
Path Integral Policy Improvement
with Covariance Matrix Adaptation

Freek Stulp freek.stulp@ensta-paristech.fr

Cognitive Robotics, École Nationale Supérieure de Techniques Avancées (ENSTA-ParisTech), Paris
FLOWERS Research Team, INRIA Bordeaux Sud-Ouest, Talence, France

Olivier Sigaud olivier.sigaud@upmc.fr

Institut des Systèmes Intelligents et de Robotique, Université Pierre Marie Curie CNRS UMR 7222, Paris

Abstract

There has been a recent focus in reinforce-
ment learning on addressing continuous state
and action problems by optimizing parame-
terized policies. PI2 is a recent example of
this approach. It combines a derivation from
first principles of stochastic optimal control
with tools from statistical estimation theory.
In this paper, we consider PI2 as a member of
the wider family of methods which share the
concept of probability-weighted averaging to
iteratively update parameters to optimize a
cost function. We compare PI2 to other
members of the same family – Cross-Entropy
Methods and CMAES – at the conceptual
level and in terms of performance. The com-
parison suggests the derivation of a novel al-
gorithm which we call PI2-CMA for “Path
Integral Policy Improvement with Covariance
Matrix Adaptation”. PI2-CMA’s main ad-
vantage is that it determines the magnitude
of the exploration noise automatically.

1. Introduction

Scaling reinforcement learning (RL) methods to con-
tinuous state-action problems, such as humanoid
robotics tasks, has been the focus of numerous re-
cent studies (Kober & Peters, 2011; Theodorou et al.,
2010). Most of the progress in the domain comes from
direct policy search methods based on trajectory roll-
outs. The recently proposed direct ‘Policy Improve-
ment with Path Integrals’ algorithm (PI2) is derived

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

from first principles of stochastic optimal control, and
is able to outperform gradient-based RL algorithms
such as REINFORCE (Williams, 1992) and Natural
Actor-Critic (Peters & Schaal, 2008) by an order of
magnitude in terms of convergence speed and quality
of the final solution (Theodorou et al., 2010).

What sets PI2 apart from other direct policy im-
provement algorithms is its use of probability-weighted
averaging to perform a parameter update, rather
than using an estimate of the gradient. Interestingly
enough, “Covariance Matrix Adaptation – Evolution-
ary Strategy (CMAES)” and “Cross-Entropy Meth-
ods (CEM)” are also based on this concept. It is strik-
ing that these algorithms, despite having been derived
from very different principles, have converged to al-
most identical parameter update rules. To the best of
our knowledge, this paper is the first to make this re-
lationship between the three algorithms explicit (Sec-
tion 2). This hinges on 1) re-interpreting CEM as
performing probability-weighted averaging; 2) demon-
strating that CEM is a special case of CMAES, by
setting certain CMAES parameters to extreme values.

A further contribution of this paper is that we concep-
tually and empirically investigate the differences and
similarities between PI2, CEM, and CMAES (Sec-
tion 3). These comparisons suggest a new algorithm,
PI2-CMA, which has the algorithm structure of PI2,
but uses covariance matrix adaptation as found in
CEM and CMAES. A practical contribution of this
paper is that we show how PI2-CMA automatically
determines the exploration magnitude, the only pa-
rameter which is not straightforward to tune in PI2.

2. Background and Related Work

We now describe the CEM, CMAES and PI2 algo-
rithms, and their application to policy improvement.

Path Integral Policy Improvement with Covariance Matrix Adaptation

2.1. Cross-Entropy Method (CEM)

Given a n-dimensional parameter vector θ and a cost
function J : Rn 7→ R, the Cross-Entropy Method
(CEM) for optimization searches for the global min-
imum with the following steps: Sample – Take K
samples θk=1...K from a distribution. Sort – Sort the
samples in ascending order with respect to the evalua-
tion of the cost function J(θk). Update – Recompute
the distribution parameters, based only on the first Ke

‘elite’ samples in the sorted list. Iterate – return to
the first step with the new distribution, until costs
converge, or up to a certain number of iterations.

A commonly used distribution is a multi-variate Gaus-
sian distribution N (θ,Σ) with parameters θ (mean)
and Σ (covariance matrix), such that these three steps
are implemented as in (1)-(5). An example of one iter-
ation of CEM is visualized in Figure 1, with a multi-
variate Gaussian distribution in a 2D search space1.

