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Abstract

We study the convergence rate of stochastic
optimization of exact (NP-hard) objectives,
for which only biased estimates of the gra-
dient are available. We motivate this prob-
lem in the context of learning the structure
and parameters of Ising models. We first
provide a convergence-rate analysis of deter-
ministic errors for forward-backward splitting
(FBS). We then extend our analysis to bi-
ased stochastic errors, by first characterizing
a family of samplers and providing a high
probability bound that allows understand-
ing not only FBS, but also proximal gradient
(PG) methods. We derive some interesting
conclusions: FBS requires only a logarithmi-
cally increasing number of random samples
in order to converge (although at a very low
rate); the required number of random sam-
ples is the same for the deterministic and the
biased stochastic setting for FBS and basic
PG; accelerated PG is not guaranteed to con-
verge in the biased stochastic setting.

1. Introduction

Structure learning aims to discover the topology of a
probabilistic network of variables such that this net-
work represents accurately a given dataset while main-
taining low complexity. Accuracy of representation is
measured by the likelihood that the model explains the
observed data, while complexity of a graphical model
is measured by its number of parameters.

One challenge of structure learning is that the num-
ber of possible structures is super-exponential in the
number of variables. For Ising models, the number of
parameters, the number of edges in the structure and
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the number of non-zero elements in the ferro-magnetic
coupling matrix are equivalent measures of model com-
plexity. Therefore a computationally tractable ap-
proach is to use sparseness promoting regularizers
(Wainwright et al., 2006; Banerjee et al., 2008; Höfling
& Tibshirani, 2009).

One additional challenge for Ising models (and Markov
random fields in general) is that computing the likeli-
hood of a candidate structure is NP-hard. For this
reason, several researchers propose exact optimiza-
tion of approximate objectives, such as `1-regularized
logistic regression (Wainwright et al., 2006), greedy
optimization of the conditional log-likelihoods (Jalali
et al., 2011), pseudo-likelihood (Besag, 1975) and a
sequence of first-order approximations of the exact
log-likelihood (Höfling & Tibshirani, 2009). Several
convex upper bounds and approximations to the log-
partition function have been proposed for maximum
likelihood estimation, such as the log-determinant
relaxation (Banerjee et al., 2008), the cardinality
bound (El Ghaoui & Gueye, 2008), the Bethe en-
tropy (Lee et al., 2006; Parise & Welling, 2006), tree-
reweighted approximations and general weighted free-
energy (Yang & Ravikumar, 2011).

In this paper, we focus on the stochastic optimiza-
tion of the exact log-likelihood as our motivating prob-
lem. The use of stochastic maximum likelihood dates
back to (Geyer, 1991; Younes, 1988), in which Markov
chain Monte Carlo (MCMC) was used for approximat-
ing the gradient. For restricted Boltzmann machines
(a very related graphical model) researchers have pro-
posed a variety of approximation methods, such as
variational approximations (Murray & Ghahramani,
2004), contrastive divergence (Hinton, 2002), persis-
tent contrastive divergence (Tieleman, 2008), tem-
pered MCMC (Salakhutdinov, 2009; Desjardins et al.,
2010), adaptive MCMC (Salakhutdinov, 2010) and
particle filtering (Asuncion et al., 2010).

Empirical results in (Marlin et al., 2010) suggests
that stochastic maximum likelihood is superior to con-
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trastive divergence, pseudo-likelihood, ratio matching
and generalized score matching for learning restricted
Boltzmann machines, in the sense that it produces a
higher test set log-likelihood, and more consistent clas-
sification results across datasets.

Learning sparse Ising models leads to the use of
stochastic optimization with biased estimates of the
gradient. Most work in stochastic optimization as-
sumes the availability of unbiased estimates (Duchi &
Singer, 2009; Duchi et al., 2010; Hu et al., 2009; Ne-
mirovski et al., 2009). Additionally, other researchers
have analyzed convergence rates in the presence of
deterministic errors that do not decrease over time
(d’Aspremont, 2008; Baes, 2009; Devolder et al., 2011)
and show convergence up to a constant level. Similarly,
Devolder (2012) analyzed the case of stochastic errors
with fixed bias and variance and show convergence up
to a constant level.

