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Abstract

Retrieval tasks typically require a ranking
of items given a query. Collaborative filter-
ing tasks, on the other hand, learn to model
user’s preferences over items. In this paper
we study the joint problem of recommend-
ing items to a user with respect to a given
query, which is a surprisingly common task.
This setup differs from the standard collab-
orative filtering one in that we are given a
query × user × item tensor for training in-
stead of the more traditional user × item ma-
trix. Compared to document retrieval we do
have a query, but we may or may not have
content features (we will consider both cases)
and we can also take account of the user’s
profile. We introduce a factorized model for
this new task that optimizes the top-ranked
items returned for the given query and user.
We report empirical results where it outper-
forms several baselines.

1. Introduction

There exist today a growing number of applications
that seamlessly blend the traditional tasks of retrieval
and recommendation. For example, when users shop
for a product online they are often recommended items
that are similar to the item they are currently brows-
ing. This is a retrieval problem using the currently
browsed item as the query, however the user’s profile
(including other items they may have browsed, bought
or reviewed) should be taken into account making it
a personal recommendation problem as well. Another
related task is that of automatic playlist creation in
music players. The user can request the creation of a
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playlist of songs given a query (based for instance on
a seed track, artist or genre) but the songs retrieved
for the query should also be songs that the user likes
given their known profile.

We call this class of problems collaborative retrieval
tasks. To our knowledge these tasks have not been
studied in depth, although there are several related
areas which we will discuss later in the paper. Meth-
ods designed for this task need to combine both the
retrieval and recommendation aspects of the problem
into a single predictor. In a standard collaborative
filtering (recommendation) setup, one is given a user
× item matrix indicating the known relevance of the
given item to a given user, but many elements of the
matrix are unknown. On the other hand, In a typi-
cal retrieval task one is given, for each query, a list of
relevant items that should be retrieved. Our task is
the blend of the two, which is achieved by first build-
ing a tensor comprising of the query × user × item
training data. Typically in a retrieval task, and some-
times in a recommendation task as well, one also has
access to content-based features for the items, e.g. in
document retrieval one has access to the words in the
documents. Hence any algorithms designed for the col-
laborative retrieval task should potentially be able to
take advantage of those features, too.

In this paper, we develop a novel learning algorithm
for the collaborative retrieval task. We introduce a
factorized model that optimizes the top-ranked items
returned for the given query and user. We also general-
ize it to work on either the collaborative retrieval ten-
sor only, or using content-based features as well. The
rest of the paper is as follows. Section 2 describes the
collaborative retrieval task and our method for solving
it. Section 3 discusses prior work and connections to
other areas. Finally, Section 4 reports empirical re-
sults where we show our method outperforms several
reasonable baselines, and Section 5 concludes.
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2. Method

Latent Collaborative Retrieval We define a scor-
ing function for a given query, user and item:

fFULL(q, u, d) = Rqud

where R is a |Q| × |U| × |D| tensor, where Q is the
(finite) set of possible queries, U is the set of users and
D is the set of items. Any given element of the tensor
is the “relevance score” of a given item with respect
to a given query and a given user, where a high score
corresponds to high relevance.

We are typically given m training examples
{(qi,ui,di)}i=1,...,m ∈ {1, . . . , |Q|} × {1, . . . , |U|} ×
{1, . . . , |D|} and outputs yi ∈ R, i = 1, . . . ,m. Here,
(qi,ui,di) can be used to index a particular element
of R (i.e, a particular query, user and item) and yi is
the relevance score, for example based on implicit user
clicks, activity or explicit user annotations. One could
simply collate the training data to build a suitable
tensor R and use that, but the problem is that the
tensor would be sparse and hence for many queries,
users and items no prediction would be made. For
that reason, collaborative filtering has connections
with matrix completion, and almost all approaches
can be seen as estimating the unknown matrix from
data. For instance, many approaches such as SVD
or NMF (Lee & Seung, 2001), solve such tasks by
optimizing the deviation (e.g. squared error) from the
known elements of the matrix. However, for retrieval
tasks, and even for many recommendation tasks,
humans evaluate the performance of a method from
the top k results returned. Hence, precision or recall
@ k measures are often appropriate. The method
we propose in this paper thus has the following
properties:

(i) We learn a ranking of items given a user and a
query, thus blending retrieval and recommenda-
tion tasks into one model.

