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Abstract

Portfolio allocation theory has been heav-
ily influenced by a major contribution of
Harry Markowitz in the early fifties: the
mean-variance approach. While there has
been a continuous line of works in on-line
learning portfolios over the past decades,
very few works have really tried to cope
with Markowitz model. A major drawback
of the mean-variance approach is that it is
approximation-free only when stock returns
obey a Gaussian distribution, an assump-
tion known not to hold in real data. In
this paper, we first alleviate this assumption,
and rigorously lift the mean-variance model
to a more general mean-divergence model in
which stock returns are allowed to obey any
exponential family of distributions. We then
devise a general on-line learning algorithm
in this setting. We prove for this algorithm
the first lower bounds on the most relevant
quantity to be optimized in the framework
of Markowitz model: the certainty equiva-
lents. Experiments on four real-world stock
markets display its ability to track portfolios
whose cumulated returns exceed those of the
best stock by orders of magnitude.

1. Introduction

In Pudd’nhead Wilson, Mark Twain once quoted
the wise man: “Put all your eggs in the one bas-
ket and — watch that basket!”, against the fool
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who argues to rather scatter money (and atten-
tion). The large majority of works on on-line learn-
ing portfolios watch portfolios using their expected
returns (Even-Dar et al., 2006). Very few works
have started to look at the problem with a refined
lens, relying on risk premiums instead of returns
(Warmuth & Kuzmin, 2006), inspired by a theory
born more than fifty years ago (Markowitz, 1952). As
Markowitz has shown, investors know that they can-
not achieve stock returns greater than the risk-free rate
without having to carry some risk. The famed mean-
variance approach was born, in which the variance
term models the investor’s aversion to risk. Under the
assumptions that the investor obeys exponential util-
ity and the stocks returns have Gaussian distribution,
the optimal portfolio is that which maximizes the dif-
ference between expected returns and half the variance
times the Arrow-Pratt risk aversion parameter (Pratt,
1964). This latter term in the difference quantifies the
risk premium of the portfolio, while the difference —
hence, the quantity which completely defines the opti-
mal portfolio — is the certainty equivalent.

There are prominent limitations to both the model
and the previous approaches that learn portfolios
on-line. First, it is a well-known observation that
empirical data do not obey Gaussian distribution,
thus impairing the safe application of Markowitz’
model to real domains. Second, all previous at-
tempts to cast on-line learning in this model relied
on approximations of the actual quantity to be maxi-
mized, the certainty equivalent (Even-Dar et al., 2006;
Warmuth & Kuzmin, 2006).

In this paper, we alleviate these two limitations. We
first replace the Gaussian distribution assumption
about returns by the more realistic assumption that
they obey general exponential families: we prove that
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the mean-variance approach of Markowitz is general-
ized by a mean-divergence model, in which the di-
vergence part heavily relies on a class of distortion
popular in machine learning: Bregman divergences
(Banerjee et al., 2005; Nock & Nielsen, 2009). We
then provide, in this mean-divergence portfolio choice
model, a general algorithm for on-line learning ref-
erence portfolios that are allowed to drift, based on
a generalization of Amari’s famed natural gradient
(Amari, 1998). We show a lower bound on the cer-
tainty equivalent of this algorithm which depends on
the certainty equivalents of the reference portfolios.
No such bound was previously known, even in the re-
stricted case of Markowitz’ model. Our contribution
is also experimental, as we provide results on four ma-
jor stock markets (djia, nyse, s&p500, tse) that dis-
play (i) the interest in lifting the mean-variance to the
mean-divergence model, as the mean-variance model
appears to be suboptimal, (ii) the performance of the
algorithm on real data, with its ability to adapt its al-
location and simultaneously beat by orders of magni-
tude market contenders from both the “fool” and the
“wise” families in Twain’s acception (resp. uniform
cost rebalanced portfolio and best stock).

The remaining of the paper is organized as follows:
Section 2 presents the mean-divergence model. Section
3 presents our algorithm and its properties. Section 4
details the experiments, and Section 5 concludes.