Notable exceptions are the recent works of Schmidt
et al. (2011); Friedlander & Schmidt (2011); Duchi
et al. (2011). Schmidt et al. (2011) analyzed proximal-
gradient (PG) methods for deterministic errors of the
gradient that decrease over time, for inexact projection
steps and Lipschitz as well as strongly convex func-
tions. In our work, we restrict our analysis to exact
projection steps and do not assume strong convexity.
Both assumptions are natural for learning sparse mod-
els under the `1 regularization. Friedlander & Schmidt
(2011) provides convergence rates in expected value for
PG with stochastic errors that decrease over time in
expected value. Friedlander & Schmidt (2011) pro-
poses a growing sample-size strategy for approximat-
ing the gradient, i.e. by picking an increasing number
of training samples in order to better approximate the
gradient. In contrast, our work is for NP-hard gradi-
ents and we provide bounds with high probability, by
taking into account the bias and the variance of the
errors. Duchi et al. (2011) analyzed mirror descent (a
generalization that includes forward-backward split-
ting) and show convergence rates in expected value
and with high probability with respect to the mixing
time of the sampling distribution. We argue that prac-
titioners usually terminate Markov chains before prop-
erly mixing, and therefore we motivate our analysis for
a controlled increasing number of random samples.

Regarding our contribution in optimization, we pro-
vide a convergence-rate analysis of deterministic errors
for three different flavors of forward-backward splitting
(FBS): robust (Nemirovski et al., 2009), basic and ran-
dom (Duchi & Singer, 2009). We extend our analy-
sis to biased stochastic errors, by first characterizing a
family of samplers (including importance sampling and

MCMC) and providing a high probability bound that
is useful for understanding the convergence of not only
FBS, but also PG (Schmidt et al., 2011). Our analysis
shows the bias/variance term and allow to derive some
interesting conclusions. First, FBS for deterministic
or biased stochastic errors requires only a logarithmi-
cally increasing number of random samples in order to
converge (although at a very low rate). More interest-
ingly, we found that the required number of random
samples is the same for the deterministic and the bi-
ased stochastic setting for FBS and basic PG. We also
found that accelerated PG is not guaranteed to con-
verge in the biased stochastic setting.

Regarding our contribution in structure learning, we
show that the optimal solution of maximum likelihood
estimation is bounded (to the best of our knowledge,
this has not been shown before). Our analysis shows
provable convergence guarantees for finite iterations
and finite number of random samples. Note that while
consistency in structure recovery has been established
(e.g. Wainwright et al. (2006)), convergence rates of
parameter learning for fixed structures is up to now un-
known. Our analysis can be easily extended to Markov
random fields with higher order cliques as well as pa-
rameter learning for fixed structures by using a `22 reg-
ularizer instead.

2. Our Motivating Problem

In this section, we introduce the problem of learning
sparse Ising models and discuss its properties. Our dis-
cussion will motivate a set of bounds and assumptions
for a more general convergence rate analysis.

2.1. Problem Setup

An Ising model is a Markov random field on binary
variables with pairwise interactions. It first arose in
statistical physics as a model for the energy of a phys-
ical system of interacting atoms (Koller & Friedman,
2009). Formally, the probability mass function (PMF)
of an Ising model parameterized by θ = (W,b) is de-
fined as:

pθ(x) =
1

Z(W,b)
exTWx+bTx (1)

where the domain for the binary variables is x ∈
{−1, +1}N , W ∈ RN×N is symmetric with zero di-
agonal, b ∈ RN and partition function is defined as
Z(W,b) =

∑
x exTWx+bTx. For clarity of the con-

vergence rate analysis, we also define θ ∈ RM where
M = N2.

In the physics literature, W and b are called ferro-
magnetic coupling and external magnetic field respec-
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tively. W defines the topology of the Markov ran-
dom field, i.e. the graph G = (V, E) is defined as V =
{1, . . . , N} and E = {(n1, n2) | n1 < n2 ∧ wn1n2 6= 0}.
It is well known that, for an Ising model with arbitrary
topology, computing the partition function Z is NP-
hard (Barahona, 1982). It is also NP-hard to approx-
imate Z with high probability and arbitrary precision
(Chandrasekaran et al., 2008).

The number of edges |E| or equivalently the cardinal-
ity (number of non-zero entries) of W is a measure
of model complexity, and it can be used as a regu-
larizer for maximum likelihood estimation. The main
disadvantage of using such penalty is that it leads to
a NP-hard problem, regardless of the computational
complexity of the log-likelihood.

