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Abstract

Item neighbourhood methods for collabora-
tive filtering learn a weighted graph over the
set of items, where each item is connected to
those it is most similar to. The prediction of
a user’s rating on an item is then given by
that rating of neighbouring items, weighted
by their similarity. This paper presents a
new neighbourhood approach which we call
item fields, whereby an undirected graphical
model is formed over the item graph. The
resulting prediction rule is a simple gener-
alization of the classical approaches, which
takes into account non-local information in
the graph, allowing its best results to be
obtained when using drastically fewer edges
than other neighbourhood approaches. A
fast approximate maximum entropy training
method based on the Bethe approximation is
presented, which uses a simple gradient as-
cent procedure. When using precomputed
sufficient statistics on the Movielens datasets,
our method is faster than maximum likeli-
hood approaches by two orders of magnitude.

1. Introduction

Recommendation systems have presented new and in-
teresting challenges to the machine learning commu-
nity. The large scale and variability of data has meant
that traditional approaches have not been applicable,
particularly those that have quadratic or cubic running
time.

This has led to the majority of research taking two
tracks: (1) latent-factor models, and (2) neighbour-
hood models. Latent factor models embed both users
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and items into a low dimensional space, from which
predictions can be computed using linear operations.
These include continuous approaches, such as low-rank
approximate matrix factorization (Funk, 2006) and
binary variable approaches, such as restricted Boltz-
mann machines (Salakhutdinov et al., 2007).

The second track, neighbourhood models, is the one
explored in this work. Neighbourhood methods form a
graph structure over either items or users, where edges
connect items/users that are deemed similar. Rating
predictions are performed under the assumption that
users rate similar items similarly (for an item graph) or
that similar users have similar preferences (for a user
graph) using some form of weighted average (Sarwar
et al., 2001).

In this paper we propose a neighbourhood model that
treats the item graph as a undirected probabilistic
graphical model. This allows us to compute distribu-
tions over ratings instead of the point estimates pro-
vided by alternative neighbourhood methods. Predic-
tions for a user are performed by simply conditioning
the model on her previous ratings, giving a distribu-
tion over the set of items she has yet to rate. The pre-
dictive rule takes into account non-local information
in the item graph, allowing for smaller neighbourhood
sizes than are used in other approaches.

We also present an efficient learning algorithm for our
model, based on the Bethe entropy approximation. It
exploits a decomposition of the variable matrix into
diagonal and off-diagonal parts, where gradient ascent
need only be performed for the diagonal elements. As
our method loops over a set of edges instead of the
full set of training data, training is orders of magni-
tude faster than stochastic gradient descent (SGD) ap-
proaches such as Koren (2010). For example, the item
graph for the data-set we consider (see Section 6) has
approximately 40 thousand edges, which is small com-
pared to the 1 million data-points that are considered
in each SGD iteration.
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Figure 1. Neighbourhood of “Blade Runner” found using
the item field method on the MovieLens 1M dataset

2. The Item Graph

We begin by introducing the foundations of our model.
We are given a set of users and items, along with a set
of real valued ratings of items by users. Classical item
neighbourhood methods (Sarwar et al., 2001) learn a
graph structure over items i = 0 . . . N − 1, along with
a set of edge weights sij ∈ R, so that if a query user u
is presented, along with his ratings for the neighbours
of item i (ruj , j ∈ ne(i)), the predicted rating of item
i is

rui = µi +

∑
j∈ne(i) sji (ruj − µj)∑

j∈ne(i) sji
,

where µi ∈ R represent average ratings for that item
over all users. See Figure 1 for an example of an actual
neighbourhood for a movie recommendation system.

In order to use the above method, some principle or
learning algorithm is needed to choose the neighbour
weights. The earliest methods use the Pearson correla-
tion between the items as the weights. In our notation,
the Pearson correlation between two items is defined
as

sij =

∑
u(rui − µi)(ruj − µj)√∑

u(rui − µi)2
√∑

u(ruj − µj)2
.

The set of neighbours of each item is chosen as the
k most similar, under the same similarity measure
used for prediction. More sophisticated methods were
developed for the NetFlix competition, including the
work of Bell & Koren (2007), which identified the fol-
lowing problems with the above:

• Bounded similarity scores can not handle deter-

ministic relations;

• Interactions among neighbours are not accounted
for, which greatly skews the results;

• The weights sij cause over-fitting when none of
the neighbours provide useful information.