Cross-Entropy Method (one iteration)

θk=1...K ∼ N (θ,Σ) sample (1)

Jk = J(θk) eval. (2)

θk=1...K ← sort θk=1...K w.r.t Jk=1...K sort (3)

θnew =

Ke∑
k=1

1

Ke
θk update (4)

Σnew =

Ke∑
k=1

1

Ke
(θk − θ)(θk − θ)ᵀ update (5)

Throughout this paper, it is useful to think of CEM as
performing probability-weighted averaging, where the
elite samples have probability 1/Ke, and the non-elite
have probability 0. With these values of Pk, (1)-(5)
can be rewritten as in the left algorithm in Table 1.

Here we use QKe/K to denote the Ke
th quantile of

the distribution Jk=1...K . This notation is chosen for
brevity; it simply means that in the sorted array of
ascending Jk, Pk is 1/Ke if K ≤ Ke, and 0 otherwise,
as in (4). The resulting parameter updates are equiv-
alent to those in (4) and (5), but this representation
makes the relation to PI2 more obvious.

CEM for Policy Improvement. Because CEM is
a very general algorithm, it is used in many differ-
ent contexts in robot planning and control. CEM
for policy optimization was introduced by Mannor

1Note that in (5), the unbiased estimate of the covari-
ance is acquired by multiplying with 1

Ke
, rather than 1

Ke−1
,

because we know the true mean to be θ.

Figure 1. Visualization of an update with CEM. The
upper right graph shows the 2D parameter space. The
cost of a sample is its distance to the origin in Carte-
sian space. The original multivariate Gaussian distribu-
tion N ([88] , [9 0

0 9]) is represented by the dark dashed circle
(68% confidence interval). K = 10 samples θk are taken
from this distribution. The Ke = 5 elite samples are used
to compute the new Gaussian distribution, which in this
case is N ([7.26.4] , [3.2 1.4

1.4 8.0]). The lower left graph shows the
mapping from cost to probability, as computed with (12).
Note that when Ke = K (red dot-dashed graphs), we are
simply estimating the original distribution.

et al. (2003). Although their focus is on solving fi-
nite small Markov Decision Processes (MDPs), they
also propose to use CEM with parameterized poli-
cies to solve MDPs with large state spaces. Buso-
niu et al. (2011) extend this work, and use CEM to
learn a mapping from continuous states to discrete ac-
tions, where the centers and widths of the basis func-
tions are automatically adapted. The main difference
with our work is that we use continuous action spaces
of higher dimensionality, and compare CEM to PI2

and CMAES. CEM has also been used in combina-
tion with sampling-based motion planning (Kobilarov,
2011). An interesting aspect of this work is that it uses
a mixture of Gaussians rather than a single distribu-
tion to avoid premature convergence to a local mini-
mum. In (Marin et al., 2011), a CEM is extended to
optimize a controller that generates trajectories to any
point of the reachable space of the system.

2.2. Covariance Matrix Adaptation -
Evolution Strategy

The Covariance Matrix Adaptation - Evolution Strat-
egy (Hansen & Ostermeier, 2001) algorithm is very
similar to CEM, but uses a more sophisticated method
to update the covariance matrix, as listed in Table 2.

Path Integral Policy Improvement with Covariance Matrix Adaptation

Cross-Entropy Method Description PI2

Exploration Phase

for k = 1 . . . K do ← loop over trials → for k = 1 . . . K do

(6) | θk ∼ N (θ,Σ) ← sample → | θk,i=1...N ∼ N (θ,Σ) (7)

execute policy → | τk,i=1...N = executepolicy(θk,i=1...N) (8)

Parameter Update Phase

loop over time steps → for i = 1 . . . N do (9)

for k = 1 . . . K do ← loop over trials → | for k = 1 . . . K do

(10) | Jk = J(θk) ← evaluate → | | Sk,i ≡ S(τk,i) =
∑N
j=i J(τ j,k) (11)

(12) | Pk =

{
1
Ke

if Jk < QKe/K

0 if Jk > QKe/K
← probability → | | Pk,i = e

− 1
λ
Sk,i∑K

k=1
[e

− 1
λ
Sk,i]

(13)