Next, we formalize the problem of finding a sparse
Ising model by regularized maximum likelihood esti-
mation. We replace the cardinality penalty by the `1-
norm regularizer as in (Wainwright et al., 2006; Baner-
jee et al., 2008; Höfling & Tibshirani, 2009).

Given a complete dataset with T i.i.d. samples
x(1), . . . ,x(T ), and a sparseness parameter ρ > 0 the
`1-regularized maximum likelihood estimation for the
Ising model in eq.(1) becomes:

min
W,b

L(W,b) +R(W) (2)

where the negative (average) log-likelihood L(W,b) =
− 1

T

∑
t log pθ(x(t)) = logZ(W,b) − 〈Σ̂,W〉 −

µ̂Tb, the empirical second-order moment Σ̂ =
1
T

∑
t x

(t)x(t)T − I, the empirical first-order moment
µ̂ = 1

T

∑
t x

(t) and the regularizer R(W) = ρ‖W‖1.
The objective function in eq.(2) is convex, given the
convexity of the log-partition function (Koller & Fried-
man, 2009), linearity of the scalar products and con-
vexity of the non-smooth `1-norm regularizer. As dis-
cussed before, computing the partition function Z is
NP-hard, and so is computing the objective function
in eq.(2).

2.2. Bounds

In what follows, we show boundedness of the opti-
mal solution and the gradients of the maximum like-
lihood problem. Both are important ingredients for
showing convergence and are largely used assumptions
in optimization. In this paper, we follow the origi-
nal formulation of the problem given in (Wainwright
et al., 2006; Banerjee et al., 2008; Höfling & Tibshi-
rani, 2009), which does not regularize b. We found
interesting to show that this problem has bounds for
‖b∗‖1 unlike other stochastic optimization problems,

e.g. SVMs (Shalev-Shwartz et al., 2007).

First, we make some observations that will help us
derive our bounds. The empirical second-order mo-
ment Σ̂ and first-order moment µ̂ in eq.(2) are com-
puted from binary variables in {−1,+1}, therefore
‖Σ̂‖∞ ≤ 1 and ‖µ̂‖∞ ≤ 1.

Assumption 1. It is reasonable to assume that the
empirical first-order moment of every variable is not
equal to −1 (or +1), since this would be equivalent to
observe a constant value −1 (or +1) for such variables
in every sample in the dataset, i.e. (∃n) |µ̂n| = 1 ⇔
(∀t) x

(t)
n = −1 ∨ (∀t) x

(t)
n = 1. Therefore, we assume

‖µ̂‖∞ < 1 ⇔ (∀n)− 1 < µ̂n < +1.

Given those observations, we state our bounds in the
following theorem. For clarity of the convergence rate
analysis, we also define the bound D of the optimal
solution.

Theorem 2. The optimal solution θ∗ = (W∗,b∗) of
the maximum likelihood problem in eq.(2) is bounded
as follows:

i. ‖W∗‖1 ≤ N log 2
ρ

ii. ‖b∗‖1 ≤ N log 2(ρ+1+‖Σ̂‖∞)
ρ(1−‖µ̂‖∞)

iii. ‖θ∗‖2 ≤ D

(3)

where D2 =
(

N log 2
ρ

)2
(

1 +
(

ρ+1+‖Σ̂‖∞
1−‖µ̂‖∞

)2
)

.

Proof Sketch. Claim i and ii follow from the fact
that the function evaluated at (W∗,b∗) is less than
at (0,0). Additionally, Claim i follows from non-
negativity of the negative log-likelihood in eq.(2),
while Claim ii follows from non-negativity of the regu-
larizer and from Assumption 1. Claim iii follows from
norm inequalities and Claims i and ii.

(Please, see Appendix C for detailed proofs.)

If we choose to add the regularizer ρ‖b‖1 in eq.(2), it
is easy to conclude that ‖W∗‖1 +‖b∗‖1 ≤ N log 2

ρ as in
Claim i of Theorem 2.

The gradient of the objective function of the maximum
likelihood problem in eq.(2) is defined as:

i. ∂ logZ/∂W = EP [xxT]
ii. ∂ logZ/∂b = EP [x]
iii. ∂L/∂W = ∂ logZ/∂W − Σ̂
iv. ∂L/∂b = ∂ logZ/∂b− µ̂

(4)

where P is the probability distribution with PMF
pθ(x). The expression in eq.(4) uses the fact that
EP [xxT] =

∑
x xxTpθ(x) and EP [x] =

∑
x xpθ(x).