Learning the weights sij under an appropriate model
can alleviate all of these problems, and provide supe-
rior predictions (Bell & Koren, 2007), with the only
disadvantage being the computational time required
for training the model. Learning the neighbourhood
structure for such a model is not straightforward due
to the potentially quadratic number of edges. In this
paper we take the approach used by other neighbour-
hood methods, and assume that the neighbourhood
structure is chosen by connecting each item to it’s
k most similar neighbours, using Pearson correlation
as the similarity measure. We denote this undirected
edge set E. Structure learning is in principle possi-
ble in our model, using variants of recently proposed
methods for covariance selection (Duchi et al., 2008).
Unfortunately such methods become unusable when
the number of items considered exceeds a few thou-
sand.

In the next section, we show that the edge weights can
be interpreted as parameters of a distribution defined
by a particular graphical model. This interpretation
leads to fundamentally different rating and training
methods, which we explore in Sections 4 and 5 respec-
tively.

3. The Item Field Model

Undirected graphical models are a general class of
probability distributions defined by a set of feature
functions over subsets of variables, where the func-
tions return a local measure of compatibility. In our
case the set of variables is simply the set of items,
whose values we treat as continuous variables in the
range 1 to 5. For any particular user, given the set
of their items ratings (RK), we will predict their rat-
ings on the remaining items (RU ) by conditioning on
this distribution, namely computing expectations over
P (RU |RK).

The most common feature domains used are simple
tuples of variables (i, j), which can be equated with
edges in the graphical model, in our case the item
graph. We will additionally restrict ourselves to the
class of log-linear models, which allows us to write the
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general form of the distribution as

P (r; Θ) =
1

Z(Θ)
exp

− ∑
(i,j)∈E

Θijfij(ri, rj)

,
where Θ is the set of features weights, and Z is the par-
tition function, whose value depends on the parame-
ters Θ, and whose purpose is to ensure the distribution
is correctly normalized. The choice of feature function
for log-linear models is problem dependent, however
in our case two choices stand out. We want functions
that encourage smoothness, so that a discrepancy be-
tween the ratings of similar items is penalized. We
propose the use of squared difference features

fij(ri, rj) =
1

2
((ri − µi)− (rj − µj))2.

These features, besides being intuitive, have the ad-
vantage that for any choice of parameters Θ we can
form a Gaussian log-linear model that defines that
same distribution.

In a Gaussian log-linear model, pairwise features are
defined for each edge as fij(ri, rj) = (ri−µi)(rj−µj),
and unary features as fi(ri) = 1

2 (ri − µi)2. The pair-
wise feature weights Θij correspond precisely with the
off diagonal entries of the precision matrix (that is, the
inverse of the covariance matrix). The unary feature
weights θi correspond then to the diagonal elements.
Thus we can map the squared difference features to
a constrained Gaussian, where the diagonal elements
are constrained so that for all i,

Θii = −
∑

j∈ne(i)

Θji.

We will denote the sparse symmetric matrix of weights
for both the Gaussian and squared difference forms as
Θ, with the diagonal constrained in this way. This
allows us to freely convert between the two forms.

We will impose an additional constraint on the allow-
able parameters, that each off-diagonal element is non-
positive; this constraint ensures that only similarity
(as a opposed to dissimilarly) is modelled, and pre-
vents numerical issues in the optimization discussed in
Section 5.

4. Prediction rule

The feature functions defined in the previous section
appear somewhat arbitrary at first. We will now show
that they are additionally motivated by a simple link
to existing neighbourhood methods. Consider the case
of predicting a rating rui, where for user u all ratings

Figure 2. Diffusion of ratings, shown as deltas from the
item means, for an user that has rated only the shaded
items. A hand chosen subgraph of the item graph gener-
ated for the 100K movielens dataset is shown.

ruj , j ∈ ne(i) are known. These neighbours form the
Markov blanket of node i. In this case the conditional
distribution under the item field model is:

N

rui ; µi|−i,
1

σ2
=

∑
j∈ne(i)

Θji

 , where

µi|−i = µi −
∑
j∈ne(i) Θji (ruj − µj)∑

j∈ne(i) Θji
.

