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Abstract

We consider principal component analysis for
contaminated data-set in the high dimen-
sional regime, where the dimensionality of
each observation is comparable or even more
than the number of observations. We pro-
pose a deterministic high-dimensional robust
PCA algorithm which inherits all theoreti-
cal properties of its randomized counterpart,
i.e., it is tractable, robust to contaminated
points, easily kernelizable, asymptotic con-
sistent and achieves maximal robustness – a
breakdown point of 50%. More importantly,
the proposed method exhibits significantly
better computational efficiency, which makes
it suitable for large-scale real applications.

1. Introduction

This paper is about robust principal component
analysis (PCA) for high-dimensional data, a topic that
has drawn surging attention in recent years. PCA
is one of the most widely used data analysis meth-
ods (Pearson, 1901). It constructs a low-dimensional
subspace based on a set of principal components (PCs)
to approximate the observations in the least-square
sense. Standard PCA computes PCs as eigenvectors
of the sample covariance matrix. Due to the quadratic
error criterion, PCA is notoriously sensitive and frag-
ile, and the quality of its output can suffer severely
in the face of even few corrupted samples. Therefore,
it is not surprising that many works have been dedi-
cated to robustifying PCA (Hubert et al., 2005; Croux
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& Ruiz-Gazen, 2005; Candes et al., 2009).

Analyzing high dimensional data – data sets where the
dimensionality of each observation is comparable to or
even larger than the number of observations – has be-
come a critical task in modern statistics and machine
learning (Donoho, 2000). Practical high dimensional
data, such as DNA microarray data, financial data,
consumer data, and climate data, easily have dimen-
sionality ranging from thousand to billions. Partly due
to the fact that extending traditional statistical tools
(designed for the low dimensional case) into this high-
dimensional regime are often unsuccessful, tremendous
research efforts have been made to design fresh statisti-
cal tools to cope with such “dimensionality explosion”.

The work of Xu et al. (2010a) is among the first to an-
alyze robust PCA algorithms in the high-dimensional
setup. They identified three pitfalls, namely diminish-
ing breakdown point, noise explosion and algorithmic
intractability, where previous robust PCA algorithms
stumble. They then proposed the high-dimensional
robust PCA (HR-PCA) algorithm that can effectively
overcome these problems, and showed that HR-PCA is
tractable, provably robust and easily kernelizable. In
particular, in contrast to standard PCA and existing
robust PCA algorithms, HR-PCA is able to robustly
estimate the PCs in the high-dimensional regime even
in the face of a constant fraction of outliers and ex-
tremely low Signal Noise Ratio (SNR) – the break-
down point of HR-PCA is 50%, 1 which is the highest
breakdown point can ever be achieved, whereas other
existing methods all have breakdown points diminish-
ing to zero. Indeed, to the best of our knowledge, HR-
PCA appears to be the only algorithm having these

1Breakdown point is a robustness measure defined as
the percentage of corrupted points that can make the out-
put of the algorithm arbitrarily bad.
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properties in the high-dimensional regime.

Briefly speaking, HR-PCA is an iterative method
which in each iteration performs standard PCA, and
then randomly remove one point in a way that outliers
are more likely to be removed, so that the algorithm
converges to a good output. Because in each iteration,
only one point is removed, the number of iterations
required to find a good solution is at least as much as
the number of outliers. This, combined with the fact
that PCA is computationally expensive itself, prevents
HR-PCA from effectively handling large-scale data-
sets with many outliers. In addition, the performance
of HR-PCA depends on the ability of the built-in ran-
dom removal to eliminate outliers correctly, which is
only guaranteed in a probabilistic manner.

To address these two issues, we propose a determin-
istic high dimensional robust PCA algorithm (DHR-
PCA). Specifically, instead of removing one point, the
proposed algorithm decreases the weights of all ob-
servations in each iteration, in a way that the total
weight of the outliers will decrease faster than that of
the true samples. We show that DHR-PCA inherits all
desirable theoretical properties of HR-PCA, including
tractability, kernelizability, the maximal breakdown
point, provable performance guarantee and asymptot-
ical optimality. Moreover, DHR-PCA can be much
more computationally efficient than (randomized) HR-
PCA. As we show below, the number of iterations for
DHR-PCA to converge is nearly constant, in sharp
contrast to HR-PCA whose number of iterations re-
quired increases linearly with the number of outliers.
Simulations in Section 4 show that for any fixed num-
ber of iterations, the solution to DHR-PCA is at least
as good as HR-PCA, and is significantly better when
the number of iterations is small. This is very ap-
pealing in practice, as both algorithms are “any-time”
algorithms, i.e., one can terminate the algorithms at
any time and obtain the best solution so-far.