Convergence Rates of Biased Stochastic Optimization for Learning Sparse Ising Models

It is well known that computing the gradients
∂ logZ/∂W and ∂ logZ/∂b is NP-hard. The com-
plexity results in (Chandrasekaran et al., 2008) imply
that approximating those gradients with high proba-
bility and arbitrary precision is also NP-hard.

Next, we state some properties of the gradient of the
exact log-likelihood. For clarity of the convergence
rate analysis, we also define the Lipschitz constant G.
Lemma 3. The objective function of the maximum
likelihood problem in eq.(2) has the following Lipschitz
continuity properties:

i. ‖∂ logZ/∂W‖∞ , ‖∂ logZ/∂b‖∞ ≤ 1
ii. ‖∂L/∂W‖∞ ≤ 1 + ‖Σ̂‖∞
iii. ‖∂L/∂b‖∞ ≤ 1 + ‖µ̂‖∞
iv. ‖∂R/∂W‖∞ ≤ ρ
v. ‖∂L/∂θ‖2 , ‖∂R/∂θ‖2 ≤ G

(5)

where G2 = N2 max((1+‖Σ̂‖∞)2+ 1
N (1+‖µ̂‖∞)2, ρ2).

Proof Sketch. Claims i to iii follow from the fact that
the terms ∂ logZ/∂W and ∂ logZ/∂b in eq.(4) are
the second and first-order moment of binary variables
in {−1, +1}. Claim iv follows from the definition of
subgradients. Claim v follows from norm inequalities
and Claims ii to iv.

2.3. Approximating the Gradient of the
Log-Partition Function

Suppose one wants to evaluate the expression EP [xxT]
in eq.(4) which is the gradient of the log-partition func-
tion. Let assume we know the distribution pθ(x) up
to a constant factor, i.e. p′θ(x) = exTWx+bTx. Impor-
tance sampling draws S samples x(1), . . . ,x(S) from a
trial distribution with PMF q(x), calculates the impor-
tance weights α(s) = p′θ(x(s))/q(x(s)) and produces the
estimate (

∑
s α(s)x(s)x(s)T)/

∑
s α(s). On the other

hand, MCMC generates S samples x(1), . . . ,x(S) from
the distribution pθ(x) based on constructing a Markov
chain whose stationary distribution is pθ(x). Thus, the
estimate becomes 1

S

∑
s x(s)x(s)T.

In what follows, we characterize a family of sam-
plers that includes importance sampling and MCMC
as shown in (Peskun, 1973; Liu, 2001).
Definition 4. A (B, V, S, D)-sampler takes S random
samples from a distribution Q and produces biased es-
timates of the gradient of the log-partition function
∂ logZ/∂θ + ξ, with error ξ that has bias and vari-
ance:

i. EQ[‖ξ‖2] ≤ B
S +O( 1

S2 )
ii. VarQ[‖ξ‖2] ≤ V

S +O( 1
S2 )

(6)

for B ≥ 0, V ≥ 0 and (∀θ) ‖θ‖2 ≤ D.

Note that a (B, V, S,D)-sampler is asymptotically un-
biased with asymptotically vanishing variance, i.e.
S → +∞ ⇒ B

S → 0 ∧ V
S → 0. Unfortunately, ana-

lytical approximations of the constants B and V are
difficult to obtain even for specific classes, e.g. Ising
models. The theoretical analysis implies that such con-
stants B and V exist (Peskun, 1973; Liu, 2001) for
importance sampling and MCMC. We argue that this
apparent disadvantage does not diminish the relevance
of our analysis, since we can reasonably expect that
more refined samplers lead to lower B and V .

Note that Definition 4 does not contradict the com-
plexity results in (Chandrasekaran et al., 2008) that
show that it is likely impossible to approximate Z
(and therefore its gradient) with probability greater
than 1 − δ and arbitrary precision ε in time polyno-
mial in log 1

δ and 1
ε . Definition 4 assumes biasedness

and a polynomial decay instead of an exponential de-
cay (which is a more stringent condition) and cannot
be used to derive two-sided high probability bounds
that are both O(log 1

δ ) and O( 1
S ). Therefore, Defini-

tion 4 cannot be used to obtain polynomial-time al-
gorithms as the ones considered in (Chandrasekaran
et al., 2008).