(ii) We learn model parameters for this task that at-
tempt to optimize the performance at the top of
the ranked list.

To fulfill property (i) we must model the combination
of the users, queries and items during inference. We
thus propose a model of the following form:

f(q, u, d) = ΦQ(q)>S>UuTΦD(d)+ΦU (u)>V >TΦD(d).
(1)

Here, S is a n×|Q| matrix, T is a n×|D| matrix, V is a
n×|U| matrix and n is the low dimensional embedding
where queries, users and items will be represented (this

is a hyperparameter of the system, typically n � |D|
and n � |U|). Ui is a n × n matrix per user (i =
1, . . . , |U|). ΦD(d) is the feature map of the item, the
simplest choice of which is to map to a binary vector
of all zeros and a one in the dth position. ΦQ(q) and
ΦU (u) act similarly for queries and users. In that case,
the entire model can hence be more succinctly written
as:

f(q, u, d) = (S>q Uu + V >u )Td. (2)

However the Φ(·) notation will be useful for subse-
quent modifications of the algorithm (later, we will
consider general feature transformations rather than
just switching on a single dimension).

An intutive explanation of our model is as follows. The
first term maps both the query (via ΦQ(q)>S>) and
the item (via TΦD(d)) into a low dimensional space
and then measures their similarity in that space, after
linearly transforming the space dependent on the user
(via Uu). Hence, the first term alone can model the
relevance score (match) between a query q and item i
with respect to a user u. The second term can be seen
as a kind of “bias” that models the relevance score
(match) between user u and item i but is constant
w.r.t the query.

It is also possible to consider some interesting special
cases of the above model by further constraining the
user-transformation matrices Ui:

• Ui = I: by forcing all user-transformations to be
the identity matrix we are left with the model:

f(q, u, d) = S>q Td + V >u Td. (3)

In that case, the query × item and user × item
parts of the model are two separate terms, and
three-way interactions are not directly considered.

• Ui = Di: by constraining each user k to have a
diagonal matrix Di only rescaling of the dimen-
sions of the query × item similarity space is possi-
ble (general linear transformations are not consid-
ered). As we will see in Section 3.2 this relates to
tensor factorization methods that have been used
for document retrieval.

• Ui = (ULR
i )>ULR

i + Di: instead of considering a
full matrix U or a diagonal Di we could consider
something in between, that of employing a low
rank matrix ULR.

Content-Based Method In the typical collabora-
tive filtering setting one has access to a user × item
matrix only, and methods are agnostic to the content
of the items, be they text documents, audio or images.
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For some tasks one has access to the actual content of
the items as well, for example for each item i one is
given a feature representation Φ̂D(i) ∈ RnD . In doc-
ument retrieval this is the more common setting, e.g.
Φ̂D(i) represents the words in the document i. For rec-
ommendation tasks this is called content-based recom-
mendation and is particularly useful for the cold-start
problem where an item has very few or no users asso-
ciated to it (the relevant collaborative filtering column
of R is very sparse). In that case, collaborative filter-
ing methods have almost no data to generalize from,
but content-based methods can perform well. In our
setting, latent collaborative retrieval, we can also take
advantage of such content features by slightly modi-
fying our method from above. Our proposed content-
based model consists of the following form:

f(q, u, d) = S>q UuWDΦ̂D(d) + V >u WDΦ̂D(d). (4)

Here, the model is similar to before except an addi-
tional set of parameters WD (a n× nD matrix) maps
from item features to the n-dimensional latent embed-
ding space. Other aspects of the model remain the
same.

Further, if we are given a feature representation for
queries as well, where for each query i we have Φ̂Q(i) ∈
RnQ , we can also incorporate this into our model:

f(q, u, d) = Φ̂Q(q)>W>
Q UuWDΦ̂D(d) + V >u WDΦ̂D(d),

(5)
where WQ is a n× nQ matrix. This allows us to con-
sider any possible query rather than being restricted
to a finite set Q as in our original definition.