2. Related Work

Besides HR-PCA, there have been abundant works
on robust PCA, which we briefly discuss in this
section. Robust PCA algorithms focusing on the
low-dimensional setup (e.g., Rousseeuw, 1984; Croux
& Ruiz-Gazen, 2005; Hubert et al., 2005) can be
roughly categorized into two groups. The first
group of algorithms pursue robust estimation of
the covariance matrix, e.g., M -estimator (Maronna,
1976), S-estimator (Rousseeuw & Leroy, 1987), and
Minimum Covariance Determinant (MCD) estima-
tor (Rousseeuw, 1984). These algorithms generally
provide more robust results, but their applicability

is severely limited to small or moderate dimensions,
as there are not enough observations to robustly esti-
mate a high-dimensional covariance matrix. The sec-
ond group of algorithms directly maximize certain ro-
bust estimation of univariate variance for the projected
observations and then obtain maximizers as the can-
didate principal components (Li & Chen, 1985; Croux
& Ruiz-Gazen, 1996; 2005; Hubert et al., 2002). These
algorithms inherit the robustness characteristics of the
adopted estimators and are qualitatively robust. How-
ever, all of these algorithms run into unsolvable issues
in the high dimensional regime incurred by the curse
of dimensionality as stated in the followings.

The targeted high-dimensional regime poses three
main challenges to existing robust PCA methods.
First, some robust PCA algorithms have breakdown
point inversely proportional to the dimensionality,
e.g., M -estimator (Maronna, 1976), in the high-
dimensional regime their breakdown points will dimin-
ish and the results will be arbitrarily bad in presence
of even few outliers. Second, widely used outlyingness
indicators, including Mahalanobis distance and Stahel-
Donoho outlyingness (Donoho, 1982) are no longer
valid, due to a phenomenon termed – “noise explo-
sion” (Xu et al., 2010a). This causes the algorithms
relying on such outlyingness measures (Hubert et al.,
2005) to collapse. The third problem is that the di-
mensionality may be larger than the number of data
points and thus some robust estimators including Min-
imum Volume Ellipsoid (MVE) and Minimum Covari-
ance Determinant (MCD) (Rousseeuw, 1984) become
degenerated. Furthermore, the extremely high compu-
tational complexity of these estimators and projection
pursuit methods for high dimensional data prevents
them from being tractable.

Finally, we discuss recent works addressing robust
PCA using low-rank technique. (Candes et al., 2009)
developed a framework to perform robust PCA using
low-rank matrix decomposition. Yet, their method fo-
cuses on the scenario that random entries of the ob-
servation matrix are arbitrarily corrupted, which dif-
fers from our setup where one corrupted data point
may change the whole column of the observation ma-
trix. The later setup is then investigated in Xu et al.
(2010b). While their proposed method performs well
under a small fraction of outliers, it breaks down for
larger fraction of outliers – in particular, the break-
down point is far from 50%. Moreover, the perfor-
mance scales unfavorably with the magnitude of noise,
which makes it not suitable for the high-dimensional
setup, due to “noise-explosion”.
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3. The Algorithm

In this section, we first formally state the problem
setup of the high dimensional robust PCA. Then we
provide the details of the proposed DHR-PCA algo-
rithm and finally present the main theoretic results on
the performance guarantees of the algorithm.

3.1. Problem Setup

In this subsection, we present the formal problem de-
scription of PCA for the high dimensional data with
contamination. Our setup, detailed below for com-
pleteness, largely follows that of Xu et al. (2010a).

Given n observations, there are t observations not cor-
rupted, called authentic samples. The authentic sam-
ples zi ∈ Rm are generated through a linear mapping:
zi = Axi + ni. Here, noise ni is sampled from normal
distribution N (0, Im); and the signal xi ∈ Rd are i.i.d.
samples of a random variable x with mean zero and
variance Id. The matrix A ∈ Rm×d and the distribu-
tion µ of x are unknown. We assume µ is absolutely
continuous w.r.t. the Borel measure and spherically
symmetric. And µ has light tails, i.e., there exist con-
stants K,C > 0 such that Pr(‖x‖ ≥ x) ≤ K exp(−Cx)
for all x ≥ 0. We are interested in the case where
n ≈ m � d, i.e., the dimensionality of observations is
much larger than that of signals and of the same order
as the number of observations.