Assumption 5. It is reasonable to assume that the
estimates of the gradient of the log-partition function
are inside [−1;+1] since they are approximations of
the second and first-order moment of binary variables
in {−1, +1}. Furthermore, it is straightforward to en-
force Lipschitz continuity (condition i of Lemma 3)
for any sampler (e.g. importance sampling, MCMC
or any conceivable method) by limiting its output to be
inside [−1; +1]. More formally, we have:

i. ‖∂ logZ/∂θ + ξ‖∞ ≤ 1
ii. ‖∂L/∂θ + ξ‖2 ≤ G

(7)

3. Biased Stochastic Optimization

In this section, we analyze the convergence rates of
forward-backward splitting. Our results apply to any
problem that fulfills the following largely used assump-
tions in optimization:

• the objective function is composed by a smooth
function L(θ) and non-smooth regularizer R(θ)

• the optimal solution is bounded, i.e. ‖θ∗‖2 ≤ D
• each visited point is at a bounded distance from

the optimal solution, i.e. (∀k) ‖θ(k) − θ∗‖2 ≤ D
• both L and R are Lipschitz continuous, i.e.
‖∂L/∂θ‖2 , ‖∂R/∂θ‖2 ≤ G

• the non-smooth regularizer vanishes at zero, i.e.
R(0) = 0
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We additionally require that the errors do not change
the Lipschitz continuity properties, i.e. ‖∂L/∂θ +
ξ‖2 ≤ G (as discussed in Assumption 5).

3.1. Algorithm

We analyze forward-backward splitting (Duchi &
Singer, 2009) for deterministic as well as biased
stochastic errors, for non-increasing step sizes of the
form ηk ∈ O( 1

kr ) for 0 < r < 1. This method is equiv-
alent to basic proximal gradient (Schmidt et al., 2011)
for r = 0 (constant step size). We point out that
FBS has O( 1√

K
) convergence for r = 1

2 , while basic
PG has O( 1

K ) convergence, and accelerated PG has
O( 1

K2 ) convergence. Thus, PG methods have faster
convergence but they are more sensitive to errors.

FBS performs gradient descent steps for the smooth
part of the objective function, and (closed form) pro-
jection steps for the non-smooth part. Here we assume
that at each iteration k, we approximate the gradient
with some (deterministic or biased stochastic) error
ξ(k). For our objective function in eq.(2), one itera-
tion of the algorithm is equivalent to:

i. θ(k+ 1
2 ) = θ(k) − ηk(g(k)

L + ξ(k))
ii. θ(k+1) = arg minθ( 1

2‖θ − θ(k+ 1
2 )‖22 + ηk+1R(θ))

(8)
where g(k)

L = ∂L
∂θ (θ(k)), and ξ(k) is the error in the

gradient approximation. Step ii is a projection step for
the non-smooth regularizer R(θ). For the regularizer
in our motivating problem R(W) = ρ‖W‖1, Step ii
decomposes into N2 independent lasso problems.

3.2. Convergence Rates for Deterministic
Errors

In what follows, we analyze three different flavors of
forward-backward splitting: robust which outputs the
weighted average of all visited points by using the step
sizes as in robust stochastic approximation (Nemirovski
et al., 2009), basic which outputs the average of all vis-
ited points as in (Duchi & Singer, 2009), or random
which outputs a point chosen uniformly at random
from the visited points. Here we assume that at each
iteration k, we approximate the gradient with some
deterministic error ξ(k). Our results in this subsection
will allow us to draw some conclusions regarding not
only FBS but also proximal gradient.

In order to make our bounds more general for different
choices of step size ηk ∈ O( 1

kr ) for some 0 < r < 1, we
use generalized harmonic numbers Hr,K =

∑K
k=1

1
kr

and therefore H0,K = K, Hr,K ≈ K1−r

1−r for 0 < r < 1,

H1,K ≈ log K and Hr,K ≈ 1−K1−r

r−1 for r > 1.

Additionally, we define a weighted error term that will
be used for our analysis of deterministic as well as
biased stochastic errors. Given a sequence of errors
ξ(1), . . . , ξ(K) and a set of arbitrary weights γk such
that

∑
k γk = 1, the error term is defined as:

Aγ,ξ ≡
∑

k γk‖ξ(k)‖2 (9)

First, we show the convergence rate of robust FBS.