Collaborative and Content-Based Retrieval
Finally, we can consider a joint model that takes into
account both collaborative filtering (CF) data and
content-based (CB) training data. In this case, our
model consists of the following form:

f(q, u, d) = S>q UuWDΦ̂D(d) + S>q UuTd +

Φ̂Q(q)>W>
Q UuWDΦ̂D(d) + Φ̂Q(q)>W>

Q UuTd +

V >u WDΦ̂D(d) + V >u Td. (6)

The first two terms match the query and user with the
CF and CB versions of the item respectively. Terms
three and four are similar except they use the content
features of the query instead. The final two terms are
the “bias” terms comparing the user to the CF and
content versions of the item. Note this model can be
considered a special case of eq. (1).

Training To Optimize Retrieval For The Top k
We are interested in learning a ranking function where

the top k retrieved items are of particular interest as
they will be presented to the user. We wish to optimize
all the parameters of our model jointly for that goal.

A standard loss function that is often used for retrieval
is the margin ranking criterion (Herbrich et al., 2000;
Joachims, 2002), in particular it was used for learn-
ing factorized document retrieval models in Bai et al.
(2009). Let us first write the predictions of our model
for all items in the database as a vector f̄(q, u) where
the ith index is f̄i(q, u) = f(q, u, i). In our collabora-
tive retrieval setting the loss can then be written as:

errAUC =
m∑

i=1

∑
j 6=di

max(0, 1− f̄di(qi, ui) + f̄j(qi, ui)).

(7)
For each training example i = 1, . . . ,m, the positive
item di in the example triplet is compared to all pos-
sible negative items j 6= di, and one assigns to each
pair a cost if the negative item is larger or within a
“margin” of 1 from the positive item. These costs are
called pairwise violations. Note that all pairwise vi-
olations are considered equally if they have the same
margin violation, independent of their position in the
list. For this reason the margin ranking loss might not
optimize the top k very accurately as it cares about
the average rank.

To instead focus on the top of the ranked list of re-
turned items we employ a recently introduced loss
function that has been developed for document re-
trieval (Usunier et al., 2009; Weston et al., 2010; 2012).
To the best of our knowledge this method has not
been applied to collaborative filtering type tasks be-
fore. The main idea is to weigh the pairwise violations
depending on their position in the ranked list. One
considers a class of ranking error functions:

errWARP =
m∑

i=1

L(rankdi
(f̄(qi,ui))) (8)

where rankdi
(f̄(qi, ui)) is the margin-based rank of

the labeled item given in the ith training example:

ranki(f̄(q, u)) =
∑
j 6=i

θ(1 + f̄j(q, u) ≥ f̄i(q, u))

where θ is the indicator function, and L(·) transforms
this rank into a loss:

L(r) =
r∑

i=1

αi, with α1 ≥ α2 ≥ · · · ≥ 0. (9)

Different choices of α define different weights (impor-
tance) of the relative position of the positive examples
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in the ranked list. In particular it was shown that by
choosing αi = 1/i a smooth weighting over positions is
given, where most weight is given to the top position,
with rapidly decaying weight for lower positions. This
is useful when one wants to optimize precision at k for
a variety of different values of k at once (Usunier et al.,
2009). (Note that choosing αi = 1 for all i we have
the same AUC optimization as equation (7)).

We optimize this function by stochastic gradient de-
scent (SGD) following the authors of (Weston et al.,
2010), that is samples are drawn at random, and a
gradient step is made for each draw. Due to the cost
of computing the exact rank in (8) it is approximated
by sampling. That is, for a given positive label, one
draws negative labels until a violating pair is found,
and then approximates the rank with

rankd(f̄(q, u)) ≈
⌊
|D| − 1

N

⌋
where b.c is the floor function, |D| is the number of
items in the database and N is the number of trials
in the sampling step. Intuitively, if we need to sample
more negative items before we find a violator then the
rank of the true item is likely to be small (i.e., at the
top of the list, as few negatives are above it).

