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Abstract

On-line portfolio selection has attracted in-
creasing interests in machine learning and
AI communities recently. Empirical evidence
show that stock’s high and low prices are
temporary and stock price relatives are like-
ly to follow the mean reversion phenomenon.
While the existing mean reversion strategies
are shown to achieve good empirical per-
formance on many real datasets, they often
make the single-period mean reversion as-
sumption, which is not always satisfied, lead-
ing to poor performance in some real dataset-
s. To overcome the limitation, this arti-
cle proposes a multiple-period mean rever-
sion, or so-called “Moving Average Rever-
sion” (MAR), and a new on-line portfolio se-
lection strategy named “On-Line Moving Av-
erage Reversion” (OLMAR), which exploits
MAR by applying powerful online learning
techniques. From our empirical results, we
found that OLMAR can overcome the draw-
backs of existing mean reversion algorithms
and achieve significantly better results, espe-
cially on the datasets where existing mean
reversion algorithms failed. In addition to
superior performance, OLMAR also runs ex-
tremely fast, further supporting its practical
applicability to a wide range of applications.

1. Introduction

Portfolio selection, which has been explored in both
finance and quantitative fields, aims to obtain certain
targets in the long run by sequentially allocating the
wealth among a set of assets. Mean-variance theo-
ry (Markowitz, 1952), which trades off between the
expected return (mean) and risk (variance) of a port-
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folio, is suitable for single period portfolio selection.
Contrarily, Kelly investment (Kelly, 1956; Breiman,
1961; Finkelstein & Whitley, 1981), which maximizes
the expected log return of a portfolio, aims for multiple
periods portfolio selection. Due to the sequential na-
ture, recent on-line portfolio selection techniques often
design algorithms following the second approach.

One important property exploited by many existing
studies (Borodin et al., 2004; Li et al., 2011b; 2012)
is the mean reversion property, which assumes poor
performing stocks will perform well in the subsequen-
t periods and vice versa, may better fit the financial
markets. Though some recent mean reversion algo-
rithms (Li et al., 2011b; 2012) achieve the best results
on many datasets, they perform extremely poor on
certain datasets, such as DJA dataset (Borodin et al.,
2004). Comparing with Borodin et al. (2004), which
exploits multi-period correlation, we found that the
assumption of single-period prediction may attribute
to the performance degradation. On the other hand,
as illustrated in existing studies (Li et al., 2011b;
2012), Borodin et al. (2004), which heuristically ex-
ploits mean reversion via correlation, cannot fully ex-
ploit the potential of (multi-period) mean reversion.

To address the above drawbacks, we present a new ap-
proach for on-line portfolio selection, named “On-Line
Moving Average Reversion” (OLMAR). The basic idea
is to represent multi-period mean reversion as “Moving
Average Reversion” (MAR), which explicitly predicts
next price relatives using moving averages, and then
learn portfolios by online learning techniques. To the
best of our knowledge, OLMAR is the first algorithm
that exploits moving average in the setting of on-line
portfolio selection. Though simple in nature, OLMAR
has a reasonable update and is empirically validated
via extensive experiments on real markets. The exper-
iments show that OLMAR can achieve better perfor-
mance (in terms of cumulative wealth) than existing
algorithms, and more importantly, can avoid the per-
formance degradation in certain datasets, such as DJA
dataset (Borodin et al., 2004; Li et al., 2012). Finally,
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OLMAR runs much faster than the state of the art,
and thus is suitable for large-scale applications.

The rest of the paper is organized as follows. Section 2
formulates the on-line portfolio selection problem, and
Section 3 reviews and analyzes related work. Section 4
presents the proposed OLMAR approach, and its effec-
tiveness is validated by extensive empirical studies on
real stock markets in Section 5. Section 6 summarizes
the paper and provides directions for future work.

2. Problem Setting

Consider an investment task over a financial market
with m assets for n periods. On the tth period, the
assets’ prices are represented by a close price vec-
tor pt ∈ Rm

+ , and each element pt,i represents the
close price of asset i. Their price changes are rep-
resented by a price relative vector xt ∈ Rm

+ , and
xt,i =

pt,i

pt−1,i
. Thus, an investment in asset i on the

tth period increases by a factor of xt,i. Let us denote
xn = {x1, . . . ,xn} as the sequence of price relative
vectors for n periods.