Notations Italicized bold letters like v denote vec-
tors and vi their coordinates. Blackboard notations
like S denote subsets of (tuples of) reals, and |.| their
cardinal. Calligraphic letters like A are reserved for
algorithms. Economic concepts are distinguished with
small capitals: for example, the certainty equivalent
is denoted c, and utility functions are denoted u. We
define 0, the null vector, 1, the all-1 vector and 1j the
vector with “1” in coordinate j and zero elsewhere.
Because of size constraints, parts of the technical and
experimental material of this paper are available in a
supplementary material file1.

2. The mean-divergence model

We consider an (investor, market) pair setting, in
which the investor is characterized by a vector α ∈ P,
a portfolio allocation vector over d assets, where P de-
notes the d-dimensional probability simplex. These d
assets characterize the market, on which we compute
a vector of returns w ∈ [−1,+∞)d. Quantity

ωinv
.
= w>α (1)

1http://www1.univ-ag.fr/∼rnock/Articles/ICML11/

models the investor’s wealth brought by his/her portfo-
lio. We assume that w is drawn at random from some
density pψ which belongs to the exponential families
of distributions (Banerjee et al., 2005):

pψ(w : θ)
.
= exp

(
w>θ − ψ(θ)

)
b(w) , (2)

= exp (−Dψ?(w‖∇ψ(θ)) + ψ?(w)) b(w) ,

where θ defines the natural parameter of the family,
and b(.) normalizes the density. ψ : S→ R (S ⊆ R

d) is
strictly convex differentiable, and ψ? is its convex con-
jugate, defined as ψ?(z)

.
= supt∈dom(ψ){z

>t−ψ(t)} =

z>∇
−1
ψ (z) − ψ(∇−1

ψ (z)) (Banerjee et al., 2005). We
define the Bregman divergence Dψ with generator ψ
as (Banerjee et al., 2005):

Dψ(x‖y)
.
= ψ(x)− ψ(y)− (x− y)>∇ψ(y) ,(3)

where ∇ψ denotes the gradient of ψ.

It is not hard to show that the gradients of ψ and ψ?

are inverse of each other (∇ψ = ∇
−1
ψ? ), and further-

more the fundamental relationship holds:

Dψ(x‖y) = Dψ?(∇ψ(y)‖∇ψ(x)) . (4)

Exponential families contain popular members, such as
the Gaussian, exponential, Poisson, multinomial, beta,
gamma, Rayleigh distributions, and many others.

A quite counterintuitive observation about the in-
vestor is that he/she would typically not choose α

based on the maximization of the expected returns.
This is the famed St. Petersburg paradox, which states
that the expected return alone lacks crucial informa-
tions about the way α is chosen, such as investor’s
being not unconscious to the fact that investments
cannot be achieved without carrying out some risk
(Chavas, 2004). A popular normative approach al-
leviates this paradox (von Neumann & Morgenstern,
1944): five assumptions about the way people build
preferences among allocation vectors are enough to
show that portfolios are ordered based on an expected
utility of returns, Ew∼pψ [u(w>α)], where u(.) denotes
a real-valued utility function. It can be shown that
this expectation, which is computed over numerous
markets, equals the utility of a single equivalent case
(“sure market”) in which the expected wealth is mi-
nored by a risk premium (Chavas, 2004):

Ew∼pψ [u(ωinv)] = u
(
Ew∼pψ [ωinv]− p(α; θ)

)
.(5)

Because this case represents a sure money-metric
equivalent of the left-hand side’s numerous markets,
the quantity c(α; θ)

.
= Ew∼pψ [ωinv]− p(α; θ) is called

the certainty equivalent. Markowitz has shown that
the certainty equivalent may be derived exactly when
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Table 1. Bregman divergences used in this paper; ‖x‖q
.
= (

P

i |xi|
q)1/q denotes the q-norm.

ϕ(x) Dϕ(x‖y) Comments
1
2‖x‖

2
q

1
2‖x‖

2
q −

1
2‖y‖

2
q − (x− y)>∇ϕ(y) q-norm divergence, Dlq ; (∇ϕ(y))i = sign(yi)|yi|

q−1

‖y‖q−2

q∑

i xi lnxi − xi
∑

i (xi ln(xi/yi)− (xi − yi)) Kullback-Leibler divergence, Dkl

−
∑

i lnxi
∑

i ((xi/yi)− ln(xi/yi)− 1) Itakura-Saito divergence, Dis∑

i expxi
∑

i (exp(xi)− (xi − yi + 1) exp(yi)) Exponential divergence, Dexp

pψ is Gaussian. Applying the mean-variance model
in the general case without caring for the Gaussian
assumption incurs an approximation to the premium
part in (5) which can be devastating (Chavas, 2004).