Theorem 6. For a sequence of deterministic errors
ξ(1), . . . , ξ(K), step size ηk = β

Gkr for 0 < r < 1, initial
point θ(1) = 0, the objective function evaluated at the
weighted average of all visited points converges to the
optimal solution with rate:

L(θ) +R(θ)− L(θ∗)−R(θ∗) ≤ πη(K)
≤ D2G

2βHr,K
+ 2DAγ,ξ + 4βGH2r,K

Hr,K

(10)

where θ =
∑

k ηkθ(k)
∑

k ηk
, the weighted average regret

πη(K) =
∑

k ηk(L(θ(k))+R(θ(k)))∑
k ηk

− L(θ∗) − R(θ∗), the
error term Aγ,ξ is defined as in eq.(9), and the error
weights γk = 1/kr

Hr,K
such that

∑
k γk = 1.

Proof Sketch. By Jensen’s inequality L(θ) + R(θ) ≤∑
k ηk(L(θ(k)) +R(θ(k)))/

∑
k ηk. Then we apply

a technical lemma for bounding consecutive steps
(Please, see Appendix B).

Second, we show the convergence rate of basic FBS.

Theorem 7. For a sequence of deterministic errors
ξ(1), . . . , ξ(K), step size ηk = β

Gkr for 0 < r < 1, initial
point θ(1) = 0, the objective function evaluated at the
average of all visited points converges to the optimal
solution with rate:

L(θ) +R(θ)− L(θ∗)−R(θ∗) ≤ π(K)
≤ D2G(K+1)r

2βK + 21+rDAγ,ξ + 22+rβGHr,K

K

(11)

where θ =
∑

k θ(k)

K , the average regret π(K) =
∑

k (L(θ(k))+R(θ(k)))

K − L(θ∗) − R(θ∗), the error term
Aγ,ξ is defined as in eq.(9), and the error weights
γk = 1

K such that
∑

k γk = 1.

Proof Sketch. By Jensen’s inequality L(θ) + R(θ) ≤∑
k (L(θ(k)) +R(θ(k)))/K. Then we apply a techni-

cal lemma for bounding consecutive steps (Please, see
Appendix B).

Finally, we show the convergence rate of random FBS.
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Theorem 8. For a sequence of deterministic errors
ξ(1), . . . , ξ(K), step size ηk = β

Gkr for 0 < r < 1, initial
point θ(1) = 0 and some confidence parameter 0 < ε <
1, the objective function evaluated at a point k chosen
uniformly at random from the visited points converges,
with probability at least 1 − ε, to the optimal solution
with rate:

L(θ(k)) +R(θ(k))− L(θ∗)−R(θ∗)
≤ 1

ε

(
D2G(K+1)r

2βK + 21+rDAγ,ξ + 22+rβGHr,K

K

) (12)

where the error term Aγ,ξ is defined as in eq.(9), and
the error weights γk = 1

K such that
∑

k γk = 1.

Proof Sketch. Since the distribution is uniform on k,
the expected value of the objective function is equal to
the average of the objective function evaluated at all
visited points, i.e. the average regret π(K). The final
result follows from Markov’s inequality and the upper
bound of π(K) given in Theorem 7.

The convergence rates in Theorems 6, 7 and 8 lead
to an error term Aγ,ξ that is linear, while the error
term is quadratic in the analysis of proximal gradient
(Schmidt et al., 2011). In basic PG, the error term can
be written as:

1
K (

∑
k ‖ξ(k)‖2)2 = K(Aγ,ξ)2 (13)

where the error weights γk = 1
K such that

∑
k γk = 1.

In accelerated PG, the error term can be written as:

4
(K+1)2 (

∑
k k‖ξ(k)‖2)2 = K2(Aγ,ξ)2 (14)

where the error weights γk = k/
(
K
2

)
so that

∑
k γk = 1.

Note that both PG methods contain terms K and K2,
which are not in our analysis. As noted in (Schmidt
et al., 2011), errors have a greater effect on the accel-
erated method than on the basic method. This ob-
servation suggests that, unlike in the error-free case,
accelerated PG is not necessarily better than the basic
method due to a higher sensitivity to errors (Devolder
et al., 2011).

Intuitively speaking, basic PG is similar to basic FBS
in the sense that errors from all iterations have the
same effect on the convergence rate, i.e. γk is con-
stant. In robust FBS, errors in the last iterations have
a lower effect on the convergence rate than errors in
the beginning, i.e. γk is decreasing. In accelerated PG,
errors in the last iterations have a bigger effect on the
convergence rate than errors in the beginning, i.e. γk

is increasing.