An investment on the tth period is specified by a port-
folio vector bt = (bt,1, . . . , bt,m), where bt,i represents
the proportion of wealth invested in asset i. Typically,
we assume the portfolio is self-financed and no mar-
gin/short is allowed, therefore each entry of a portfolio
is non-negative and adds up to one, that is, bt ∈ ∆m,
where ∆m =

{
bt : bt ∈ Rm

+ ,
∑m

i=1 bt,i = 1
}
. The in-

vestment procedure is represented by a portfolio s-
trategy, that is, b1 = 1

m1 and following sequence of

mappings bt : Rm(t−1)
+ → ∆m, t = 2, 3, . . ., where

bt = bt

(
xt−1

)
is the tth portfolio given past mar-

ket sequence xt−1 = {x1, . . . ,xt−1}. We denote by
bn = {b1, . . . ,bn} the strategy for n periods.

On the tth period, a portfolio bt produces a portfolio
period return st, that is, the wealth increases by a fac-
tor of st = b⊤

t xt =
∑m

i=1 bt,ixt,i. Since we reinvest
and adopt price relative, the portfolio wealth would
multiplicatively grow. Thus, after n periods, a portfo-
lio strategy bn produces a portfolio cumulative wealth
of Sn, which increases the initial wealth by a factor
of
∏n

t=1 b
⊤
t xt, that is, Sn (b

n,xn) = S0

∏n
t=1 b

⊤
t xt,

where S0 is set to $1 for convenience.

Finally, let us formulate the on-line portfolio selection
problem. In this task, a portfolio manager is a de-
cision maker, whose goal is to produce a portfolio s-
trategy bn, aiming to maximize the cumulative wealth
Sn. He/she computes the portfolios sequentially. On
each period t, the manager has access to the sequence
of previous price relative vectors xt−1. Then, he/she
computes a new portfolio bt for next price relative

vector xt, where the decision criterion varies among d-
ifferent managers. The portfolio bt is scored based on
portfolio period return st. This procedure is repeat-
ed until the end, and the portfolio strategy is finally
scored according to portfolio cumulative wealth Sn.

Note that the above model in general assumes zero
transaction cost/tax, perfect market liquidity, and zero
impact cost. These assumptions are not trivial, and
their effects and implications will be further analyzed
and discussed in Section 5.3 and Section 5.5.

3. Related Work

The research of on-line portfolio selection ground-
s on the principle of Kelly investment (Kelly, 1956;
Breiman, 1961; Thorp, 1971; Finkelstein & Whitley,
1981), that is, to maximize the expected log return
of a portfolio. One classical strategy is Constant Re-
balanced Portfolios (CRP), which follows Kelly’s idea
of keeping a fixed fraction for each asset on all pe-
riods. The best possible CRP strategy in hindsight
is often known as Best Constant Rebalanced Portfo-
lios (BCRP), which is the optimal strategy if the mar-
ket is i.i.d. (Cover & Thomas, 1991, Theorem 15.3.1).
Cover (1991) initialized the research of on-line portfo-
lio selection (Ordentlich & Cover, 1996) and proposed
Universal Portfolios (UP) strategy, whose portfolio is
historical performance weighted average of all CRPs.

Helmbold et al. (1998) proposed Exponential Gradi-
ent (EG) strategy, which maximizes the expected
log portfolio return estimated by last price rela-
tives, and minimizes the deviation from last portfolio.
Gaivoronski & Stella (2000) proposed Successive Con-
stant Rebalanced Portfolios (SCRP), which maximizes
the expected log cumulative wealth estimated using
all historical price relative relatives1. Agarwal et al.
(2006) proposed Online Newton Step (ONS), which ex-
tends the idea of SCRP by appending a regularization
term to minimize the variation of next portfolio.