To summarize, alleviating the Gaussian assumption
implies to find u, p and c with which (5) holds un-
der the more general setting of exponential families.
Finding u is in fact easy even when d > 1. We
rely on Arrow-Pratt measure of absolute risk aversion
(Chavas, 2004; Pratt, 1964), which can be computed
for each stock as:

ri (ωinv)
.
= −

∂2

∂w2
i

u(ωinv)

(
∂

∂wi
u(ωinv)

)−1

, ∀i = 1, 2, ..., d .

We say that there is constant absolute risk aversion
(CARA) whenever ri (ωinv) = a, ∀i = 1, 2, ..., d, for
some risk aversion parameter a ∈ R. The following
Lemma easily follows from (Chavas, 2004).

Lemma 1 r (ωinv) = a for some a ∈ R iff u(x) = x
(if a = 0) or u(x) = − exp(−ax) (otherwise).

Assuming that the investor is risk averse, we have a >
0. We can now provide the expressions of c(α; θ) and
p(α; θ), which we now rename cψ(α; θ) and pψ(α; θ),
since they depend on ψ, the premium generator.

Theorem 1 Assume CARA and pψ as in (2). Then:

cψ(α; θ) =
1

a
(ψ(θ)− ψ(θ − aα)) , (6)

pψ(α; θ) =
1

a
Dψ (θ − aα‖θ) . (7)

Proof: We have:

Ew∼pψ [u(ωinv)] =

∫

− exp
(
w>(θ − aα)− ψ(θ)

)
b(w)dw

= − exp (ψ(θ − aα)− ψ(θ))×
∫

exp
(
w>(θ − aα)− ψ(θ − aα)

)
b(w)dw

︸ ︷︷ ︸

=1

= − exp (−acψ(α; θ)) , (8)

where we have used in (8) Lemma 1 and (5).
The definition of the certainty equivalent yields

pψ(α; θ) = Ew∼pψ [w>α] − cψ(α; θ) = α>∇ψ(θ) −

cψ(α; θ) = 1
a

(
ψ(θ − aα)− ψ(θ) + aα>∇ψ(θ)

)
=

1
a
Dψ (θ − aα‖θ), as claimed.

Various safe checks, explained in the following Lemma,
show that the risk premium behaves consistently
(proof omitted).

Lemma 2 (i) lima→0 pψ(α; θ) = 0, (ii) pψ(α; θ) is
strictly increasing in a, (iii) limα→0 pψ(α; θ) = 0
(holds under any vector norm convergence); (iv) as-
suming pψ Gaussian allows to recover the variance pre-
mium of the mean-variance model:

pψ = N(µ,Σ) ⇒ pµ,Σ(α; θ) = (a/2)α>Σα .(9)

The proof of (9) involves considering the vector-matrix
encoding of the Gaussian (Nielsen & Nock, 2009), with
the matrix part of the allocation being the null matrix.
The following Lemma provides simple illustrative ex-
amples of upperbounds on pψ for some popular expo-
nential families.

Lemma 3 Denote respectively pd,q(α; θ), pλ(α; θ),
pλ′(α; θ) the premiums associated to the d-
dimensional multinomial (parameter q ∈ P), Poisson
(parameter λ > 0) and exponential (parameter λ′ > 0)
distributions. Then (Dkl is defined in Table 1):

pd,q(α; θ) ≤ dDkl

(
1

a

∥
∥
∥
∥

1

1− exp(−a)

)

, (10)

pλ(1; θ) ≤ aλ , (11)

pλ′(1; θ) ≤
1

λ′
−

1

λ′ + a
. (12)

(proof omitted) Poisson and exponential distributions
have a single natural parameter, which explains the
“1” in lieu of α in (11-12). The bounds in (10-12) are
all increasing in a; those of (11-12) are also increas-
ing with the variance of the distribution, showing that
variance minimization as in the mean-variance model
may be an approximate primer to control pψ.