(14) θnew =
∑K
k=1 Pkθk ← parameter update → | θnewi =

∑K
k=1 Pk,iθk (15)

(16) Σnew =
∑K
k=1 Pk(θk − θ)(θk − θ)ᵀ ← covar. matrix adap. → | Σnewi =

∑K
k=1 Pk(θk,i − θ)(θk,i − θ)ᵀ (17)

temporal avg. → θnew =
∑N
i=0(N−i)θnewi∑N

l=0
(N−l)

(18)

temporal avg. → Σnew =
∑N
i=0(N−i)Σnewi∑N

l=0
(N−l)

(19)

Table 1. Comparison of the CEM and PI2. This pseudo-code represents one iteration of the algorithm, consisting of an
exploration phase and a parameter update phase. Both algorithms iterate these two phases until costs have converged, or
up to a certain number of iterations. The green equations – (17) and (19) – are only used in PI2-CMA (to be explained
in Section 3.4), and not part of ‘standard’ PI2.

There are three differences to CEM: • The probabil-
ities in CMAES do not have to be Pk = 1/Ke as for
CEM, but can be chosen by the user, as long as the
constraints

∑Ke
k=1 Pk = 1 and P1 ≥ · · · ≥ PKe are

met. Here, we use the default suggested by Hansen &
Ostermeier (2001), i.e. Pk = ln (0.5(K + 1)) − ln(k).
• Sampling is done from a distribution N (θ, σ2Σ), i.e.
the covariance matrix of the normal distribution is
multiplied with a scalar step-size σ. These compo-
nents govern the magnitude (σ) and shape (Σ) of the
exploration, and are updated separately. • For both
step-size and covariance matrix an ‘evolution path’ is
maintained (pσ and pΣ respectively), which stores in-
formation about previous updates to θ. Using the in-
formation in the evolution path leads to significant im-
provements in terms of convergence speed, because it
enables the algorithm to exploit correlations between
consecutive steps. For a full explanation of the algo-
rithm we refer to Hansen & Ostermeier (2001).

Reducing CMAES to CEM. This is done by set-
ting certain parameters to extreme values: 1) set the
time horizon cσ = 0. This makes (21) collapse to
σnew = σ × exp(0), which means the step-size stays
equal over time. Initially setting the step-size σinit = 1
means σ will always be 1, thus having no effect during
sampling. 2) For the covariance matrix update, we set
c1 = 0 and cµ = 1. The first two terms of (23) then

drop, and what remains is
∑Ke
k=1 Pk(θk − θ)(θk − θ)ᵀ,

Covariance Matrix Adaptation of CMAES

pσ ← (1− cσ) pσ +
√
cσ(2− cσ)µPΣ −1

θnew − θ

σ
(20)

σnew = σ × exp

(
cσ

dσ

(‖pσ‖
E‖N (0, I)‖

− 1

))
(21)

pΣ ← (1− cΣ) pΣ + hσ

√
cΣ(2− cΣ)µP

θnew − θ

σ
(22)

Σ
new

= (1− c1 − cµ) Σ + c1(pΣp
T
Σ + δ(hσ)Σ)

+ cµ

Ke∑
k=1

Pk(θk − θ)(θk − θ)
ᵀ

(23)

Table 2. The step-size (21) and covariance matrix adapta-
tion (23) update rule of CMAES, which make use of the
evolution paths (20) and (22). µP is the variance effec-
tive selection mass, with µP = 1/

∑Ke
k=1 P

2
k . The entire

CMAES algorithm is acquired by replacing (16) of CEM
in Table 1 with these four equations, and multiplying Σ
with σ2 in (6).

which is equivalent to (16) in CEM, if Pk is chosen as
in (12).

CMAES for Policy Improvement. Heidrich-
Meisner and Igel (2008) use CMAES to directly learn
a policy for a double pole-balancing task. Rückstiess
et al. (2010) use Natural Evolution Strategies (NES),
which has comparable results with CMAES, to di-

Path Integral Policy Improvement with Covariance Matrix Adaptation

rectly learn policies for pole balancing, robust stand-
ing, and ball catching. The results above are compared
with various gradient-based methods, such as REIN-
FORCE (Williams, 1992) and NAC (Peters & Schaal,
2008). To the best of our knowledge, our paper is the
first to directly compare CMAES with CEM and PI2.
Also, we use Dynamic Movement Primitives as the un-
derlying policy representation, which 1) enables us to
scale to higher-dimensional problems, as demonstrated
by (Theodorou et al., 2010); 2) requires us to perform
temporal averaging, cf. (18) and (19).