This is a univariate Gaussian distribution, whose mean
is given by a weighted sum of the same form as for
traditional neighbourhood methods. In practice we
rarely have ratings information for each item’s com-
plete neighbourhood, so this special case is just for
illustrating the link with existing approaches.

In the general case, conditioning on a set of items K
with known ratings rK , with the remaining items de-
noted U , we have:

N
(
rU ; µU |K ,ΘUU

)
, where

µU |K = µU − [ΘUU ]
−1

ΘUK (rK − µK) .

Thus computing the expected ratings requires nothing
more than a few fast sparse matrix operations, includ-
ing one sparse solve. If the prediction variances are
required, both the variances and the expected ratings
can be computed using belief propagation, which often
requires fewer iterations than the sparse solve opera-
tion (Shental et al., 2008).

The linear solve in this prediction rule has the effect of
diffusing the known ratings information over the graph
structure, in a transitive manner. Figure 2 shows this
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effect which is sometimes known as spreading activa-
tion. Such transitive diffusion has been explored previ-
ously for collaborative filtering, in a more ad-hoc fash-
ion (Huang et al., 2004).

Note that this prediction rule is a bulk method, in that
for a particular user, it predicts their ratings for all
unrated items at once. This is the most common case
in real world systems, as all item ratings are required
in order to form user interface elements such as top
100 recommendation lists.

5. Proposed Training Algorithm:
Approximate Maximum Entropy
Learning

The traditional way to train an undirected graphical
model is using maximum likelihood. When exact in-
ference is used, this is equivalent to maximum entropy
training (Koller & Friedman, 2009), as one is the con-
cave dual of the other. However, in practice variational
approximations such as the Bethe approximation are
used; for example when inference is performed using
Belief propagation. In which case the approximate
maximum entropy problem is not usually concave, and
the solutions of the two are no longer necessarily equiv-
alent.

In discrete models, the (constrained) approximate
maximum entropy approach has been shown to learn
superior models in some cases, at the expense of train-
ing time (Granapathi et al., 2008). In the case of the
item field model we will establish that approximate
maximum entropy learning is significantly faster, with
comparable accuracy.

We first consider the case of a Gaussian model, with
the variance-style features described in Section 2,
which our constrained Gaussian model builds upon.
Let Σ denote the empirical rating covariance matrix,
which we cap to non-zero only at locations (i, j) ∈ E.
The full covariance matrix is dense, however we only
need to access the entries at these locations, and it is
notationally convenient to treat the rest as zero. The
optimization procedure is over the parameters of the
beliefs B = {bi, bij}. The approximate maximum en-
tropy objective is subject to the constraints:

∀(i, j) ∈ E Ebij [xixj ] = Σij (1)

∀(i, j) ∈ V Ebi [x
2
i ] = Σii (2)

∀(i, j) ∈ E
∫
xi

bij(xi, xj) = bj(xj) (3)∫
xj

bij(xi, xj) = bi(xi) (4)

∀(i) ∈ V
∫
xi

bi(xi) = 1 (5)

∀(i, j) ∈ E
∫
xi

∫
xj

bij(xi, xj) = 1. (6)

Constraints 3 and 4 are the marginal consistency con-
straints. When applied to Gaussian beliefs they simply
assert that the covariance entries of beliefs with over-
lapping domains should be equal on that overlap. Con-
straints 5 and 6 are the normalizability constraints.
For Gaussian beliefs they just enforce that the covari-
ance matrices are all positive definite.

In general graphical models, the beliefs are separately
parametrized distributions over the same domains as
the factors, in our case they take the form of 2D and 1D
mean zero Gaussian distributions. We will make use
of a representation of the beliefs in a compact form of
a single (sparse) symmetric matrix of the same struc-
ture as the covariance matrix, which we will denote
C. This representation simply maps Cij = Ebij [xixj ],
evaluated at any of the beliefs. This is well defined
as the value will be the same for any belief, as noted
above. This representation makes the consistency con-
straints implicit, using what is essentially variable sub-
stitution.

The Bethe entropy approximation of the beliefs in our
notation is:

HBethe(C) =
∑

(i,j)∈E

log
(
CiiCjj − C2

ij

)
+
∑
i∈V

(1− deg(i)) logCii.

Notice that log terms are undefined whenever the be-
lief covariances are not positive definite. Thus the nor-
malizability constraints are also extraneous. So for
a purely Gaussian model, the approximate maximum
entropy problem simplifies to:

maximize
C

HBethe(C)

s.t. C = Σ.