Borodin et al. (2004) proposed Anti-correlation (An-
ticor), which bets on the consistency of positive
lagged cross-correlation and negative auto-correlation.
Li et al. (2012) proposed Passive Aggressive Mean Re-
version (PAMR), which iteratively chooses portfolio
minimizing the expected return based on last price rel-
atives. Li et al. (2011b) proposed Confidence Weight-
ed Mean Reversion (CWMR) strategy, which exploits
the mean reversion property and the variance informa-
tion of portfolio.

Györfi et al. (2006) introduced the framework of non-
parametric investment strategies, which searches over

1This idea also appeared in Ordentlich (1996, Chap. 4).
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Table 1. Summary of the existing optimization formulations and their underlying predictions. R (·) denotes the regu-
larization term, such as L2 norm. Prob (·) denotes a probability function. PAMR/CWMR’s prediction is not an strict
equivalence, which we do not proof.

Categories Methods Formulations Prediction (x̃i
t+1) Prob. (pi)

In hindsight BCRP bt+1 = argmaxb∈∆m

∑n
i=1

1
n
logb · xi xi, i = 1, . . . , n 1/n

EG bt+1 = argmaxb∈∆m
logb · xt − λR (b,bt) xt 1.00

1 PAMR bt+1 = argminb∈∆m
b · xt + λR (b,bt) 1/xt 1.00

CWMR bt+1 = argminb∈∆m
Prob (b · xt) + λR (b,bt) 1/xt 1.00

2 SCRP bt+1 = argmaxb∈∆m

∑t
i=1

1
t
logb · xi xi, i = 1, . . . , t 1/t

ONS bt+1 = argmaxb∈∆m

∑t
i=1

1
t
logb · xi − λR (b) xi, i = 1, . . . , t 1/t

3 BK/BNN/CORN bt+1 = argmaxb∈∆m

∑
i∈Ct

1
|Ct| logb · xi xi, i ∈ Ct 1/|Ct|

historical market sequence and identify a sample set of
vectors, whose previous market windows are similar to
recent window, and obtains a BCRP portfolio based on
the set. With this framework, Nonparametric Kernel-
based moving window (BK) (Györfi et al., 2006) mea-
sures the similarity using Euclidean distance. Further,
Nonparametric Nearest Neighbor (BNN) (Györfi et al.,
2008) searches for ℓ nearest neighbors to the recent
market window. Recently, Li et al. (2011a) proposed
Correlation-driven Nonparametric learning (CORN)
to search for similar vectors via correlation.

3.1. Analysis of Existing Work

Most existing formulations follow the basic routine of
Kelly-based portfolio selection (Thorp, 1971). In par-
ticular, a portfolio manager first predicts x̃t+1 in terms
of k possible values x̃1

t+1, . . . , x̃
k
t+1 and their corre-

sponding probabilities p1, . . . , pk. Note that each x̃i
t+1

denotes one possible combination vector of individual
price relative prediction. Then he/she can figure out
portfolio by maximizing the expected log return,

bt+1 = argmax
b∈∆m

k∑
i=1

pi log
(
b · x̃i

t+1

)
.

Based on methods of predicting x̃i
t+1 and pi, most ex-

isting algorithms can be classified into three categories.
Their optimization formulations and underlying pre-
dictions are summarized in Table 1, and their details
can be found on their respective studies. Note that we
have transformed certain formulations, however, main-
tained their key ideas.

Now let us focus on the first category, which consists of
EG, PAMR and CWMR. Algorithms in this category
assume a single prediction value with a probability of
100%, and maintains previous portfolio information vi-
a regularization techniques. In particular, EG assumes
x̃1
t+1 = xt with p1 = 100%, while PAMR and CWMR

assume x̃1
t+1 = 1

xt
with p1 = 100%, which is in essence

mean reversion idea. Note that the formulations of
PAMR and CWMR ignore the log utility due to the
single-value prediction and the consideration of con-

vexity and computation issue. Though all three algo-
rithms assume that all information is fully reflected by
xt, their performance diverges and supports that mean
reversion fits the markets. On the one hand, even with
a decent theoretical result, EG always performs far be-
hind. On the other hand, though without theoretical
guarantees, PAMR and CWMR always produce the
best results in various real markets. However, PAMR
and CWMR suffer from dramatic failures when such
single-period mean reversion is not satisfied (Li et al.,
2012), which motivates our approach.