2.3. Policy Improvement with Path Integrals

A recent trend in reinforcement learning is to use pa-
rameterized policies in combination with probability-
weighted averaging ; the PI2 algorithm is a recent ex-
ample of this approach. Using parameterized poli-
cies avoids the curse of dimensionality associated with
(discrete) state-action spaces, and using probability-
weighted averaging avoids having to estimate a gradi-
ent, which can be difficult for noisy and discontinuous
cost functions.

PI2 is derived from first principles of optimal con-
trol, and gets its name from the application of the
Feynman-Kac lemma to transform the Hamilton-
Jacobi-Bellman equations into a so-called path inte-
gral, which can be approximated with Monte Carlo
methods (Theodorou et al., 2010). The PI2 algorithm
is listed to the right in Table 1. As in CEM, K sam-
ples θk=1...K are taken from a Gaussian distribution.
In PI2, the vector θ represents the parameters of a pol-
icy, which, when executed, yields a trajectory τ i=1...N

with N time steps. This multi-dimensional trajectory
may represent the joint angles of a n-DOF arm, or the
3-D position of an end-effector.

So far, PI2 has mainly been applied to poli-
cies represented as Dynamic Movement Primitives
(DMPs) (Ijspeert et al., 2002), where θ determines the
shape of the movement. Although PI2 searches in the
space of θ, the costs are defined in terms of the tra-
jectory τ generated by the DMP when it is integrated
over time. The cost of a trajectory is determined by
evaluating J for every time step i, where the cost-to-go
of a trajectory at time step i is defined as the sum over
all future costs S(τ i,k) =

∑N
j=i J(τ j,k), as in (11)2.

Analogously, the parameter update is applied to ev-
ery time step i with respect to the cost-to-go S(τ i).
The probability of a trajectory at i is computed by
exponentiating the cost, as in (13). This assigns high
probability to low-cost trials, and vice versa. In prac-

2For convenience, we abbreviate S(τ i,k) with Si,k.

tice, − 1
λSi,k is implemented with optimal baselining

as
−h(Si,k−min(Si,k))
max(Si,k)−min(Si,k) cf. (Theodorou et al., 2010).

As can be seen in (15), a different parameter update
θnewi is computed for each time step i. To acquire the
single parameter update θnew, the final step is there-
fore to average over all time steps (18). This average
is weighted such that earlier parameter updates in the
trajectory contribute more than later updates, i.e. the
weight at time step i is Ti = (N − 1)/

∑N
j=1(N − 1).

The intuition is that earlier updates affect a larger time
horizon and have more influence on the trajectory cost.

PoWeR is another recent policy improvement algo-
rithm that uses probability-weighted averaging (Kober
& Peters, 2011). In PoWeR, the immediate costs
must behave like an improper probability, i.e. sum to
a constant number and always be positive. This can
make the design of cost functions difficult in practice;
(24) for instance cannot be used with PoWeR. PI2

places no such constraint on the cost function, which
may be discontinuous. When a cost function is com-
patible with both PoWeR and PI2, they perform es-
sentially identical (Theodorou et al., 2010).

3. Comparison of PI2, CEM and
CMAES

When comparing CEM, CMAES and PI2, there are
some interesting similarities and differences. All sam-
ple from a Gaussian to explore parameter space –
(6) and (7) are identical – and both use probability-
weighted averaging to update the parameters – (14)
and (15). It is striking that these algorithms,
which have been derived within very different frame-
works, have converged towards the same principle of
probability-weighted averaging.

We would like to emphasize that PI2’s properties fol-
low directly from first principles of stochastic optimal
control. For instance, the eliteness mapping follows
from the application of the Feymann-Kac lemma to
the (linearized) Hamilton Jacobi Bellmann equations,
as does the concept of probability-weighted averag-
ing. Whereas in other works the motivation for using
CEM/CMAES for policy improvement is based on its
empirical performance (Busoniu et al., 2011; Heidrich-
Meisner and Igel, 2008; Rückstiess et al., 2010) (e.g.
it is shown to outperform a particular gradient-
based method), the PI2 derivation (Theodorou et al.,
2010) demonstrates that there is a theoretically sound
motivation for using methods based on probability-
weighted averaging, as this principle follows directly
from first principles of stochastic optimal control.