Finally, our models have many parameters to be learnt.
One can regularize them by preferring smaller weights.
We constrain the parameters using ||Si|| ≤ C, i =
1, . . . , |Q|, ||Vi|| ≤ C, i = 1, . . . , |U|, ||Ti|| ≤ C, i =
1, . . . , |D| (leaving U unconstrained). During SGD one
projects the parameters back on to the constraints at
each step, following the same procedure used in several
other works, e.g. (Weston et al., 2010; Bai et al., 2009).

3. Prior Work and Connections

3.1. Connections to matrix factorization for
collaborative filtering

Many works for collaborative filtering tasks have pro-
posed using factorized models. In particular, Singular
Value Decomposition (SVD) and Non-negative Matrix
Factorization (NMF) (Billsus & Pazzani, 1998; Lee &
Seung, 2001) are two popular choices. The main two
differences between our approach and these general
matrix factorization techniques is that (i) each rec-
ommendation we make is seeded with a query (i.e. the
collaborative retrieval task), and (ii) in collaborative
retrieval tasks we are interested in the top k returned
items, so our method optimizes for that goal.

Most collaborative filtering work does not consider a
ranking type loss that optimizes the top k, but one
notable exception is (Weimer et al., 2007). They do

not consider tensor factorizations.

There are several ways to factorize a tensor, some clas-
sical ways are Tucker decomposition (Tucker, 1966)
and PARAFAC (Harshman, 1970). Several collabo-
rative filtering techniques have considered tensor fac-
torisations before, in particular for taking into account
user context features like tags (Rendle & Schmidt-
Thieme, 2010), web pages (Menon et al., 2011), age
and gender (Karatzoglou et al., 2010), time (Xiong
et al., 2010) or user location for mobile phone recom-
mendation (Zheng et al., 2010) but not, to our knowl-
edge, for the collaborative retrieval task.

Finally, we should also note that some works have com-
bined collaborative filtering data with content-based
features before, e.g. (Wang & Blei, 2011).

3.2. Connections to matrix factorization and
information retrieval

In information retrieval one is required to rank items
(documents) given a query using the content-features
of the items, e.g. for document retrieval one uses the
words in the document. In that case, Latent Semantic
Indexing (Deerwester et al., 1990), and related meth-
ods such as LDA (Blei et al., 2003), are unsupervised
methods that choose a low dimensional feature repre-
sentation of the words. The parameterization of those
models is a special case of our models. If we consider
our model from equation (5) but remove the influence
of the user model, i.e. set Uu = I and Vu = 0 we are
left with a standard document retrieval model:

fDR(q, d) = Φ̂Q(q)>W>
Q WDΦ̂D(d). (10)

More recently, factorized models that are supervised
to the task of document retrieval have been proposed,
for example Polynomial Semantic Indexing (PSI) (Bai
et al., 2009). PSI considers polynomial terms between
document words and query words for higher order sim-
ilarities. For degree 2 it has the form of (10) but for
degree 3 it uses tensor factorizations based on:

f3(q, d) =
∑

k

(SΦ̂Q(q))k(U Φ̂D(d))k(V Φ̂D(d))k.

This is closely related to our model (5) when constrain-
ing Ui = Di and replacing the user input by the docu-
ment input, i.e. we compute f(q, d, d) in order to ob-
tain interactions between document words rather than
between document and user.

Methods like LSI or LDA optimize the reconstruction
error (mean squared error or likelihood). PSI opti-
mizes the AUC ranking loss, which is more related to
our ranking approach but does not optimize the top k



Latent Collaborative Retrieval

results like ours. Methods for annotating images (We-
ston et al., 2010) and labeling songs with tags (Weston
et al., 2012) have been proposed that do use the WARP
loss we employ in this paper. Many methods for doc-
ument retrieval also optimize the top k but typically
not using factorized models like ours, see e.g. (Yue
et al., 2007).