The outliers (the corrupted data) are denoted as
o1, . . . ,on−t ∈ Rm and they are with arbitrary val-
ues. We only require that n− t ≤ t, i.e., the number of
outliers are not more than that of authentic samples.
Let λ , (n− t)/n be the fraction of corrupted points.
We observe the contaminated dataset

Y , {y1, . . . ,yn} = {z1, . . . , zt}
⋃
{o1, . . . ,on−t},

and aim to recover the principal components of A, i.e.,
the top eigenvectors w̄1, . . . , w̄d of AAT . That is, we
seek a collection of orthogonal vectors w1, . . . ,wd, that
maximize the following performance metric called the
Expressed Variance (E.V.):

E.V.(w1, . . . ,wd) ,

∑d
j=1 w

T
j AA

Twj∑d
j=1 w̄

T
j AA

T w̄j

.

The E.V. represents the portion of signal Ax being
expressed by w1, . . . ,wd. Thus, 1−E.V. is the recon-
struction error of the signal. The E.V. is a commonly
used evaluation metric for the PCA algorithms (Xu
et al., 2010a; d’Aspremont et al., 2008). It is always
less than one, with equality achieved by a perfect re-
covery, i.e., the vectors w1, . . . ,wd have the same span
as the true principal components {w̄1, . . . , w̄d}.

The distribution µ affects the performance of the algo-
rithms through its tail. We hence adapt the following
tail weight function V : [0, 1] → [0, 1] from Xu et al.
(2010a), which essentially represents how the tail of µ̄
contributes to its variance,

V(α) ,
∫ cα

−cα
x2µ̄(dx),

where µ̄ is the one-dimensional margin of µ and cα
is such that µ̄ ([−cα, cα]) = α. Notice that V(0) =
0,V(1) = 1, and V(·) is continuous.

3.2. Deterministic HR-PCA Algorithm

Our main algorithm is given in Algorithm 1. Here, a
Robust Variance Estimator (RVE) V̄t̂(·) is adopted to
identify the candidate principal components. For w ∈
Sm, the RVE is defined as V̄t̂(w) , 1

n

∑t̂
i=1 |wTy|2(i),

where the subscript (·) denotes a non-decreasing or-
der of the variables. And it can be seen that the RVE
stands for the following statistics: project yi onto the
direction w, replace the furthest n − t̂ samples by 0,
and then compute the variance. If the variance is large,
it is likely that a correct principal component direction
is found. Otherwise, a number of points with largest
variance may be corrupted. Notice that the RVE is
always performed on the original observed set Y. We
find that RVE coincides with the robust L-estimator,
which is defined as a linear combination of order statis-
tics: Tn =

∑n
i=1 anih(x(i)) for some function h.

We now explain our innovation compared to HR-PCA,
and its intuition. In HR-PCA, steps 4 and 5 are re-
placed by a random removal – the probability ŷi being

removed is proportional to
∑d
j=1

(
wT
j ŷi

)2
. It has been

shown in Xu et al. (2010a) that in expectation (and in
probability), either the number of outliers will decrease
faster, or the algorithm will find a good solution. Since
in each iteration, only one point is removed, the num-
ber of iterations required to find a satisfactory output
depends linearly on the number of outliers.

Instead of resorting to a random mechanism, DHR-
PCA deterministically reduce the effect of corrupted
data points. In particular, Moreover, DHR-PCA op-
erates on all the data points in each iteration, which
decouples the dependence of the computational cost
on the number of outliers and enhances the efficiency
significantly compared with HR-PCA. We consider an
artificial example to illustrate this: assume both HR-
PCA and DHR-PCA requires M iterations for a data-
set Y0. Now suppose a new data-set Y contains J
identical copies of data-set Y0. Then the number of
iterations for DHR-PCA remains unchanged, while
HR-PCA requires JM iterations. Simulation results
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Algorithm 1 DHR-PCA.

Input: Contaminated sample set Y =
{y1, . . . ,yn} ⊂ Rm, parameters d, t̂.
Output: Recovered PCs: w∗1, . . . ,w

∗
d.