Path Integral Policy Improvement with Covariance Matrix Adaptation

Whereas Section 2 has mainly highlighted the similar-
ities between the algorithms, this section focuses on
the differences. Note that any differences between PI2

and CEM/CMAESin general also apply to the spe-
cific application of CEM/CMAES to policy improve-
ment, as done for instance by Busoniu et al. (2011)
or Heidrich-Meisner and Igel (2008). Before compar-
ing the algorithms, we first present the evaluation task
used in the paper.

3.1. Evaluation Task

For evaluation purposes, we use a viapoint task with a
10-DOF arm. The task is visualized and described in
Figure 2. This viapoint task is taken from (Theodorou
et al., 2010), where it is used to compare PI2 with
PoWeR (Kober & Peters, 2011), NAC (Peters &
Schaal, 2008), and REINFORCE (Williams, 1992).

Figure 2. The evaluation task. The gray line represents
a 10-DOF arm of 1m length, consisting of 10 0.1m links.
At t = 0 the arm is stretched horizontally. Before learn-
ing (left figure), each of the joints makes a minimum-jerk
movement of 0.5s towards the end position where the end-
effector is just ‘touching’ the y-axis. The end-effector path
is shown (thick black line), as well as snapshots of the arm
posture at 50Hz (thin gray lines). The goal of this task is
for the end-effector to pass through the viapoint (0.5,0.5)
at t = 0.3s, whilst minimizing joint accelerations. The
right figure depicts an example of a learned movement.

The goal of this task is expressed with the cost func-
tion in (24), where a represents the joint angles, x
and y the coordinates of the end-effector, and D = 10
the number of DOF. The weighting term (D + 1− d)
penalizes DOFs closer to the origin, the underlying
motivation being that wrist movements are less costly
than shoulder movements for humans, cf. (Theodorou
et al., 2010).

J(τ ti) = δ(t− 0.3) · ((xt − 0.5)2 + (yt − 0.5)2)

+

∑D
d=1(D + 1− d)(ät)

2∑D
d=1(D + 1− d)

(24)

The 10 joint angles trajectories are generated by a 10-
dimensional DMP, where each dimension has B = 5
basis functions. The parameter vectors θ (one 1×5

vector for each of the 10 dimensions), are initialized
by training the DMP with a minimum-jerk movement.
During learning, we run 10 trials per update K = 10,
where the first of these 10 trials is a noise-free trial
used for evaluation purposes. For PI2, the eliteness
parameter is h = 10, and for CEM and CMAES it is
Ke = K/2 = 5. The initial exploration noise is set to
Σ = 104IB=5 for each dimension of the DMP.

3.2. Exploration Noise

A first difference between CEM/CMAES and PI2 is
the way exploration noise is generated. In CEM and
CMAES, time does not play a role, so only one explo-
ration vector θk is generated per trial. In stochastic
optimal control, from which PI2 is derived, θi repre-
sents a motor command at time i, and the stochasticity
θi+εi is caused by executing command in the environ-
ment. When applying PI2 to DMPs, this stochasticity
rather represents controlled noise to foster exploration,
which the algorithm samples from θi ∼ N (θ,Σ). We
call this time-varying exploration noise. Since this ex-
ploration noise is under our control, we need not vary
it at every time step. In the work by Theodorou et al.
(2010) for instance, only one exploration vector θk is
generated at the beginning of a trial, and exploration
is only applied to the DMP basis function that has the
highest activation. We call this per-basis exploration
noise. In the most simple version, called constant ex-
ploration noise, we sample θk,i=0 once at the begin-
ning for i = 0, and leave it unchanged throughout the
execution of the movement, i.e. θk,i = θk,i=0.

The learning curves for these different variants are de-
picted in Figure 3. We conclude that time-varying ex-
ploration convergences substantially slower. Because
constant exploration gives the fastest convergence, we
use it throughout the rest of the paper.

Figure 3. Learning curves for time-varying, per-basis and
constant exploration.