The analysis of Schmidt et al. (2011) for determinis-
tic errors implies that in order to have convergence,

Table 1. Order of errors ‖ξ(k)‖2 required to obtain conver-
gence of the error term for the deterministic case: basic
(PB) and accelerated (PA) proximal gradient, basic (FB)
and robust (FR) forward-backward splitting.

Method Convergence

for K→+∞ O( 1√
K

) O( 1
K

) O( 1
K2 )

PB O( 1

k1/2+ε ) O( 1

k3/4+ε ) O( 1
k1+ε ) -

PA O( 1
k1+ε ) O( 1

k5/4+ε ) O( 1

k3/2+ε ) O( 1
k2+ε )

FB (r= 1
2
) O( 1

log k
) O( 1

k1/2+ε ) O( 1
k1+ε ) -

FR (r= 1
2
) O( 1

log k
) O( 1

k1/2+ε ) - -

the errors must decrease at a rate ‖ξ(k)‖2 ∈ O( 1
k1/2+ε )

for some ε > 0 in the case of basic PG, and O( 1
k1+ε )

for accelerated PG. In contrast, our analysis of FBS
show that we only need logarithmically decreasing er-
rors O( 1

log k ) in order to have convergence. Regarding
O( 1√

K
) convergence of the error term Aγ,ξ, basic and

robust FBS requires errors O( 1
k1/2+ε ) (the minimum

required for convergence in basic PG). Table 1 summa-
rizes the requirements for different convergence rates
of the error term Aγ,ξ of FBS as well as the error terms
of basic PG in eq.(13) and accelerated PG in eq.(14).

For an informal (and incomplete) analysis of the re-
sults in (Schmidt et al., 2011) for biased stochastic
optimization, consider each error bounded by its bias
and variance ‖ξ(k)‖2 ≤ B/Sk+c

√
V/Sk for some c > 0

and an increasing number of random samples Sk that
allows to obtain decreasing errors. Without noting the
possible need of “uniform convergence” of the bound
for all K iterations (making c a function of K), the
number of random samples must increase (at least) at
a rate that is quadratic of the rate of the errors. For
instance, in order to have O( 1

K ) convergence, basic PG
requires errors to be O( 1

k1+ε ) and therefore it would re-
quire (at least) an increasing number of random sam-
ples Sk ∈ O(k2+ε) for some ε > 0. Accelerated PG
would require (at least) Sk ∈ O(k4+ε) in order to ob-
tain O( 1

K2 ) convergence. If we include the fact that c
is a function of K, then the required number of ran-
dom samples would be “worse than quadratic” of the
required rate of the errors. Fortunately, a formal anal-
ysis in the next subsection shows that this is not the
case for all methods except accelerated PG.

3.3. Bounding the Error Term for Biased
Stochastic Optimization

In what follows, we focus in the analysis of stochas-
tic errors in order to see if better convergence rates
can be obtained than the ones informally outlined in
the previous subsection. A formal analysis of the er-
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ror terms show that forward-backward splitting for bi-
ased stochastic errors requires only a logarithmically
increasing number of random samples in order to con-
verge, i.e. Sk ∈ O(log k). More interestingly, we found
that the required number of random samples is the
same for the deterministic and the biased stochastic
setting for FBS and basic PG. On the negative side,
we found that accelerated PG is not guaranteed to
converge in the biased stochastic setting.

Next, we present our high probability bound for the er-
ror term for biased stochastic optimization. One way
to bound the error term Aγ,ξ would be to rely on “uni-
form convergence” arguments, i.e. to bound the error
of each iteration ‖ξ(k)‖2 and then use the well-known
union bound. We chose to bound the error term it-
self, by using the fact that errors become independent
(but not identically distributed) conditioned to the pa-
rameters θ(1), . . . , θ(K). We also allow for a different
number of random samples Sk for each iteration k.

Theorem 9. Given K (B, V, Sk, D)-samplers each
producing estimates with an error ξ(k), and given a
set of arbitrary weights γk such that

∑
k γk = 1. For

some confidence parameter 0 < δ < 1, with probability
at least 1− δ, the error term is bounded as follows:

Aγ,ξ ≤ λ1 + 2
√

M
3K log 1

δ +
√

2λ2 log 1
δ + 4M

9K2 log2 1
δ

(15)
where the bias term λ1 = min(2

√
M,B

∑
k

γk

Sk
) and

the variance term λ2 = min(4M, V
∑

k
γ2

k

Sk
).