Stated this way, the solution is trivial as the con-
straints directly specify C. However, we are interested
in learning the weights Θ, which are the Lagrange mul-
tipliers of the equality constraints. The Lagrangian is

LΣ(C,Θ) = HBethe(C) + 〈Θ,Σ− C〉 , (7)

where 〈·, ·〉 is the standard inner product on matrices.
The Lagrangian has derivatives:
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Algorithm 1 Diagonal ascent algorithm for approxi-
mate maximum entropy learning

input: covariance Σ, size N , step size α
C = Σ and k = 1
repeat

# Compute Θ, needed for each Cii gradient
for i = 1 to N do

Θii = 1
Cii

end for
for (i, j) ∈ E do

if CiiCjj − C2
ij > 0 and Cij > 0 then

Θij =
−Cij

CiiCjj−C2
ij

Θii +=
Cjj

CiiCjj−C2
ij
− 1

Cii

else
Θij = 0

end if
end for
# Take a gradient step on each Cii
for i = 1 to N do
Cii += α√

k
(Θii +

∑
j∈ne(i) Θij)

end for
# Update the off-diagonal elements
for (i, j) ∈ E do
Cij = Σij − Σii − Σjj + Cii + Cjj

end for
k = k + 1

until sufficient convergence
return Θ

∂LΣ(C,Θ)

∂C
=
∂HBethe(C)

∂C
−Θ

∂LΣ(C,Θ)

∂Θ
= Σ− C.

Equating the gradients to zero, gives the following
equation for Θ:

Θ =
∂HBethe(C)

∂C
|C=Σ,

which gives the closed form solution

Θij =
−Σij

ΣiiΣjj − Σ2
ij

Θii =
1

Σii
+

∑
j∈ne(i)

(
Σjj

ΣiiΣjj − Σ2
ij

− 1

Σii

)
.

(8)

The same solution for Θ can also be obtained us-
ing the pseudo-moment matching technique, as Σ is
a fixed point of the GaBP update equations for this
parametrization. If we were applying a vanilla Gaus-
sian model, we could use this result directly. However,
for the item field model we have constraints on the

Figure 3. Test error as a function of the number of training
iterations on the 100K MovieLens dataset. A mild over-
fitting effect is visible.

diagonal. Using variable substitution on the diagonal,
we get the following Lagrangian:

HBethe(C)+
∑

(i,j)∈E

Θij (Σij − Σii − Σjj)

−
∑

(i,j)∈E

Θij (Cij − Cii − Cjj)

which we denote L′Σ(C,Θ). It has gradients:

∂L′Σ(C,Θ)

∂Cij
=
∂HBethe(C)

∂Cij
−Θij

∂L′Σ(C,Θ)

∂Cii
=
∂HBethe(C)

∂Cii
+

∑
j∈ne(i)

Θij

∂L′Σ(C,Θ)

∂Θij
=Σij − Σii − Σjj − Cij + Cii + Cjj .

In order to optimize the diagonally constrained objec-
tive, we can take advantage of the closed form solution
for the simpler unconstrained Gaussian. The proce-
dure we use is given in Algorithm 1. It gives a quality
solution in a small number of iterations (see Figure 3).
The core idea is that if we fix the diagonal of C, the
rest of the elements are determined. The gradient of
the diagonal elements can be computed directly from
Θ, so we recalculate it at each iteration, then take a
gradient step. The dual variables are used essentially
as notation for the entropy gradients, not in any deeper
sense.

5.1. Missing Data & Kernel Functions

The training methods proposed take as input a sparse
subset of a covariance matrix Σ, which contains the
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sufficient statistics required for training. It should be
emphasized that we do not assume that the covariance
matrix is sparse, rather our training procedure only
needs to query the entries at the subset of locations
where the precision matrix is assumed to be non-zero.

As our samples are incomplete (we do not know all
item ratings for all users), the true covariance ma-
trix is unknown. For our purposes, we form a covari-
ance matrix by assuming the unrated items are rated
at their item mean. More sophisticated methods of
imputation are possible; we explored an Expectation-
Maximization (EM) approach, which did not result in
a significant improvement in the predictions made. It
did however give better prediction covariances.