General comments There is a striking parallel
between θ and α in (1) and (2). Everything is
like if the natural parameter θ were acting as a
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natural market allocation. The corresponding nat-
ural investor is optimal in the sense that its allo-
cation is based on the market’s expected behavior
(Banerjee et al., 2005): indeed, exponential families
satisfy θ = ∇ψ?(Ew∼pψ [w]). For pψ Gaussian, it was
previously known that the optimal allocation is pro-
portional to Σ−1µ (Markowitz, 1952): this is precisely
the vector part of the Gaussian’s natural parameters
(Nielsen & Nock, 2009).

3. Tracking portfolios

We wish to build a portfolio with guarantees (e.g.
lower bounds) on its certainty equivalents in the mean-
divergence model. As usual in on-line learning, we up-
date this portfolio, say α0, α1, ..., with the will to
track sufficiently closely a reference portfolio allowed
to drift over iterations: r0, r1, .... Intuitively, the drift-
ing reference is assumed to bring large certainty equiv-
alents. There is a third parameter allowed to drift, the
natural market allocation: θ0,θ1, ... . Naturally, we
could suppose that rt = θt, ∀t, which would amount
to tracking directly the best possible allocation, but
this setting would be too restrictive because it may be
easier to track some rt close to θt but having specific
properties that θt does not have (e.g. sparsity). In
order not to laden the analysis, the reference portfolio
enjoys the same risk aversion parameter a as ours.

The algorithm we propose is named OMDφ,ψ, for “On-
line learning in the Mean-Divergence model”. To state
OMDφ,ψ, we abbreviate the gradient (in α) of the
risk premium as: ∇p(α; θ)

.
= ∇ψ(θ) −∇ψ(θ − aα)

(a, ψ implicit in the notation). OMDφ,ψ initializes
α0 = (1/d)1, learning rate parameter η > 0, and then
iterate the following update, for t = 0, 1, ..., T − 1:

αt+1 ← ∇
−1
φ (∇φ (αt)− η∇p(αt; θt)− zt1) ,(13)

where zt is chosen so that αt+1 ∈ P
2. There are several

quantities of interest to state our main result:

ς
.
= max

t≥0
max
i6=j

(1i − 1j)
>

∇p(αt; θt) , (14)

ν
.
= max

t≥0
‖∇ψ(θt)‖∞ , (15)

α
.
= min

t≥0
min
i
αt,i . (16)

ς is the maximal scope of the premium gradient, ν is
the maximal market return in absolute value, and α is
the minimal allocation made by OMDφ,ψ. We finally
denote as λ the minimal eigenvalue, over all iterations,
of the Hessian of ψ which fits a Taylor-Lagrange expan-

2When dom(φ) 6∈ R+, we scale and renormalize αt+1

when necessary to ensure that αt+1 ∈ P.

sion of pψ’s Bregman divergence (see e.g. (Nock et al.,
2008), Lemma 2). λ > 0 since ψ is strictly convex.

Theorem 2 Let υ > 0 be user-fixed. Let T ⊆
{0, 1, ..., T − 1} group iterations s. t. αt 6= rt. Fix

a =
(υ + 2ν)

λmint∈T ‖αt − rt‖22
. (17)

Then, for any η > 0, the certainty equivalent of
OMDkl,ψ can be lower bounded as follows, ∀T >
0, ∀p, q ≥ 1, (1/p) + (1/q) = 1:

T−1∑

t=0

cψ(αt; θt)

≥

T−1∑

t=0

cψ(rt; θt)− d
1

q ln

(
1

α

) T−1∑

t=0

‖rt+1 − rt‖p

+|T|υ − T ς −
1− α

η
ln

(
1

α(1− α)

)

− ln d . (18)

Proof: The proof exploits a popular high-level trick
consisting in crafting a (lower) bound to the progress
to the shifting reference:

δt
.
=Dkl(rt‖αt)−Dkl(rt+1‖αt+1) = δt,1 + δt,2 ,(19)

with

δt,1
.
= Dkl(rt‖αt)−Dkl(rt‖αt+1) ,

δt,2
.
= Dkl(rt‖αt+1)−Dkl(rt+1‖αt+1) .

We bound separately the two terms, starting with δt,1.
Using (13), the definition of ∇p(αt; θt) and the fact
that rt ∈ P and αt ∈ P, we have:

δt,1 = (η/a)τt −Dkl(αt‖αt+1) , (20)

with τt
.
= ((θt − aαt)− (θt − art))

>(∇ψ(θt − aαt)−
∇ψ(θt)). We now bound the two terms in (20).