Initialize ŷi := yi, αi = 1,∀i = 1, . . . , n; Opt := 0.
repeat

1. Compute the empirical variance matrix

Σ̂ :=
1

n

n∑
i=1

αiŷiŷ
T
i ;

2. Perform PCA on Σ̂. Let w1, . . . ,wd be the d
principle components of Σ̂;

3. If
∑d
j=1 V̄t̂(wj) > Opt, then let Opt :=∑d

j=1 V̄t̂(wj) and let w∗j := wj for j =
1, . . . , d;

4. Calculate

η = min
i

1∑d
j=1

(
wT
j ŷi

)2 ,∀i : αi 6= 0.

5. Update the sample weight αi := αi − ∆αi,

∀i : αi 6= 0, where ∆αi = ηαi
∑d
j=1

(
wT
j ŷi

)2
;

until Convergence

for more realistic setups, reported in Section 4, also
demonstrate that the deterministic algorithm provides
higher efficiency than HR-PCA.

Theorem 1 and Theorem 2 below show that the pro-
posed algorithm achieves the same performance guar-
antees as HR-PCA. The proofs are shown in Section 5.

Theorem 1. (Finite Sample Performance) Let the Al-
gorithm 1 output {w1, . . . ,wd}. Fix a κ > 0, and
let τ = max(m/n, 1). There exists a universal con-
stant c0 and a constant C which can possibly depend
on t̂/t, λ, d, µ and κ, such that for any γ < 1, if
n/ log4 n ≥ log6(1/γ), then with probability 1 − γ the
following holds

E.V.{w1, . . . ,wd}

≥

V
(

1− λ(1+κ)
(1−λ)κ

)
(1 + κ)

×
V

(
t̂
t −

λ
1−λ

)
V
(
t̂
t

)


−

8
√
c0τd

V
(
t̂
t

)
 (trace(AAT )

)−1/2

−

 2c0τ

V
(
t̂
t

)
 (trace(AAT )

)−1 − C log2 n log3(1/γ)√
n

.

We also consider the asymptotic performance of
the proposed algorithm when the dimension and
the number of data points grow together to in-
finity. Our asymptotic setting is similar to (Xu
et al., 2010a). Suppose there exists a sequence
of sample sets {Y(j)} = {Y(1),Y(2), . . .}, where
Y(j), n(j),m(j), A(j), d(j), etc., denote the corre-
sponding values of the quantities defined above, the
following must hold for some positive constants c1, c2:

lim
j→∞

n(j)

m(j)
= c1; d(j) ≤ c2;m(j) ↑ +∞;

trace
(
A(j)TA(j)

)
↑ ∞. (1)

While trace
(
A(j)TA(j)

)
↑ ∞, if it scales slowly than√

m(j), the SNR will asymptotically decrease to zero.

The last three terms in Theorem 1 go to zero as the
dimension and number of points scale to infinity, i.e.,
as n and m→∞. Therefore, we immediately obtain:

Theorem 2. (Asymptotic Performance) Given a se-
quence of {Y(j)}, if the asymptotic scaling in Expres-
sion (1) holds, and lim supλ(j) ≤ λ∗, then the follow-
ing holds in probability when j ↑ ∞ (i.e., when n and
m ↑ ∞),

lim inf
j

E.V.{w1(j), . . . ,wd(j)}

≥ max
κ

V
(

1− λ∗(1+κ)
(1−λ∗)κ

)
(1 + κ)

×
V

(
t̂
t −

λ∗

1−λ∗

)
V
(
t̂
t

)
 .(2)

Observe that when λ∗ = 0, i.e., the number of outliers
scales sublinearly, the right-hand-side converges to 1
by taking κ(j) =

√
λ(j), implying that the algorithm

is asymptotically optimal. On the other hand, for any
λ < 0.5, the right hand side is strictly positive (picking
κ large enough), implying that the breakdown point
converges to 50%.

For small λ, we can make use of the light tail condi-
tion on µ̄, to establish the following bound that sim-
plifies (2). The proof is deferred to the supplementary
material.

Corollary 1. Under the settings of the above theorem,
the following holds in probability when j ↑ ∞ (i.e.,
when n, p ↑ ∞),

lim inf
j

E.V.{w1(j), . . . ,wd(j)} ≥ 1−
C ′
√
αλ∗ log(1/λ∗)

V(0.5)
.