In general a kernel matrix can be used in place of the
covariance matrix, which would allow the introduction
of item meta-data through the kernel function. We left
this avenue for future work.

5.2. Conditional Random Field Variants

Much recent work in Collaborative filtering has con-
cerned the handling of additional user meta-data, such
as age and gender information usually collected by on-
line systems (Stern et al., 2009). These attributes are
naturally discrete, and so integrating them as part of
the MRF model results in mixed discrete/continuous
model. Approximate inference in such as model is no
longer a simple linear algebra problem, and conver-
gence becomes an issue. User attributes are better
handled in a conditional random field (CRF) model,
where the conditional distributions involve the contin-
uous item variables only.

Unfortunately the optimization technique described
above does not extend readily to CRF mod-
els. Approximate maximum entropy training using
Difference-of-convex methods has been applied to CRF
training successfully (Granapathi et al., 2008), al-
though such methods are slower than maximum like-
lihood. We explored CRF extensions using maximum
likelihood learning, and while they did give better rat-
ings predictions, training was slow due to the large
number of belief propagation calls. While practical if
the computation is distributed, the training time was
still several hundred times slower than any of the other
methods we tested.

5.3. Maximum Likelihood Learning with Belief
Propagation

An objective proportional to the negative log-
likelihood for a Gaussian distribution under the Bethe
approximation can be derived from the approximate

entropy Lagrangian (Equation 7) using duality theory.
First note that the Lagrangian can be split as follows:

LΣ(Θ, C) =HBethe(C) + 〈Θ,Σ− C〉
= 〈Θ,Σ〉 − (〈Θ, C〉 −HBethe(C)) ;

The dual is then formed by maximizing in terms of C:

∴ − log p(Σ; Θ) ∝ max
C

LΣ(Θ, C) =

〈Θ,Σ〉 −min
C

(〈Θ, C〉 −HBethe(C)) ;

The term inside of the minimization on the right is the
Bethe free energy (Yedidia et al., 2000). By equating
with the non-approximate likelihood, it can be seen
that the log partition function is being approximated
as:

logZ(Θ) = −min
C

(〈Θ, C〉 −HBethe(C))

The value of logZ(Θ) and a (locally) minimizing C
can be found efficiently using belief propagation (Cseke
& Heskes, 2011). For diagonally dominant Θ belief
propagation can be shown to always converge (Weiss
& Freeman, 2001). The diagonal constraints as well
as the non-positivity constraints on the off diagonal
elements of Θ ensure diagonal dominance in this case.

Maximum likelihood objectives for undirected graphi-
cal models are typically optimized using quasi-newton
methods, and that is the approach we took here. The
diagonal constraints are easily handled by variable
substitution, and the non-positivity constraints are
simple box constraints. We used the L-BFGS-B algo-
rithm (Zhu et al., 1997) – a quasi-newton method that
supports such constraints. The log-partition function
logZ(Θ) is convex if we are able to exactly solve the
inner minimization over C, which is not the case in
general.

6. Experiments

For our comparison we tested on 2 representative
datasets. The 1M ratings MovieLens dataset (Grou-
pLens Research) consists of 3952 items and 6040 users.
As there is no standard test/training data split for this
dataset, we took the approach from Stern et al. (2009),
where all data for 90% of the users is used for training,
and the remaining users have their ratings split into a
75% training set and 25% test set. The 100K ratings
MovieLens dataset involves 1682 items and 943 users.
This dataset is distributed with five test/train parti-
tions for cross validation purposes which we made use
of.

All reported errors use the mean absolute error (MAE)

measure ( 1
N

∑N
i |µi−ri|). All 2 datasets consist of rat-

ings on a discrete 1 to 5 star scale. Each method we
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Table 1. Comparison of a selection of models against the item field model with approximate maximum likelihood, exact
maximum likelihood and maximum entropy approaches

Method MAE Precomputation (s) Training (s)

100K MovieLens

Maximum Entropy (k=10) 0.7384 18.9 0.12
Cosine Neigh. (k=10) 0.8107 18.7 0
Bethe Maximum Likelihood (k=10) 0.7390 18.9 28
Exact Maximum Likelihood (k=10) 0.7398 18.9 99
Least Squares Neighbours (k=10) 0.7510 18.9 90
Maximum Entropy (k=50) 0.7439 19 1.7
Least Squares Neighbours (k=50) 0.7340 19 288
Latent Factor Model (50 factors) 0.7321 0 215