Lemma 4 τt ≥ a (cψ(rt; θt)− cψ(αt; θt) + υ) if t ∈
T, and τt = a (cψ(rt; θt)− cψ(αt; θt)) otherwise.

(proof given in the supplementary material1)

Lemma 5 Dkl(αt‖αt+1) ≤ ης.

(proof given in the supplementary material1)

Putting altogether Lemmata 4 and 5 in (20), we obtain
the following lower bound on the sum of δt,1:

T−1∑

t=0

δt,1 ≥ η

(
T−1∑

t=0

cψ(rt; θt)−

T−1∑

t=0

cψ(αt; θt)

)

+η (|T|υ − T ς) . (21)
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Table 2. Experimental market domains. Returns are daily
(djia, nyse and tse) or weekly (s&p500).

name d T start date end date
djia 30 506 01/14/01 01/14/03
nyse 36 5650 07/03/62 12/31/84
s&p500 324 618 01/08/98 11/12/09
tse 88 1257 01/04/94 12/31/98

Working on a lowerbound for δt,2 is easier, as δt,2 sim-
plifies to:

δt,2 = φ(rt)− φ(rt+1) + (rt+1 − rt)
>

∇kl(αt+1)

≥ φ(rt)− φ(rt+1)− ‖rt+1 − rt‖pd
1

q ln
1

α
,(22)

where (22) follows from Hölder inequality (p, q ≥
1, (1/p) + (1/q) = 1). There remains to sum (19) for
t = 0, 1, ..., T −1, use (21) and (22), rearrange and use
the facts Dkl(r0‖α0) = φ(r0) + ln d, Dkl(rT ‖αT ) −
φ(rT ) ≥ (1− α) ln(α(1− α)) to get (18).

Comments on OMDφ,ψ and Theorem 2 The
choice φ = kl in Theorem 2 was made in part to fuel
experimental observations (See Section 4). Notice also
the absence of constraint on η: previous theoretical re-
sults on on-line algorithms tend to put very tight con-
straints on η for efficient learning (Borodin et al., 2004;
Kivinen & Warmuth, 1997). OMDφ,ψ explicitly relies
on the optimization of the premiums, yet it implicitly
works on maximizing the certainty equivalents as well,
as indeed (6) implies ∇p(α; θ) = ∇ψ(θ)−∇c(α; θ),
where ∇c(α; θ) is the gradient in α of the certainty
equivalent. It is thus not surprising that OMDφ,ψ

meets guarantees on the certainty equivalents. From
the information geometric standpoint, OMDφ,ψ turns
out to approximate a generalization of Amari’s natural
gradient (Amari, 1998), to progress towards the opti-
mization of a cost function using a geometry induced
by a Bregman divergence (Dφ).

Lemma 6 The solution to α′ =
arg minα∈A Dφ(α‖αt), where A = {α ∈ R :
(α>1 = 1) ∧ (pψ(α; θ) ≤ k)}, satisfies the following
set of non-linear inequalities:

α′ = ∇
−1
φ (∇φ (αt)− η∇p(α′; θt)− zt1) .(23)

(proof omitted) Notice that, to enforce α′ ∈ P in (23),
it is enough to ensure that dom(φ) ⊆ R+. One may
easily check that fixing φ(x) = x>Gx (G symmetric
positive definite) in (23) and removing the constraint
α>1 = 1 (zt = 0) allows to retrieve exactly Theorem 1
in (Amari, 1998). The update (13) in OMDφ,ψ appears
as a tractable approximation to (23) — all the better
as Dφ(α

′‖αt) is small — in which αt replaces α′ in

the premium gradient. Since αt,α
′ ∈ P, a most natu-

ral choice for Dφ suggested by Lemma 6 is Kullback-
Leibler divergence (Table 1), in which case OMDφ,ψ

resembles EG algorithms (Kivinen & Warmuth, 1997).

The bound of Theorem 2 is not directly applicable, like
most bounds in on-line learning (Kivinen et al., 2006),
yet it provides intuitive clues about the dependencies
between the parameters, and their choices to efficiently
tune OMDkl,ψ. If we except the term |T|υ − T ς , the
remaining part of the penalty in (18) is in fact familiar
to on-line learning (Kivinen et al., 2006), and says that
tracking the reference may indeed be more efficient as
it gets sparse. The term |T|υ − T ς is interesting for
the premium choice: ς actually depends on a, yet a
appears in the gradient of ψ. Hence, premiums with
a slowly increasing gradient, e.g. concave like for ψ =
kl or ψ = is, dampen the penalty −T ς in (18), thus
potentially leading to improved performances.