Finally, our models are applicable to the task of “per-
sonalized search” where some topic model approaches
have recently been studied (Harvey et al., 2011; Lin
et al., 2005; Sun et al., 2005; Saha et al., 2009). We
will compare to generalized SVD and NMF models in
our experiments which are related to these works.

4. Experiments

Traditional collaborative filtering datasets like the
Netflix challenge dataset, and information retrieval
datasets, like LETOR for instance, cannot be used in
the collaborative retrieval framework, as they either
lack the query or the user information necessary. We
therefore use the three datasets described below.

4.1. Lastfm Dataset

We used the “Last.fm Dataset - 1K users” dataset
available from http://www.dtic.upf.edu/∼ocelma/
MusicRecommendationDataset/lastfm-1K.html.
This dataset contains (user, timestamp, artist, song)
tuples collected from the Last.fm (www.lastfm.com)
API. This dataset represents the listening history
(until May 5th, 2009) for 992 users and 176,948
artists. Two consecutively played artists by the
same user are considered as a query × user × item
triple. This mirrors the task of playlisting, where
a user selects a seed track, and the machine has to
automatically build a list of tracks. We consider two
artists as “consecutive” if they are played within an
hour of each other (via the timestamp), otherwise we
ignore the pair. One in every five days (so that the
data is disjoint) were left aside for testing, and the
remaining data was used for training and validation.
Overall this gave 5,408,975 training triples, 500,000
validation triples and 1,434,568 test triples.

4.2. Playlist head and tail datasets

We had access to a larger scale proprietary and
anonymized dataset of user playlists where we could
both construct a query × user × item matrix from
consecutive tracks, and had access to content-based
features as well so we can test our content-based fea-
ture methods. The first extracted dataset (“head”
dataset) consists of 46,000 users and 943,284 tracks

from 146,369 artists (each artist appears at least 10
times). The data is split into 17M training triples for
training, 172,000 for validation and 1.7M for test.

The above “head” dataset can be built for artists
where we have enough training data. However, a user
may want to do retrieval with a query or an item for
which we have no tensor training data at all (i.e., the
cold-start problem). In that case, content-based fea-
ture approaches are the only option. To evaluate this
setup we hence built a “tail” testing dataset consisting
of 10,000 triples from 5442 artists where we only have
a single test example. The idea in that case is to train
on the head dataset, and test on the tail (as it is not
possible to train on the tail).

For each track (including head tracks) we have ac-
cess to the audio features of the track, which we pro-
cessed using the well-known Mel Frequency Cepstral
Coefficent (MFCC) representation. MFCCs take ad-
vantage of source/filter deconvolution from the cep-
stral transform and perceptually-realistic compression
of spectra from the Mel pitch scale and have been used
widely in music and speech (Foote, 1997; Rabiner &
Juang, 1993). We extracted 13 MFCCs every 10ms
over a Hamming window of 25ms, and first and sec-
ond derivatives were concatenated, for a total of 39 fea-
tures. We then computed a dictionary of 2000 typical
MFCC vectors over the training set (using K-means)
and represented each song as a vector of counts, over
the set of frames in the given song, of the number of
times each dictionary vector was nearest to the frame
in the MFCC space. The resulting feature vectors thus
have dimension nD = 2000.

4.3. Baselines

We compare to Singular Value Decomposition (SVD)
and Non-negative Matrix Factorization (NMF) which
are both popular methods for collaborative filtering
tasks. For SVD we use the Matlab implementation and
for NMF we use the implementation at http://www.
csie.ntu.edu.tw/∼cjlin/nmf/. Standard SVD and
NMF operate on matrices, not tensors, so we compare
our method on those tasks (where we consider only
user × item matrices or only query × item matrices) as
well. For the query × user × item tensor we considered
the following generalization of SVD or NMF:

f(q, u, i) = Φ(q)>U>QIVQIΦ(d) + γΦ(u)>U>UIVUIΦ(d).

That is, we perform two SVDs (or NMFs), one for the
user × item matrix and one for the query × item ma-
trix, and then combine them with a mixing parameter
γ which is chosen on the validation set.