Before concluding this section, we remark that DHR-
PCA is easily kernelizable. Specifically, given a map-
ping function φ(·) : Rm → H and kernel function k(·, ·)
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satisfying k(x,y) = 〈φ(x), φ(y)〉 for all x,y ∈ Rm,
we can perform dimension reduction without requiring
the explicit form of φ(·) in the kernel PCA (Schölkopf
et al., 1997). In particular, for the centered mapped
features {φ(y1), · · · , φ(yn)}, the output PCs can be
represented as

wq =

n∑
j=1

aj(k)φ(ŷj).

And the feature projection can be calculated by

〈wq, φ(v)〉 =

n∑
j=1

aj(q)k(ŷj ,v),

where a(q) is the qth eigenvector of the kernel ma-
trix. Note that Algorithm 1 only involves calculating
〈wq, φ(yi)〉 (in RVE evaluation) and 〈wq, φ(

√
αiyi)〉

(in decreasing values of αi’s). Since the kernelization
of both these two steps are obtained, the DHR-PCA
algorithm can be kernelized easily.

4. Simulations

We devote this section to experimentally comparing
the proposed DHR-PCA with HR-PCA. Since HR-
PCA has shown superior robustness (against the di-
mensionality and number of outliers) over several ro-
bust PCA algorithms and standard PCA (Xu et al.,
2010a), we skip simulations for them here.

The numerical study is aimed to illustrate that DHR-
PCA is much more efficient than HR-PCA, and mean-
while it achieves competitive performance. Here, we
report the results for d = 1. We follow the data gener-
ation method in (Xu et al., 2010a) to randomly gener-
ate an m×1 matrix and then scale its leading singular
value to σ. A λ fraction of outliers are generated on a
line with a uniform distribution over [−σ·mag, σ·mag].
Thus, “mag” represents the ratio between the magni-
tude of the outliers and that of the signal Axi and is
fixed as 10. The value of t̂ is set as (1 − λ)n, if λ is
known exactly. Otherwise, t̂ can be simply set as 0.5n.
For each parameter setup, we report the average result
of 20 tests and standard deviation.

Figure 4 shows the results form = 100, 1000 and 10000
cases respectively with σ = 5. From the figure, we can
make following observations. Firstly, DHR-PCA con-
verges much faster than HR-PCA, especially for a large
number of outliers. For example, when m = 10000
and λ = 0.4, the proposed algorithm converges using
less than 2 iterations in average while HR-PCA needs
more than 4000 iterations to converge. Secondly, the
computational time for DHR-PCA in each iteration is

always in the same order as HR-PCA. These results
well demonstrate that DHR-PCA is much more effi-
cient than HR-PCA.

As for the performance, i.e., the E.V. of the recovered
PCs, Figure 4 shows that DHR-PCA performs com-
petitively to HR-PCA. For all the cases, the E.V. of fi-
nal solution of DHR-PCA is always larger than that of
HR-PCA. Moreover, if we terminate both algorithms
at any early iteration, DHR-PCA always perform bet-
ter than HR-PCA. This is appealing in practice, as
we can terminate DHR-PCA at any time and obtain a
satisfactory result in practical implementation. In ad-
dition, both DHR-PCA and HR-PCA perform quite
well even in presence of varying number of outliers
(λ = 0.05 to 0.4) and small signal magnitude (σ = 5),
which coincides with the results in (Xu et al., 2010a).

We then investigate the relationship between the num-
ber of iterations before convergence and the number of
outliers for the two methods. As shown in Figure 2,
the number of iterations taken by HR-PCA is ap-
proximately proportional to the number of corrupted
points. This is not surprising, since in each iteration
HR-PCA removes at most one outlier. In a stark con-
trast, the number of required iterations of DHR-PCA
remains nearly constant, shown by the flat curve in the
figures. This demonstrates that DHR-PCA has good
scalability and can potentially be applied to large real
applications. We provide more simulations under nu-
merous settings in the appendix.

5. Proof of Theorem 1

In this section, we sketch the proof of Theorem 1. In
what follows, we let d,m/n, λ, t̂/t, and µ be fixed. We
can fix a λ ∈ (0, 0.5) w.l.o.g. due to the fact that if a
result is shown to hold for λ, then it holds for λ′ < λ.
The letter c is used to represent a constant, and ε is
a constant that decreases to zero as n and m increase
to infinity. Let w1(s), . . . ,wd(s) be the candidate so-
lution at stage s. Let Z and O be the sets of indices
of authentic samples and corrupted samples respec-
tively. We let Bd , {w ∈ Rd|‖w‖ ≤ 1}, and Sd be its
boundary. Here Theorems 3 and 4 are directly adapted
from (Xu et al., 2010a).