4. Experiments

We have considered four market domains, summarized
in Table 2. They cover overall a wide period, from the
early sixties to the last financial crisis. Experiments
were devised to assess various objectives, including in
particular (i) whether tracking portfolios on the ba-
sis of their risk premiums or certainty equivalents al-
lows to find portfolios with good returns; (ii) whether
lifting the mean-variance model to the more general
mean-divergence model allows to cope more efficiently
with different markets, in particular against two pop-
ular market opponents: the uniform cost rebalanced
portfolio, UCRP, which represents the average mar-
ket’s performance, and the best stock, BEST, which is
the stock giving the largest cumulative returns over all
market iterations; (iii) whether the mean-divergence
model improves the acuteness to spot, with new premi-
ums, events at the market scale that would otherwise
be missed — or at least dampened — in the mean-
variance model.

General results: on each domain, OMDφ,ψ was run
with every possible combination of the following pa-
rameters: a ∈ {0.01, 1, 100}, η ∈ {0.01, 1, 100}, ψ ∈
{m,kl, is}, φ ∈ {lq,kl, is} (Table 1: q ∈ {2.001, 3, 4}
for the q-norm). Finally, in order to assess whether the
update (13) can be made more efficient using more
than just the last returns, we test the possibility of
using, in the premium gradient update, a window av-
erage of the last r iterations, for r ∈ {1, 2, 4}. The re-
sults, integrating the cumulated returns of BEST and
UCRP, are given in Table 3. Due to the lack of space,
we only provide the results for OMDkl,ψ, but the inter-
ested reader may check the supplementary material1
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Table 3. Cumulated returns (left table) and cumulated premiums (right table, y-scales are logscales) for OMDkl,ψ on
the four domains, using three different premium generators ψ (leftmost column: see Table 1; m is Markowitz’ variance
premium). On each plot, OMDkl,ψ’s synthetic results are given as follows: the light grey part covers the interval of the
[25%, 75%] quantiles of OMDkl,ψ, the red curve displays OMDkl,ψ’s median results, the lower and upper green curves
display respectively OMDkl,ψ’s min and max results. The results of BEST are in purple, and those of UCRP are in cyan.
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for the results of the other choices of φ. The following
conclusions can be drawn from these experiments: the
better the cumulated returns for OMDkl,ψ, the larger
its premiums; in some sense, the paying strategies are
noted as riskiest in the mean-divergence model. The
poorest results according to cumulated returns are ob-
tained for Markowitz’ variance premium (m), with pre-
miums almost always smaller than BEST’s by orders
of magnitude. Compared to BEST’s, the premiums
for kl are quite comparable at least for the median
values, while those for is are clearly huge. But the
returns are up to the task: on the djia, OMDkl,is’s
median return with is is more than six times that of
BEST, while more than 75% of the possible combi-
nations of parameters of OMDkl,is give better results
than BEST. On the nyse, OMDkl,is’s median returns
are this time more than ten times those of BEST. Re-
call that premiums are not honored by investors (un-
like e.g. in insurance), hence one can judge results on
the basis of returns only: with respect to this stand-
point, OMDkl,is gives by far the best results, the sec-
ond best being clearly OMDkl,kl. This is quite in ac-
cordance with the comments of Section 3, and comes
as a strong advocacy to lift the mean-variance model
to the mean-divergence model. Finally, we spotted no
significant difference when varying window size r.