For LCR, we compare both the versions from equation

http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
www.lastfm.com
http://www.csie.ntu.edu.tw/~cjlin/nmf/
http://www.csie.ntu.edu.tw/~cjlin/nmf/
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Table 1. Recommendation Results on the lastfm dataset.

Method R@5 R@10 R@30 R@50

NMF query x item 3.76% 6.38% 13.3% 17.8%
SVD query x item 4.01% 6.93% 13.9% 18.5%
LCR query x item 5.60% 9.49% 18.9% 24.8%

NMF user x item 6.05% 9.86% 20.3% 26.5%
SVD user x item 6.60% 10.7% 21.4% 27.7%
LCR user x item 8.37% 14.0% 27.8% 36.5%

NMF query x item + user x item 5.96% 9.93% 20.5% 26.6%
SVD query x item + user x item 6.82% 12.1% 25.9% 34.9%
LCR query x item + user x item 9.22% 15.1% 30.2% 39.0%
LCR query x user x item 10.6% 16.6% 32.2% 41.2%

Table 2. Optimizing r@k (WARP) versus optimizing AUC.

Method AUC r@10 AUC r@30 WARP r@10 WARP r@30

LCR query x item 6.32% 14.8% 9.49% 18.9%
LCR user x item 11.0% 23.7% 14.0% 27.8%
LCR query x item + user x item 12.1% 25.9% 15.1% 30.2%

(3) and equation (2) on the query × user × item task.
The former is directly comparable to the SVD and
NMF tensor generalizations we use (they are the same
paramaterization) while the latter takes into account
three-way interactions between query, user and item
in a single joint formulation. For the user × item and
query × item tasks we employ either only the first
or the second term respectively of equation (3). The
validation set is used to choose the hyperparameters,
e.g. the best choice of learning rate, regularization
parameter and as a stopping criterion for the gradient
descent.

For content-based features we also compare to LSI
(Deerwester et al., 1990) and using cosine similar-
ity. Both of these methods perform retrieval given the
query, and ignore the user term.

4.4. Evaluation

For any given query q, user u, item i triple we compute
f(q, u, î) using the given algorithm for each possible
item î and sort them, largest first. For user × item or
query × item tasks the setup is the same except either
q or u is not used in all the competing models. The
evaluation score for a given triple is then computed
according to where item i appears in the ranked list.
We measure recall@k, which is 1 if item i appears in
the top k, and 0 otherwise. We report mean recall@k
over the entire test set. Note that as we only consider

one positive example per query (the element i of the
triple) precision@k = recall@k / k.

4.5. LastFM dataset Results

We first report results on the lastfm dataset. De-
tailed results where we fixed the embedding dimension
of all methods to n = 50 are given in Table 1. Results
for other choices of n are given in Table 4. On all three
tasks (query × item, user × item and query × user ×
item) LCR is superior to SVD and NMF for each top-
ranked set k considered. Furthermore, our full LCR
query × user × item model (c.f. equation 2, Ui un-
constrained) gives improved results compared to both
(i) any competing methods, including LCR itself, that
do not take into account both query and user; and (ii)
LCR itself (and other methods) that do not model the
query and user in a joint similarity function (i.e. LCR
query x user x item (cf. eq. (2)) outperforms LCR
query x item + user x item (cf. eq. (3))).

Loss function evaluation Some of the improve-
ment of LCR over SVD and NMF can be explained by
the fact that neither SVD nor NMF optimize a rank-
ing function that optimizes the top-ranked items. To
show the importance of the loss function, we report the
results of LCR using an alternative loss function opti-
mizing average rank (AUC) as in equation (7) instead
of the WARP loss from equation (8). The comparison,
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Table 3. Recommendation Results on the playlist head dataset.

Method R@5 R@10 R@30 R@50

NMF query x item 5.28% 8.87% 18.4% 24.0%
SVD query x item 7.21% 11.0% 20.8% 26.9%
LCR query x item 10.7% 16.3% 29.1% 35.6%

NMF user x item 6.23% 10.2% 19.2% 25.0%
SVD user x item 6.84% 11.2% 20.9% 26.9%
LCR user x item 6.26% 10.5% 21.8% 29.3%

NMF query x item + user x item 6.26% 10.2% 19.2% 25.0%
SVD query x item + user x item 7.87% 12.0% 22.2% 28.4%
LCR query x item + user x item 12.8% 19.4% 34.5% 42.0%
LCR query x user x item 13.0% 19.6% 34.6% 42.2%

Table 4. Changing the embedding size on the lastfm
dataset. We report R@30 for various dimensions n.