5.1. Validity of the Robust Variance Estimator

We first show that the following condition holds with
high probability. The detailed proof can be found
in (Xu et al., 2010a).

Condition 1. There exists ε1, ε2, c̄ such that

(I)supw∈Sd

∣∣∣ 1t ∑t′

i=1

∣∣wTx
∣∣2
(i)
− V

(
t′

t

)∣∣∣ ≤ ε1;
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(II) supw∈Sd

∣∣∣ 1t ∑t
i=1

∣∣wTxi
∣∣2 − 1

∣∣∣ ≤ ε2; (III)

supw∈Sm
1
t

∑t
i=1

∣∣wTni
∣∣2 ≤ c̄.

Theorem 3. Fix any η < 1. With probability at least
1 − 3γ, Condition 1 holds uniformly for all t′ ≤ ηt,

with c̄ = cτ(1 + log(1/γ)
n ), ε2 = c log2 n log3(1/γ)/

√
n,

and ε1 = c
√

logn+log(1/γ)
n + c log2.5 n log3.5(1/γ)

n , for a

constant c possibly depends on d, µ and η.

Under Condition 1, RVE is a good estimator.

Theorem 4. Let t′ ≤ t. Suppose Condition 1 holds.
Then for all w ∈ Sm the following holds:

(1− ε1)‖wTA‖2V
(
t′

t

)
− 2‖wTA‖

√
(1 + ε2)c̄

≤ 1

t

t′∑
i=1

|wT z|2(i)

≤ (1 + ε1)‖wTA‖2V
(
t′

t

)
+ 2‖wTA‖

√
(1 + ε2)c̄+ c̄.

From the above theorem, we can immediately obtain
the following corollary.

Corollary 2. Let t′ ≤ t. Suppose Condition 1 holds.
Then for all any w1, · · · ,wd ∈ Sm the following holds:

(1− ε1)V
(
t′

t

)
H(w)− 2

√
(1 + ε2)c̄dH(w)

≤
d∑
j=1

1

t

t′∑
i=1

|wT
j z|2(i)

≤ (1 + ε1)V
(
t′

t

)
H(w) + 2

√
(1 + ε2)c̄dH(w) + c̄,

and

(1− ε)H(w)− 2
√

(1 + ε)c̄dH(w)

≤
d∑
j=1

1

t

t∑
i=1

|wT
j zi|2

≤ (1 + ε)H(w) + 2
√

(1 + ε)c̄dH(w) + c̄,

where H(w) ,
∑d
j=1 ‖wT

j A‖2.

5.2. Finite Steps for a Good Solution

In this step, we show that the algorithm finds a good
solution in a small number of steps. Proving this in-
volves showing that at any given step, either the al-
gorithm finds a good solution, or the weight adjusting
step decreases weights of corrupted points more than

the authentic points. Let α
(s)
i denote the weight of

the ith data point in the sth stage. These points are

a good solution if the variance of the points projected
onto their span is mainly due to the authentic sam-
ples rather than the corrupted points. We denote this
“good output event at step s” by E(s), defined as:

E(s) =

{∑
i∈Z

α
(s)
i vi(s) ≥

1

κ

∑
i∈O

α
(s)
i vi(s)

}
,

where the variance vi(s) =
∑d
j=1

(
wj(s)

Tyi
)2

. The
intuition is that there cannot be too many steps with-
out finding a good solution, since too many weights of
the corrupted points will have been decreased to zero.

Theorem 5. The event E(s) is true for some 1 ≤ s ≤
s0, where s0 ≤ λn(1+κ)

κ .

The proof of the above theorem is provided in the sup-
plementary material. We compare Theorem 5 with
its randomized counterpart, Theorem 9 of Xu et al.
(2010a). The latter states that for HR-PCA, E(s) suc-
ceeds with high probability for some s ≤ (1 + ε)(1 +
κ)λn/κ, where ε depends on κ and λ, and decreases to
0 when n ↑ ∞ (for fixed κ and λ). Thus, the advan-
tage of Theorem 5 is two-fold: it is deterministic as
opposed to probabilistic, and it does not require the
decreasing ε.