Path Integral Policy Improvement with Covariance Matrix Adaptation

3.3. Definition of Eliteness

In each of the algorithms, the mapping from costs to
probabilities is different. CEM implements a cut-off
value for ‘eliteness’: you are either elite (Pk = 1/Ke)
or not (Pk = 0). PI2 rather considers eliteness to
be a continuous value that is inversely proportional
to the cost of a trajectory. CMAES uses a hybrid
eliteness measure where samples have zero probability
if they are not elite, and a continuous value which is
inverse proportional to the cost if they are elite. The
probabilities in CMAES do not have to be Pk = 1/Ke

as for CEM, but can be chosen by the user, as long as
the constraints

∑Ke
k=1 Pk = 1 and P1 ≥ · · · ≥ PKe are

met. Here, we use the defaults suggested by Hansen &
Ostermeier (2001), i.e. Pk = ln (0.5(K + 1))− ln(k).

These different mappings are visualized in Fig-
ure 4. An interesting similarity between the algo-
rithms is that they each have a parameter – Ke in
CEM/CMAES, and h in PI2 – that determines how
‘elitist’ the mapping from cost to probability is. Typi-
cal values are h = 10 and Ke = K/2. These and other
values of h and Ke are depicted in Figure 4.

Figure 4. Lower left graph: Comparison of the mapping
from costs Jk to probabilities Pk for PI2 (with h = {10, 5})
and CEM/CMAES (with Ke = {3, 5}). Upper right
graph: The updated distributions are very similar with
CEM (Ke = 3), CMAES (Ke = 5) and PI2 (h = 5).

The average learning curves in Figure 5 are all very
similar except for CEM with Ke = 5/7. This verifies
the conclusion by Hansen & Ostermeier (2001) that
choosing these weights is “relatively uncritical and can
be chosen in a wide range without disturbing the adap-
tation procedure.” and choosing the optimal weights
for a particular problem “only achieves speed-up fac-
tors of less than two” when compared with CEM-style
weighting where all the weights are Pk = 1/Ke. Be-

cause choosing the weights is uncritical, we use the PI2

weighting scheme with h = 10, the default suggested
by Theodorou et al. (2010), throughout the rest of this
paper.

Figure 5. Average learning curves for different weighting
schemes, averaged over 3 learning sessions. Confidence in-
tervals have been left out for clarity, but are similar in
magnitude to those in Figure 3. The inset highlights the
similarity with CEM (Ke = 3), CMAES (Ke = 5) and PI2

(h = 5).

3.4. Covariance Matrix Adaptation

We now turn to the most interesting and relevant dif-
ference between the algorithms. In CEM/CMAES,
both the mean and covariance of the distribution are
updated, whereas PI2 only updates the mean. This
is because in PI2 the shape of the covariance matrix
is constrained by the relation Σ = λR−1, where R is
the (fixed) command cost matrix, and λ is a param-
eter inversely proportional to the parameter h. This
constraint is necessary to perform the derivation of
PI2 (Theodorou et al., 2010).

In this paper, we choose to ignore the constraint
Σ = λR−1, and apply covariance matrix updating
to PI2. Because a covariance matrix update is com-
puted for each time step i (17), we need to perform
temporal averaging for the covariance matrix (19),
just as we do for the mean θ. Temporal averaging
over covariance matrices is possible, because 1) ev-
ery positive-semidefinite matrix is a covariance matrix
and vice versa 2) a weighted averaging over positive-
semidefinite matrices yields a positive-semidefinite ma-
trix (Dattorro, 2011).

Thus, rather than having a fixed covariance matrix,
PI2 now adapts Σ based on the observed costs for
the trials, as depicted in Figure 4. This novel al-
gorithm, which we call PI2-CMA, for “Path Integral

Path Integral Policy Improvement with Covariance Matrix Adaptation

Policy Improvement with Covariance Matrix Adap-
tation”, is listed in Table 1 (excluding the red in-
dices i = 1 . . . N in (7), and including the green
equations (17) and (19)). A second algorithm, PI2-
CMAES, is readily acquired by using the more sophis-
ticated covariance matrix updating rule of CMAES.
Our next evaluation highlights the main advantage of
these algorithms, and compares their performance.