4. On-Line Moving Average Reversion

4.1. Motivation

Empirical results (Li et al., 2011b; 2012) show that
mean reversion, which assumes the poor stock may
perform good in the subsequent periods, may better
fit the markets. PAMR and CWMR can exploit the
mean reversion property well and achieve good result-
s on most datasets at the time, especially the NYSE
benchmark dataset (Cover, 1991). However, they rely
on a simple assumption that the predicted next price
relative x̃t+1 will be inverse proportion to last price
relative xt. In particular, they implicitly assume that
next price p̃t+1 will revert to last price pt−1, as follows,

x̃t+1 =
1

xt
=⇒ p̃t+1

pt
=

pt−1

pt
=⇒ p̃t+1 = pt−1.

Note that x and p are all vectors and the above oper-
ations are element-wise.

Though empirically effective on most datasets, PAM-
R and CWMR’s single-period assumption causes t-
wo potential problems. Firstly, both algorithms suf-
fer from the frequently fluctuating raw prices, as they
often contain a lot of noises. Second, their assump-
tion of single-period mean reversion may not be satis-
fied in the real world. Even two consecutive declining
price relatives, which are common, can fail both al-
gorithms. One real example (Li et al., 2012) is DJA
dataset (Borodin et al., 2004), on which PAMR per-
forms the worst among the state of the art. Thus,
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Table 2. Illustration of growth of mean reversion strategies on toy markets. OLMAR is calculated with window size 2.
Market Sequences BCRP PAMR/CWMR OLMAR

A : (1, 2) ,
(
1, 1

2

)
, (1, 2) ,

(
1, 1

2

)
, . . .

(
9
8

)n/2 3
2
× 2

n−1
2 3

2
×
(
1
2

)n−1
2

B : (1, 2) , (1, 2) ,
(
1, 1

2

)
,
(
1, 1

2

)
, (1, 2) , . . .

(
9
8

)n/2 3
2

3
2

C : (1, 2) , (1, 2) , (1, 2) ,
(
1, 1

2

)
,
(
1, 1

2

)
,
(
1, 1

2

)
, (1, 2) , . . .

(
9
8

)n/2 3
2
×
(
1
2

)n−1
6 3

2
× 2

n−1
6

D : (1, 2) , . . . , (1, 2)︸ ︷︷ ︸
k

, (1, 1/2) , . . . , (1, 1/2)︸ ︷︷ ︸
k

, (1, 2) , . . .
(
9
8

)n/2 3
2
×
(
1
2

)(n−1)×( 1
2
− 1

k ) 3
2
×
(
1
2

)(n−1)×( 1
k
− 1

2 )

traders are more likely to predict prices using the long-
term mean. Also on the DJA dataset, Anticor, which
exploits the multi-period statistical correlation, per-
forms much better. However, as illustrated in Li et al.
(2011b; 2012), due to its heuristical nature, Anticor
can not fully exploit mean reversion. The two prob-
lems caused by single-period assumption and Anticor’s
inability to fully exploit mean reversion call for a more
powerful approach to effectively exploit mean rever-
sion, especially in terms of multi-period.

Now let us see the classic example (Cover & Gluss,
1986; Li et al., 2012) to illustrate the drawbacks of
single-period mean reversion, as shown in Table 2.
The toy market consists of cash and one volatile s-
tock, whose market sequence follows A. It is easy to
prove that BCRP (b =

(
1
2 ,

1
2

)
) can grow by a fac-

tor of
(
9
8

)n/2
, while PAMR/CWMR can grow by a

better factor of 3
2 × 2(n−1)/2. Note that this virtu-

al sequence is essentially singe-period mean reversion,
which perfectly fits with PAMR and CWMR’s assump-
tion. However, if market sequence does not satisfy this
assumption, both PAMR and CWMR would fail badly.
Let us extend the market sequence to a two-period re-
version, that is, market sequence B. In such a market,
BCRP can achieve the same growth as before. Con-
trarily, PAMR/CWMR can achieve a constant wealth
3
2 , which has no growth! More generally, if we fur-
ther extend to k-period mean reversion, BCRP can
still achieve the same growth, while PAMR/CWMR

will grow to 3
2×
(
1
2

)(n−1)×( 1
2−

1
k ), which definitely ap-

proaches bankruptcy when k ≥ 3.