Proof Sketch. The bias and variance for each ‖ξ(k)‖2
are bounded by B

Sk
and V

Sk
by Definition 4. By Lemma

3 and Assumption 5 we have ‖ξ(k)‖2 ≤ 2
√

M which
is the maximum bias, and its square is the maximum
variance. By the definition of marginal distribution,
we make ‖ξ(1)‖2, . . . , ‖ξ(K)‖2 independent (but not
identically distributed) conditioned to the parameters
θ(1), . . . , θ(K). We then invoke Bernstein inequality
for properly defined variables such that it applies to
the weighted average Aγ,ξ.

It is interesting to note what happens for a fixed num-
ber of random samples Sk ∈ O(1). In this case,
the bias term λ1 ∈ O(1) and therefore FBS will
not converge. For robust FBS, the variance term
λ2 ∈ O(H2r,K/(Hr,K)2) which for instance for r = 1

2

we have λ2 ∈ O( log K
K ). For basic FBS, the variance

term λ2 ∈ O( 1
K ). Therefore, for the constant number

of random samples, the lack of convergence of FBS is
explained only by the bias of the sampler and not its
variance.

Table 2. Random samples Sk required to obtain conver-
gence of the error term for the biased stochastic case: basic
(PB) and accelerated (PA) proximal gradient, basic (FB)
and robust (FR) forward-backward splitting.

Method Convergence

for K→+∞ O( 1√
K

) O( 1
K

) O( 1
K2 )

PB O(k1/2+ε) O(k3/4+ε) O(k1+ε) -

PA - - - -

FB (r= 1
2
) O(log k) O(k1/2+ε) O(k1+ε) -

FR (r= 1
2
) O(log k) O(k1/2+ε) - -

Table 2 summarizes the requirements for different con-
vergence rates of the error term Aγ,ξ of FBS as well
as the error terms of basic PG in eq.(13) and accel-
erated PG in eq.(14). Note that convergence for FBS
is guaranteed for a logarithmically increasing number
of random samples Sk ∈ O(log k). Moreover, in order
to obtain convergence rates of O( 1√

K
) and O( 1

K ), the
required number of random samples is just the inverse
of the required rate of the errors for the deterministic
case, and not “worse than quadratic” as outlined in
our informal analysis of the previous subsection.

One important conclusion from Theorem 9 is that the
upper bound of the error term is Ω( 1

K ) independently
of the bias term λ1 and the variance term λ2. This
implies that the error term is O( 1

K ) for any setting
of error weights γk and number of random samples
Sk. The main implication is that the error term in
accelerated PG in eq.(14) is constant and therefore
the accelerated method is not guaranteed to converge.

4. Experimental Results

We illustrate our theoretical findings with a small syn-
thetic experiment (N = 15 variables) since we want
to report the log-likelihood at each iteration. We per-
formed 10 repetitions. For each repetition, we generate
edges in the ground truth model Wg with a 50% den-
sity. The weight of each edge is generated uniformly
at random from [−1;+1]. We set bg = 0. We finally
generate a dataset of 50 samples. We used a “Gibbs
sampler” by first finding the mean field distribution
and then performing 5 Gibbs iterations. We used a
step size factor β = 1 and regularization parameter
ρ = 1/16. We also include a two-step algorithm, by
first learning the structure by `1-regularized logistic
regression (Wainwright et al., 2006) and then learning
the parameters by using FBS with belief propagation
for gradient approximation. We summarize our results
in Figure 1.

Our experiments suggest that stochastic optimiza-
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Figure 1. Objective function for different settings of in-
creasing number of random samples. Basic (PB) and accel-
erated (PA) are noisier and require more samples than last
point (FL), basic (FB) and robust (FR) forward-backward
splitting in order to converge, but they exhibit faster con-
vergence. Belief propagation (BP) does not converge.

tion converges to the maximum likelihood estimate.
We also show the Kullback-Leibler divergence to the
ground truth, and more pronounced effects for impor-
tance sampling (Please, see Appendix D).

Concluding Remarks. Although we focused on
Ising models, the ideas developed in the current paper
could be applied to Markov random fields with higher
order cliques. Our analysis can be easily extended to
parameter learning for fixed structures by using a `22
regularizer instead. Although we show that acceler-
ated proximal gradient is not guaranteed to converge
in our specific biased stochastic setting, necessary con-
ditions for its convergence needs to be investigated.
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