5.3. Bounds on the Solution Performance

Let w̄1, . . . , w̄d be the eigenvectors corresponding to
the d largest eigenvalues of AAT , namely the opti-
mal solution, w∗1, . . . ,w

∗
d be the output of the Al-

gorithm 1 and w1(s), . . . ,wd(s) be the candidate
solution at stage s. We define H(w1, . . . ,wd) ,∑d
j=1 ‖wT

j A‖2, and for notational simplification, let

H̄ , H(w̄1, . . . , w̄d), Hs , H(w1(s), . . . ,wd(s)), and
H∗ , H(w∗1, . . . ,w

∗
d).

The statement of the finite-sample and asymptotic
theorems (Theorem 1 and Theorem 2, respectively)
lower bound the expressed variance, E.V., which is the
ratio H∗/H̄. The final part of the proof accomplishes
this in two main steps. First, we lower bound Hs in
terms of H̄ where s is some step for which E(s) is
true, i.e., the principal components found by the sth

step of the algorithm are “good”. By Theorem 5, we
know that there is a “small” such s. Based on the true
E(s) and the algorithm definition, we can conclude the
bound via some algebraic manipulations. The final
output of the algorithm, however, is only guaranteed
to have a high value of the robust variance estimator,
V̄ - that is, even if there is a “good” solution at some
intermediate step s, we do not necessarily have a way
of identifying it. Thus, the next step lower bounds
the value of H∗ in terms of the value H of any out-
put w′1, . . . ,w

′
d that has a smaller value of the robust
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variance estimator. The details of these two steps are
deferred to the supplementary material. Combining
the results of above two steps, we can obtain the fol-
lowing theorem providing a lower bound of the ratio
H∗/H̄, i.e., the expressed variance.

Theorem 6. If
⋃s0
s=1 E(s) is true, and

there exist ε1 < 1, ε2, c̄ such that

supw∈Sd

∣∣∣ 1t ∑t−s0
i=1 |wTx|2(i) − V

(
t−s0
t

)∣∣∣ ≤ ε1 and

Condition 1 holds, then

H∗

H̄
≥

(1− ε1)2V
(
t̂
t −

λ
1−λ

)
V
(
t−s0
t

)
(1 + ε1)(1 + ε2)(1 + κ)V

(
t̂
t

)
−

[
(D1 +D2)

√
(1 + ε2)c̄d

(1 + ε1)(1 + ε2)(1 + κ)

]
(H̄)−1/2 (3)

−

 (1− ε1)V
(
t̂
t −

λ
1−λ

)
c̄+ (1 + ε2)c̄

(1 + ε1)(1 + ε2)V
(
t̂
t

)
 (H̄)−1,

where D1 = (2κ + 4)(1 − ε1)V
(
t̂
t −

λ
1−λ

)
and D2 =

4(1 + ε2)(1 + κ).

By bounding all diminishing terms in the right hand
side of (3), it reduces to Theorem 1. And Theorem 2
follows immediately. The proofs of Theorem 6 and
Theorem 1 are similar to those in (Xu et al., 2010a)
and we omit it here.

6. Conclusions

In this work, we proposed a deterministic robust PCA
algorithm for high-dimensional data corrupted by ar-
bitrary outliers. The algorithm alternates between a
classical PCA and decrease of weight coefficients on
all the data points. Theoretical analysis showed that
the proposed algorithm is tractable, robust to corrupt
points, easily kernelizable, asymptotic consistent and
achieving maximal breakdown point of 50% – to the
best of our knowledge, the first deterministic algorithm
that achieves these properties in the high-dimensional
setup. More importantly, simulation results demon-
strated that the proposed algorithm improves com-
putational efficiency over its randomized counterpart
HR-PCA – indeed, the number of iterations required
to find a satisfactory solution appears to approximate
constant, in sharp contrast to HR-PCA whose num-
ber of iterations required increases linearly with the
number of outliers.
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Figure 1. DHR-PCA (red line) vs. HR-PCA (black line) with σ = 5. Upper panel: m = n = 100, middle panel:
m = n = 1000 and bottom panel: m = n = 10000. The horizontal axis is the iteration and the vertical axis is the
expressive variance value. Please refer to the color version.
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(a) m = n = 100

50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

λ n

st
ep

 n
um

be
r

 

 

DHR−PCA
HR−PCA

(b) m = n = 1000
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(c) m = n = 10000

Figure 2. DHR-PCA (red line) vs. HR-PCA (black line) on the iterative steps taken by them before convergence with
σ = 5 and different dimensionality. The horizontal axis λn is number of corrupted data points and the vertical axis is the
number of steps. Please refer to the color version.