To better exploit the (multi-period) mean reversion
property, we proposed a new type of algorithm-
s, named On-Line Moving Average Reversion (OL-
MAR), for on-line portfolio selection. The essential
idea is to exploit multi-period moving average (mean)
reversion via power online machine learning. Rather
than p̃t+1 = pt−1, OLMAR assumes that next price
will revert to Moving Average (MA) at the end of tth

period, that is, p̃t+1 = MAt (w) = 1
w

∑i=t
i=t−w+1 pi,

where MAt (w) denotes the Moving Average (MA)
with a w-window. In time series analysis, MA is typi-

cally used to smooth short-term price fluctuations and
focus on long-term trends, thus can solve the two draw-
backs of existing mean reversion algorithms. To this
end, we propose a price relative vector following the
idea of “Moving Average Reversion” (MAR),

x̃t+1 (w) =
MAt (w)

pt
=

1

w

(
pt

pt
+

pt−1

pt
+ · · ·+ pt−w+1

pt

)
=

1

w

(
1 +

1

xt
+ · · ·+ 1⊗w−2

i=0 xt−i

)
,

(1)
where w is the window size and

⊗
denotes element-

wise production. Without detailing the calculation,
we list the growth of OLMAR in different toy markets
in Table 2. Clearly, OLMAR performs much better
in the scenarios of multi-period mean reversion, while
performs poor in single-period reversion. Our further
empirical analysis shows that the markets are more
likely to follow multi-period reversion.

Based on the expected price relative vector in Eq. (1),
OLMAR further adopts the idea of an effective on-
line learning algorithm, that is, Passive Aggressive
(PA) (Crammer et al., 2006) learning, to exploit mov-
ing average reversion. Generally proposed for classifi-
cation, PA passively keeps the previous solution if the
classification is correct, while aggressively approaches
a new solution if the classification is incorrect. After
formulating the proposed OLMAR optimization, we
solve its closed form update and design the proposed
algorithm.

4.2. Formulation

The proposed formulation, OLMAR, is to exploit mov-
ing average reversion via PA online learning. The ba-
sic idea is to maximize the expected return b · x̃t+1,
and keep the last portfolio information via regulariza-
tion term. Thus, we follow the similar idea of PAM-
R (Li et al., 2012) and formulate an optimization,
Optimization Problem: OLMAR

bt+1 = argmin
b∈∆m

1

2
∥b− bt∥2 s.t. b · x̃t+1 ≥ ϵ.

Note that we adopt expected return rather than
expected log return. According to Helmbold et al.



On-Line Portfolio Selection with Moving Average Reversion

Algorithm 1 Portfolio Selection with OLMAR.

1: Input: ϵ > 1: Reversion threshold; w ≥ 3: Win-
dow size; xn

1 : Market sequence;
2: Output: Sn: Cumulative wealth after nth periods
3: Procedure:
4: Initialization: b1 = 1

m1, S0 = 1;
5: for t = 1, 2, . . . , n do
6: Receive stock price relatives: xt

7: Calculate daily return and cumulative return:
St = St−1 × (bt · xt)

8: Predict next price relative vector:

x̃t+1 (w) =
1

w

(
1 +

1

xt
+ · · ·+ 1⊗w−2

i=0 xt−i

)

9: Update the portfolio:
bt+1 = OLMAR(ϵ, w, x̃t+1,bt)

10: end for

(1998), to solve the optimization with expected log re-
turn, one can adopt the first-order Taylor expansion,
which is essentially linear.

The above formulation explicitly reflects the basic idea
of the proposed OLMAR. On the one hand, if the con-
straint is satisfied, that is, the expected return is high-
er than a threshold, then the resulting portfolio equals
to the previous portfolio. On the other hand, if the
constraint is not satisfied, then the formulation will fig-
ure out a new portfolio such that the expected return
is higher than the threshold, while the new portfolio
is not far from the last one.

Since OLMAR follows the same learning principle as
PAMR, their formulations are similar. However, the
two solutions are essentially different. In particular,
PAMR’s core constraint, i.e., b · xt ≤ ϵ, adopts the
raw price relative and has a different inequality sign.