In Figure 6, we compare PI2 (where the covariance
matrix is constant3) with PI2-CMA (CEM-style co-
variance matrix updating) and PI2-CMAES (covari-
ance matrix updating with CMAES). Initially, the
covariance matrix for each of the 10 DOFs is set to
Σinit = λinitI5, where 5 is the number of basis func-
tions, and λinit = {102, 104, 106} determines the ini-
tial exploration magnitude. All experiments are run
for 200 updates, with K = 20 trials per update. We
chose a higher K because we are now not only com-
puting an update of the mean of the parameters (a
1 × 5 vector for each DOFs), but also its covariance
matrix (a 5× 5 matrix), and thus more information is
needed per trial to get a robust update (Hansen & Os-
termeier, 2001). After each update, a small amount of
base level exploration noise is added to the covariance
matrix (Σnew ← Σnew + 102I5) to avoid premature
convergence, as suggested by Kobilarov (2011).

When the covariance matrices are not updated, the ex-
ploration magnitude remains the same during learning,
i.e. λ = λinit (labels A in Figure 6), and the conver-
gence behavior is different for the different exploration
magnitudes λinit = {102, 104, 106}. For λinit = 104 we
have nice convergence behavior B , which is not a coin-
cidence – this value has been specifically tuned for this
task, and it is the default we have used so far. How-
ever, when we set the exploration magnitude very low
(λinit = 102) convergence is much slower C . When the
exploration magnitude is set very high λinit = 106, we
get quick convergence D . But due to the high stochas-
ticity in sampling, we still have a lot of stochasticity
in the cost after convergence in comparison to lower
λinit. This can be seen in the inset, where the y-axis
has been scaled ×20 for detail E .

For PI2-CMA, i.e. with covariance matrix updating,
we see that the exploration magnitude λ changes over
time (bottom graph), whereby λ is computed as the
mean of the eigenvalues of the covariance matrix. For
λinit = 102, λ rapidly increases F until a maximum

3Please note the difference between 1) constant explo-
ration as in Section 3.2, where a sampled parameter vector
θk is not varied during the movement made in one trial;
2) constant covariance matrix, where Σ is not updated and
thus constant during an entire learning session.

Figure 6. Top: Average learning curves with and without
covariance matrix updating for different initial exploration
magnitudes, averaged over 5 learning sessions. Bottom:
The magnitude of the exploration λ as learning progresses.
Initially Σinit = λinitI5 for each DOF.

value is reached, after which it decreases and con-
verges to a value of 102.8

G . The same holds for
λinit = 104, but the initial increase is not so rapid H .
For λinit = 106, λ only decreases I , but converges to
102.8 as the others.

From these results we derive three conclusions: 1) with
PI2-CMA, the convergence speed does not depend as
much on the initial exploration magnitude λinit, i.e.
after 500 updates the µ± σ cost for PI2-CMA over all
λinit is 105 ·(8±7), whereas for PI2 without covariance
matrix updating it is 105 · (35± 43) J . 2) PI2-CMA
automatically increases λ if more exploration leads to
quicker convergence F H . 3) PI2-CMA automatically
decreases λ once the task has been learned G K . Note
that 2) and 3) are emergent properties of covariance
matrix updating, and has not been explicitly encoded
in the algorithm. In summary, PI2-CMA is able to find
a good exploration/exploitation trade-off, independent
of the initial exploration magnitude.

This is an important property, because setting the ex-
ploration magnitude by hand is not straightforward,
because it is highly task-dependent, and might require
several evaluations to tune. One of the main con-
tributions of this paper is that we demonstrate how

Path Integral Policy Improvement with Covariance Matrix Adaptation

using probability-weighted averaging to update the co-
variance matrix (as is done in CEM) allows PI2 to au-
tonomously tune the exploration magnitude – the user
thus no longer needs to tune this parameter. The only
remaining parameters of PI2 are K (number of trials
per update) and h (eliteness parameter), but choosing
them is not critical. Although an initial Σ must be
given, Figure 6 shows that with an initial exploration
magnitude two orders of magnitude higher/lower than
a tuned value, PI2-CMA still converges to the same
cost and exploration magnitude, with only slight dif-
ferences in the initial speed of convergence.

