotted in Fig-
ure 1(b), where 1− F1 is plotted instead of F1. Fig-
ures 1(a) and 1(c) plot for similar experiments, but
using 0.1 and 0.9 as the true π1 instead. Our choice
of S = 2 instead of S = 4 for the true distribution has
made the difference between the true and assumed dis-
tributions more pronounced in the plots. Comparing
the curves for KL and 1− F1 within each figure, we see
that the F-measure of DTA is roughly positively cor-
related with the model quality. The plot for 1− F1 in
Figure 1(a) exhibits higher curvature around the true
π1 than those in the other two figures. This suggests
that if the true distribution has a small positive ratio,
the performance is more sensitive to model quality.

4.1.2. Domain Adaptation

In domain adaptation, the test distribution differs
from the training one. One common scenario is when
P (X) changes but P (Y |X) does not. Using the mix-
ture of Gaussians with D = 10, S = 4, O = 0 and
π1 = 0.5, we generate 5000 i.i.d. training instances,
and 5000 test instances with P (Y |X) < 0.5. The F1

scores for Truthδ, TruthE , MLδ and MLE (using R1)
are 21%, 38%, 11% and 36% respectively. Similar re-
sults are obtained under similar settings. Under such
conditions, DTA is more robust than EUM.

4.2. Text Classification

We evaluate on the Reuters-21578 dataset5 using the
ModApte partition, which has 9603 training docu-

5This is from http://www.daviddlewis.com/resources/
testcollections/reuters21578/.

ments and 3299 test documents. We train two mod-
els: the standard multinomial näıve Bayes (NB) model
and a LR model, using word occurrence counts and a
dummy attribute fixed at one. Both models are reg-
ularized. For NB, we use the Laplace corrector with
one count for class and word counts. For LR, we use
the Gaussian norm on the parameters. We use only
those topics with at least C positive instances in both
the train and test sets, and we vary C. Table 3 reports
macro-F1 scores (the F1 averaged over topics), where
ML.5 uses 0.5 to threshold the probabilities,

Table 3. Macro-F1 scores in percentage on the Reuters-
21578 dataset, computed for those topics with at least C
positive instances in both the training and test sets. The
number of topics down the rows are 90, 50, 10 and 7.

Näıve Bayes Logistic regression

C ML.5 MLδ MLE ML.5 MLδ Fδ MLE

1 17.4 17.7 17.7 35.8 36.6 37.3 39.9
10 29.8 30.1 30.2 55.1 56.4 57.2 57.6
50 69.9 69.1 70.1 75.2 75.7 76.6 75.6

100 73.7 73.5 73.7 75.5 75.9 76.5 75.8

In Table 3, although NB generally does not provide
good probability estimates, MLE is still at least com-
parable to ML.5 and MLδ. With LR, MLE is a few per-
cents better for rare classes. Chai (2005) used Gaus-
sian process and obtained similar conclusion.

4.3. Multilabel Datasets

We evaluate on four standard multilabel classification
datasets.6 We train regularized LR, with the regu-

6These are available at http://mulan.sourceforge.net/.
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Table 4. Macro-F1 scores in percentage on four multilabel
datasets, computed for those T labels with at least C pos-
itive instances in both the training and test sets.

C T MLδ MLE Fδ

yeast (1500 train, 917 test)
1 14 47.14 (47.54) 48.16 (48.47) 46.61

50 13 50.76 (50.34) 51.38 (51.71) 50.19
300 5 73.79 (73.31) 73.52 (73.74) 73.71

medical (645 train, 333 test)
1 32 48.88 (51.93) 51.48 (53.91) 48.45

10 12 84.81 (84.49) 85.19 (85.84) 86.01
50 2 87.62 (88.78) 90.12 (88.99) 91.56

scene (1211 train, 1196 test)
1 6 68.80 (70.50) 68.57 (70.80) 69.05

100 6 68.80 (70.50) 68.57 (70.80) 69.05

enron (1123 train, 579 test)
1 52 19.70 (25.53) 21.61 (26.45) 19.24

10 26 35.26 (38.00) 38.76 (39.74) 35.86
50 9 59.21 (59.82) 60.15 (60.44) 61.60

larization parameter for each class selected using two
fold cross validation. Macro-F1 scores are shown in
Table 4. The bracketed scores are obtained by choos-
ing the regularization parameter giving a model with
minimum empirical KL divergence on the test data.
Each bracketed score is higher than its non-bracketed
counterpart, thus models closer to the true one per-
form better for both MLE and MLδ. Comparing the
scores for MLE with those for MLδ and Fδ, bracketed
or not, we see that MLE performs better, especially for
smaller C, suggesting MLE is better for rare classes.

5. Conclusion

We gave theoretical justifications and connections for
optimizing F-measures using EUM and DTA. We em-
pirically demonstrated that EUM seems more robust
against model misspecification, while given a good
model, DTA seems better for handling rare classes and
a common domain adaptation scenario.

A few important questions are unanswered yet: ex-
istence of interesting classifiers for which EUM can
be done exactly, quantifying the effect of inaccurate
models on optimal predictions, identifying conditions
under which one method is preferable to another, and
practical methods for selecting the best method on a
dataset. Results in this paper only hold for large data
sets, and it is important to consider the case for small
number of instances. Experiments with and analyses
of other methods may yield additional insights as well.
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