4.3. Algorithm

The above formulation is thus convex and s-
traightforward to solve via convex optimiza-
tion (Boyd & Vandenberghe, 2004). We now derive
the OLMAR solution as illustrated in Proposition 1.

Proposition 1. The solution of OLMAR without con-
sidering the non-negativity constraint is

bt+1 = bt + λt+1 (x̃t+1 − x̄t+11) ,

where x̄t+1 = 1
m (1 · x̃t+1) denotes the average predict-

ed price relative and λt+1 is the Lagrangian multiplier
calculated as,

λt+1 = max

{
0,

ϵ− bt · x̃t+1

∥x̃t+1 − x̄t+11∥2

}
.

Algorithm 2 OLMAR(ϵ, w, x̃t+1,bt).

1: Input: ϵ > 1: Reversion threshold; w ≥ 3: Win-
dow size; x̃t+1: Predicted price relatives; bt: Cur-
rent portfolio;

2: Output: bt+1: Next portfolio;
3: Procedure:
4: Calculate the following variables:

x̄t+1 =
1⊤x̃t+1

m
,λt+1 = max

{
0,

ϵ− bt · x̃t+1

∥x̃t+1 − x̄t+11∥2

}

5: Update the portfolio:

bt+1 = bt + λt+1(x̃t+1 − x̄t+11)

6: Normalize bt+1:

bt+1 = argmin
b∈∆m

∥b− bt+1∥2

It is worth noting that in the derivation we do
not consider the non-negativity constraint follow-
ing Helmbold et al. (1998). Thus, it is possible that
the resulting portfolio goes out the portfolio simplex
domain. To maintain a proper portfolio, we finally
project the portfolio calculated according to Proposi-
tion 1 to the simplex domain.

To this end, we can design the proposed algorithm
based on the proposition. The on-line portfolio se-
lection following the problem setting in Section 2 is
illustrated in Algorithm 1, and the proposed OLMAR
procedure is illustrated in Algorithm 2.

Empirical observations of the parameter sensitivity in
Section 5.2 show that the final performance is sensi-
tive to the parameter w. To smooth the final per-
formance of the system, we propose to adopt the
Buy and Hold (BAH) version (Borodin et al., 2004;
Györfi et al., 2006; Li et al., 2012), that is, for each
period, we treat the individual OLMAR with a speci-
fied w ≥ 3 as an expert and combine multiple expert-
s’ portfolios weighted by their historical performance.
We denote the the algorithm as BAHW (OLMAR) with
a parameter W denoting the maximum window size,
that is, BAHW (OLMAR) combines W−2 individual
OLMAR experts with w = 3, . . . ,W .

4.4. Analysis

The update of OLMAR is straightforward, that is,
bt+1 = bt+λt+1(x̃t+1 − x̄t+11). Basically, the update
divides the assets into two groups by prediction aver-
age. For the assets in the group with higher predictions
than average, OLMAR increases their proportions; for
the others, OLMAR decreases their proportions. The
transferred proportions are related to the surprise of
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the predictions over their average and the positive La-
grangian multiplier, λ. This is consistent with normal
portfolio selection procedure, that is, to transfer the
wealth to the assets with better prospect to grow.

Clearly, the OLMAR update costs linear time per pe-
riod w.r.t. m, and the normalization step can also be
implemented in linear time (Duchi et al., 2008). To
the best of our knowledge, OLMAR’s linear time is no
worse than any existing algorithm.

5. Experiments

We now evaluate the effectiveness of the proposed OL-
MAR algorithm by performing an extensive set of ex-
periments on publicly available and diverse datasets
from real stock markets.

Table 3 details the four experimental datasets2. A-
mong these, NYSE (O) is one benchmarks dataset e-
valuated by all existing methods, while NYSE (N) is a
dataset collected by Li et al. (2011b) as a continuation
of NYSE (O). The remaining two datasets (DJA and
TSE) are collected by Borodin et al. (2004).