When comparing PI2-CMA and PI2-CMAES, we only
see a very small difference in terms of convergence
when the initial exploration is low λinit = 102

L . This
is because the covariance update rule of CMAES is
damped, (21) and (23), and it makes more conserva-
tive updates than CEM, cf. I and N . In our exper-
iments, PI2-CMAES uses the default parameters sug-
gested by Hansen & Ostermeier (2001). We have tried
different parameters for PI2-CMAES, the conclusion
being that the best parameters are those that reduce
CMAES to CEM, cf. Section 2.2. In general, we
do not claim that PI2-CMAES outperforms PI2, and
Hansen & Ostermeier (2001) also conclude that there
are tasks where CMAES has identical performance
to simpler algorithms. Our results on comparing PI2-
CMAES and PI2-CMA are therefore not conclusive.
An interesting question is whether typical cost func-
tions found in robotics problems have properties that
do not allow CMAES to leverage the advantages it
has on benchmark problems used in optimization.

4. Conclusion

In this paper, we have scrutinized the recent state-
of-the-art direct policy improvement algorithm PI2

from the specific perspective of belonging to a fam-
ily of methods based on the concept of probability-
weighted averaging. We have discussed similarities
and differences between three algorithms in this fam-
ily, being PI2, CMAES and CEM. In particular, we
have demonstrated that using probability-weighted av-
eraging to update the covariance matrix, as is done in
CEM and CMAES, allows PI2 to autonomously tune
the exploration magnitude. The resulting algorithm
PI2-CMA shows more consistent convergence under
varying initial conditions, and alleviates the user from
having to tune the exploration magnitude parameter
by hand. We are currently applying PI2-CMA to chal-
lenging tasks on a physical humanoid robot. Given
the ability of PI2 to learn complex, high-dimensional
tasks on real robots (Stulp et al., 2011), we are con-

fident that PI2-CMA can also successfully be applied
to such tasks.

Acknowledgments

We thank the reviewers for their constructive sugges-
tions for improvement of the paper. This work is sup-
ported by the French ANR program (ANR 2010 BLAN
0216 01), more at http://macsi.isir.upmc.fr

References

Busoniu, L., Ernst, D., Schutter, B. De, and Babuska, R.
Cross-entropy optimization of control policies with adap-
tive basis functions. IEEE Transactions on Systems,
Man, and Cybernetics, 41(1):196–209, 2011.

Dattorro, J. Convex Optimization & Euclidean Distance
Geometry. Meboo Publishing USA, 2011.

Hansen, N. and Ostermeier, A. Completely derandom-
ized self-adaptation in evolution strategies. Evolutionary
Computation, 9(2):159–195, 2001.

Heidrich-Meisnerm V. and Igel, C. Evolution strategies for
direct policy search. In Proc. of the Int’l Conference on
Parallel Problem Solving from Nature, 2008.

Ijspeert, A. J., Nakanishi, J., and Schaal, S. Move-
ment imitation with nonlinear dynamical systems in hu-
manoid robots. In Proc. of the IEEE Int’l Conference
on Robotics and Automation (ICRA), 2002.

Kober, J. and Peters, J. Policy search for motor primitives
in robotics. Machine Learning, 84:171–203, 2011.

Kobilarov, M. Cross-entropy randomized motion planning.
In Proceedings of Robotics: Science and Systems, 2011.

Mannor, S., Rubinstein, R. Y., and Gat, Y. The Cross-
Entropy Method for fast policy search. In Proceedings
of the Int’l Conference on Machine Learning, 2003.

Marin, D., Decock, J., Rigoux, L., and Sigaud, O. Learning
cost-efficient control policies with XCSF: Generalization
capabilities and further improvement. In Proc. of Ge-
netic and evolutionary computation, 2011.

Peters, J. and Schaal, S.. Natural actor-critic. Neurocom-
puting, 71(7-9):1180–1190, 2008.

Rückstiess, T., Sehnke, F., Schaul, T., Wierstra, D., Sun,
Y., and Schmidhuber, J.. Exploring parameter space in
reinforcement learning. Paladyn. Journal of Behavioral
Robotics, 1:14–24, 2010.

Stulp, F., Theodorou, E., Buchli, J., and Schaal, S. Learn-
ing to grasp under uncertainty. In Proceedings of the
Int’l Conference on Robotics and Automation, 2011.

Theodorou, E., Buchli, J., and Schaal, S.. A generalized
path integral control approach to reinforcement learning.
J. of Machine Learning Research, 11:3137–3181, 2010.

Williams, R. J. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Ma-
chine Learning, 8:229–256, 1992.