Method n = 10 25 50 100

NMF query x item 8.53% 9.94% 13.3% 12.3%
SVD query x item 11.5% 12.8% 13.9% 14.7%
LCR query x item 15.0% 18.0% 18.9% 19.8%

NMF user x item 12.1% 16.5% 20.3% 23.5%
SVD user x item 12.8% 17.7% 21.4% 25.1%
LCR user x item 21.1% 26.1% 27.8% 28.7%

NMF q x i + u x i 12.7% 16.9% 20.5% 23.6%
SVD q x i + u x i 13.3% 17.9% 25.9% 25.7%
LCR q x i + u x i 22.3% 27.9% 30.2% 31.3%
LCR query x user x item 23.3% 28.9% 32.2% 33.3%

given in Table 2 shows a clear gain on all tasks by opti-
mizing for the top k (using WARP). Optimizing AUC
instead yields results in fact similar to SVD. SVD opti-
mizes mean squared error, not AUC, but the similarity
is that neither loss function pays special attention to
the top k results.

Changing the embedding dimension We report
results varying the embedding dimension n in Table
4. It should be noted that n affects both test per-
formance, evaluation time and storage requirements,
so low dimensional embeddings are preferable if they
perform well enough. LCR outperforms the baselines
for all values of n that we tried, however all methods
degrade significantly when n = 10. SVD on the query
× user × item shows the same performance for n = 50
and n = 100 while LCR improves slightly.

4.6. Playlist dataset results

Collaborative filtering type data The Playlist
dataset is larger scale and has both collaborative-
filtering type data and content-based features. We first
tested using collaborative filtering type data only on
the same three tasks as before (query × item, user ×
item and query × user × item). The results are given
in Table 3. They again show a performance improve-
ment for LCR over the SVD and NMF baselines on
the query × item task, although on the user × item
task it performs similarly to the baselines. However,
on the most interesting task, query × user × item, we
again see a large performance gain.

Using content-based features We compared dif-
ferent algorithms using content-based features on the
tail dataset where collaborative filtering cannot be
used. (We also attempted to combine both collabo-
rative filtering and content-based information on the
head dataset, but we observed no gain in performance
over collaborative filtering alone, probably because the
content-based features are not strong enough, which is
not really a surprising result (Slaney, 2011)). The re-
sults on the tail dataset are given in Table 5. LCR q×i
(which does not use user information, as in eq. (10))
already outperforms cosine similarity and LSI. Adding
user information further improves performance: LCR
q×u+q×i uses the model form of eq. (4) with Ui = I
and LCR query×user×item uses eq. (4) with Ui = Di.

5. Conclusion

In this paper we introduced a new learning framework
called collaborative retrieval which links the standard
document retrieval and collaborative filtering tasks.
Like collaborative filtering, the task is to rank items
given a user, but crucially we can also take into ac-
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Table 5. Content-based Results on the playlist tail set.

Method r@30 r@50 r@100 r@200

Cosine 1.1% 1.7% 2.9% 5.2%
LSI 1.0% 1.5% 2.6% 4.8%
LCR query×item 1.9% 2.9% 4.8% 8.4%
LCR q×i+u×i 2.3% 3.4% 5.9% 10.3%
LCR query×user×item 2.4% 3.5% 6.0% 10.7%

count a query term. Like document retrieval we are
given a query and the task is to rank items, but cru-
cially we also take into account the user in the form of
a user × query × item tensor of training data.

We proposed a novel learning algorithm for this task
that learns a factorized model to rank the items given
the query and user, and showed it empirically outper-
forms some standard methods. Collaborative retrieval
is rapidly becoming an important task and we expect
this to become a well studied research area.
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