Table 3. Summary of 4 real datasets from various markets.
Dataset Region Time frame # days # assets
NYSE (O) US 3/7/1962 - 31/12/1984 5651 36
NYSE (N) US 1/1/1985 - 30/6/2010 6431 23
DJA US 1/1/2001 - 14/1/2003 507 30
TSE CA 4/1/1994 - 31/12/1998 1259 88

In this paper, we adopt the most common metric,
cumulative wealth, to measure the investment perfor-
mance. Results with other metrics, including risk-
adjusted return, will be included in the long version of
this paper. We compare the proposed approach with
all existing methods in Section 3, whose parameters
are set according to their respective studies.

In our experiments, we implement the proposed OL-
MAR, and its BAH version BAH(OLMAR). In all cas-
es, we empirically set the parameters, that is, ϵ = 10
and w = 5, which provide a consistent results for OL-
MAR in all cases. For BAH(OLMAR), we set their
maximum window size W = 30, resulting in 28 OL-
MAR experts with w = 3 to 30. In addition to the
empirical selection of parameters, we also evaluate the
parameter scalability of the two possible parameters
in Section 5.2. Finally, we also refer the best perfor-
mance (in hindsight) among the underlying experts of
the BAH version, named MAX(OLMAR).

5.1. Cumulative Wealth

Figure 1(a) illustrates the main results of this study,
that is, the cumulative wealth achieved by various
approaches. The results clearly show that OLMAR

2All datasets, including the composites, are available on
http://www.cais.ntu.edu.sg/~libin/portfolios/.

achieves the top performance among all competitors.
On the well-known benchmark NYSE (O) dataset, OL-
MAR significantly outperforms the state of the art;
the similar observation is also found on the succes-
sive NYSE (N) dataset. Besides, though most exist-
ing algorithms except Anticor perform bad on the D-
JA dataset, OLMAR achieves the best performance.
Moreover, the maximum performance show that it
is possible to achieve better performance via effec-
tive expert combination. Finally, the t-test statistic-
s (Grinold & Kahn, 1999) shown in Table 1(b) validate
that the results achieved are not due to luck.

5.2. Parameter Sensitivity

Now let us evaluate algorithm’s sensitivity to its pa-
rameters, that is, ϵ and w. Figure 2 shows the sen-
sitivity of ϵ with fixed w = 5 and Figure 3 show the
sensitivity of w with fixed ϵ = 10. From the former,
we can observe that in general the total wealth sharply
increases when ϵ approaches 1 and flattens when ϵ
crosses a threshold. From the latter, we can observe
that as w increases, the performance initially increases,
spikes with a data-dependant value, and then decreas-
es. Anyway, its performance with most choices of ϵ
and w have a much better performance than BCRP
strategy and the market. Moreover, the latter figure
also show that the Buy and Hold versions greatly s-
mooth the performance with varying w of the underly-
ing experts. All above observations also show that it is
robust to the choices of parameters and is convenient
to choose satisfying parameters.

5.3. Transaction Cost Scalability

To evaluate the practical applicability, we evaluate the
scalability of the proposed algorithms with respect to
proportional transaction cost (Borodin et al., 2004).
Figure 4 illustrates the cumulative wealth achieved
by OLMAR with increasing transaction cost rate γ,
and also the results obtained by four representative
algorithms (two benchmarks and two state of the arts
in different categories). On the one hand, the results
clearly show that OLMAR can withstand reasonable
transaction cost rates, as it often has high break-even
rates with respect to the market. On the other hand,
OLMAR can outperform the benchmarks and state of
the arts, under various transaction cost rates. In a
word, OLMAR performs excellent when trading is not
frictionless, supporting its practical applicability.