1M MovieLens

Maximum Entropy (k=10) 0.6772 514 0.64
Cosine Neigh. (k=10) 0.7421 513 0
Bethe Maximum Likelihood (k=10) 0.6767 514 75
Exact Maximum Likelihood (k=10) 0.6755 514 2795
Least Squares Neighbours (k=10) 0.6826 514 1369
Maximum Entropy (k=50) 0.6866 517 7.17
Least Squares Neighbours (k=50) 0.6756 517 4551
Latent Factor Model (50 factors) 0.6683 0 4566

tested produced real valued predictions, and so some
scheme was needed to reduce the predictions to real
values in the interval 1 to 5. For our tests the val-
ues were simply clamped. Methods that learn a user
dependent mapping from the real numbers into this in-
terval have been explored in the literature (Stern et al.,
2009).

Table 1 shows the results for the two Movielens
datasets. Comparisons are against our own imple-
mentation of a classical cosine neighbourhood method
(Sarwar et al., 2001); a typical latent factor model
(similar to Funk (2006) but with simultaneous stochas-
tic gradient descent for all factors) and the neighbour-
hood method from Koren (2010) (the version without
latent factors), which uses a non-linear least squares
objective. All implementations were in python (using
cython compilation), so timings are not comparable to
fast implementations. We also show results for vari-
ous methods of training the item field model besides
the maximum entropy approach, including exact max-
imum likelihood training.

The item field model outperforms the other neighbour-
hood methods when sparse (10 neighbour) models are
used. Increasing the neighbourhood size past roughly
10 actually starts to degrade the performance of the
item field model: at 50 neighbours using maximum en-
tropy training on the 1M dataset the MAE is 0.6866 vs
0.6772 at 10 neighbours. We found this occurred with
the other training methods also. This may be caused

by an over-fitting effect as restricting the number of
neighbours is a form of regularization.

The latent factor model and the least squares neigh-
bourhood model both use stochastic gradient descent
for training. They required looping over the full set of
training data each iteration. The maximum entropy
method only loops over a sparse item graph each it-
eration which is why it is roughly two thousand times
faster to train. Note that the dataset still has to be
processed once to extract the neighbourhood structure
and covariance values, the timing of which is indicated
in the precomputation column. This is essentially the
same for all the neighbourhood methods we compared.
In an on-line recommendation system the covariance
values can be updated as new ratings stream in, so
the precomputation time is amortized. Training time
is more crucial as multiple runs from a cold-start with
varying regularization are needed to get the best per-
formance (due to local minima).

7. Related Work

There has been previous work that applies undi-
rected graphical models in recommendation systems.
Salakhutdinov et al. (2007) used a bipartite graphi-
cal model, with binary hidden variables forming one
part. This is essentially a latent factor model, and
due to the hidden variables, requires different and less
efficient training methods than those we apply in the
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present paper. They apply a fully connected bipartite
graph, in contrast to the sparse, non-bipartite model
we use. Multi-scale conditional random fields mod-
els have also been applied to the more general social
recommendation task with some success (Xin et al.,
2009). Directed graphical models are commonly used
as a modelling tool, such as in Salakhutdinov & Mnih
(2008). While undirected models can be used in a sim-
ilar way, the graph structures we apply in this work are
far less rigidly structured.

Several papers propose methods of learning weights of
a neighbourhood graph (Koren, 2010) (Bell & Koren,
2007), however our model is the first neighbourhood
method we are aware of which gives distributions over
its predictions. Our model uses non-local, transitive
information in the item graph for prediction. Non-
local neighbourhood methods have been explored us-
ing the concept of spreading activation, typically on
the user graph (Griffith et al., 2006) or on a bipartite
user-item graph (Lie & Wang, 2009).

8. Conclusion

We have presented an undirected graphical model for
collaborative filtering that naturally generalizes the
prediction rule of previous neighbourhood methods by
providing distributions over predictions rather than
point estimates. We detailed an efficient training al-
gorithm based on the approximate maximum entropy
principle, which after preprocessing takes less than a
second to train, and is two orders of magnitude faster
than a maximum likelihood approach. Our model
has fewer parameters than other comparable models,
which is an advantage for interpretability and training.
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