5.4. Computational Time

Finally, we evaluate the computational time as shown
in Table 1(c). Note that we only list the computa-
tional times of methods with comparable performance.
Theoretically, as we analyzed in Section 4.4, OLMAR
enjoys linear computational time complexity. Empiri-
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Methods NYSE (O) NYSE (N) DJA TSE

Market 14.50 18.06 0.76 1.61
Best-stock 54.14 83.51 1.19 6.28
BCRP 250.60 120.32 1.24 6.78
UP 26.68 31.49 0.81 1.60
EG 27.09 31.00 0.81 1.59
ONS 109.19 21.59 1.53 1.62

BK 1.08E+09 4.64E+03 0.68 1.62

BNN 3.35E+11 6.80E+04 0.88 2.27
CORN 1.48E+13 5.37E+05 0.84 3.56
Anticor 2.41E+08 6.21E+06 2.29 39.36
PAMR 5.14E+15 1.25E+06 0.68 264.86
CWMR 6.49E+15 1.41E+06 0.68 332.62

OLMAR 3.68E+16 2.54E+08 2.06 424.80
BAH(OLMAR) 2.27E+16 1.41E+08 2.38 172.11

MAX(OLMAR) 1.62E+17 3.95E+08 3.30 1.18E+03

(a) Cumulative Wealth

Stat. Attr. NYSE (O) NYSE (N) DJA TSE

Size 5651 6431 507 1259
MER (OLMAR) 0.0074 0.0036 0.0020 0.0061
MER (Market) 0.0005 0.0005 -0.0004 0.0004
α 0.0068 0.0030 0.0025 0.0056
β 1.2965 1.1768 1.2627 1.5320
t-statistics 15.2405 7.3704 2.1271 3.4583
p-value 0.0000 0.0000 0.0169 0.0003

(b) Statistical Test of OLMAR
Methods NYSE (O) NYSE (N) DJA TSE

BNN 4.93E+04 3.39E+04 1.28E+03 1.32E+03
CORN 8.78E+03 1.03E+04 172 1.59E+03
Anticor 2.57E+03 1.93E+03 175 2.15E+03
PAMR 8 7 0.5 2
CWMR 123 68 9 162
OLMAR 4.0 3.3 0.3 0.7

(c) Computational Time (seconds)

Figure 1. Performance evaluation: (a). Cumulative wealth achieved by various trading strategies on the four datasets. The
best results (excluding the best experts at the bottom, which is in hindsight) in each dataset are highlighted in bold. (b).
Statistical t-test of the performance achieved by OLMAR on the stock datasets. MER denotes “Mean Excess Return”.
(c). Computational times (seconds) on the four datasets achieved by the state of the art.
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Figure 2. Parameter sensitivity of OLMAR w.r.t. ϵ with fixed w (w = 5).
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Figure 3. Parameter sensitivity of OLMAR w.r.t. w with fixed ϵ (ϵ = 10).
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Figure 4. Scalability of the total wealth achieved by OLMAR with respect to transaction cost rate γ%.
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cally, as shown in the table, OLMAR algorithm takes
the least times on all datasets. Note that with daily
frequency, competitors’ average times are acceptable,
however, their times are not acceptable in the scenario
of high frequency trading. Such time efficiency sup-
ports OLMAR’s large-scale real applications.

5.5. Discussion and Thread of Validity

Without theoretical guarantee, the empirical assump-
tions in Section 2 are worth inspecting, as done by
all existing heuristic algorithms (Borodin et al., 2004;
Li et al., 2011a;b; 2012). As evaluated in Section 5.3,
OLMAR can withstand reasonable rates of transac-
tion cost. All the datasets are composed of the largest
index composite stocks, which have the best market
liquidity. To limit market impact when portfolio is
too big, one solution is to scale-down the portfolio, as
done by several quantitative funds. Here, we empha-
size again that even in such a “perfect market”, no
algorithm has ever claimed such good performance.

There may also exist certain issues in the back tests.
One possible issue is “survivorship bias”. Since follow-
ing existing works, the composition stocks never delist-
ed from markets and survived for a long time, especial-
ly the two NYSE datasets. Another possible issue is
“dataset selection”. In fact, OLMAR also performs
quite well on the other two public datasets (Li et al.,
2012), that is, SP500 and MSCI, whose results will be
included in the long version of this paper.

6. Conclusion

This paper proposes a novel online portfolio selection
strategy named “On-Line Moving Average Reversion”
(OLMAR), which exploits “Moving Average Rever-
sion” via on-line learning algorithms. The approach
can solve the problems of the state of the art caused
by the single-period mean reversion and achieve sat-
isfying results in real markets. It also runs extremely
fast and is suitable for large-scale real applications. In
future, we will further explore the theoretical aspect
of the mean reversion property.
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