Influences of a and η: Two major parameters in
running OMDφ,ψ are a and η. To evaluate their influ-
ence, we filtered the general result, and plot in Table

4 the cumulated returns of OMDkl,is as a function of
the values of a and η. The results for the other choices
for ψ can be consulted in the supplementary material1.
Table 4 clearly displays two opposite behaviors for the
influence of a and η: while returns increase with a,
they decrease with η. Results for OMDkl,m tend to
display that the opposite pattern holds for Markowitz’
variance premium, as returns tend to decrease with
a and increase with η. The case of OMDkl,kl is also
different, the median values (a = η = 1) seemingly
being the best choice for all four domains. A plausible
explanation to this phenomenon may lie in the sec-
ond derivative of ψ, and thus in the convexity regime
of the premium: for small returns, the second deriva-
tive values can roughly be ordered as is � kl � m,
and thus yield allocations that are much more spread
before normalization for is in (13). This perhaps pro-
vides a better acuteness to OMDkl,is through the risk
premium, and to be used to its full potential, one
does not have interest in fixing small values for a that
would otherwise cloud the issue by reducing this pre-
mium. We thus see two opposite strategies through
OMDkl,ψ: the choice ψ = m provides us with an algo-
rithm which works at best when taking the less risks,
giving in return portfolios with suboptimal returns,
sometimes competing with the best stock. The “op-
posite” choice ψ = is gives a much more aggressive,
high-premium / higher-return algorithm. For such ag-
gressive strategies, the high premiums do not only act
as signals to spot potential portfolios being subject to
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Table 4. Cumulated returns of OMDkl,is as a function of a ∈ {0.01, 1, 100} (left table) and η ∈ {0.01, 1, 100} (right table).
Each grey curve represents a run of OMDkl,is. The results of BEST are in purple, and those of UCRP are in cyan.
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risk: they somehow act as parapets for OMDkl,is to
“stay in line”, and thus need to be high (a large) to
really be efficient in this role. This being explained,
the somehow “opposite” behavior observed with η may
indicate that a and η act as offsets for each other in
the update (13): small premium variations allow large
learning rates for better results, while large premium
variations enforce small learning rates.

OMDφ,ψ watches its basket: We have drilled down
further into the portfolios of OMDkl,is, to assess the
way allocations are carried out. Table 5 provides some
of the results obtained, the remaining of which appear
in the supplementary material1. In each row, the right
table gives the topmost stocks that represented more
than 50% of OMDkl,is’s portfolio, ordered according to
the percentage of the iterations (shown) during which
this occurred (”None”= no stock had absolute major-
ity). A (?) indicates BEST. OMDkl,is has a prominent
tendency to follow few stocks at a time, quite often
catching BEST, thus following Twain’s “wise” behav-
ior and playing efficiently against stocks’ volatility; yet
experiments demonstrate that some iterations tagged
as “None” clearly favor a spreading of stocks, thus fol-
lowing Twain’s “fool” behavior. Interestingly, the do-
main on which this spreading is the most frequent has
also the most irregular average returns (See UCRP):
s&p500. Here, “None” is almost ten times more fre-
quent than the following stock in the list. This fact,
after comparison with djia and tse, cannot be ex-
plained only by the increase in the number of stocks.
In Table 5, the cumulated returns of stocks philip

morris (djia), dupont (nyse), pure gold miner-

als inc. and international forest products ltd

(tse) display the ability of OMDkl,is to bet “just in
time” on stocks, just before or during periods where
they enjoy comparatively more important returns.

Premium values and market events: Finally, we
drilled down into the values of premiums obtained, in
particular to evaluate differences as a function of the
premium pψ. Table 6 gives three examples of curves
obtained on domain s&p500 (a = 1), chosen for its av-
erage behavior more irregular than the other markets.
One can check that all premiums detect events during
the last financial crisis (rightmost peaks), but relative
variations are much smaller for pm. On the other hand,
pkl peaks much more distinctively on these events,
while pis yields very large premiums, as expectable
from the theory and experiments developed above.

5. Conclusion

Carefully crafted heuristics have already demonstrated
their capacities in beating BEST (Borodin et al.,
2004), yet these are still crucially lacking theoretical
foundations; to the best of our knowledge, our work
may be the first attempt to show that such attainable
performances may borne out a sound theory, more-
over forged more than a decade ago (Amari, 1998;
Kivinen & Warmuth, 1997) and popular ever since in
machine learning. Our main objective is not in talk-
ing experimentally the big numbers with respect to
other contenders: there are of course caveats to apply-
ing our algorithm, like for any other in the category
(Borodin et al., 2004). Instead, even when we have not
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Table 5. Allocations of OMDkl,is (a = 100.0, η = 0.01).
Each row relates to a domain (top to bottom: djia, nyse,
s&p500, tse). In each row, the right table shows the most
prominent stocks in OMDkl,is’s portfolio (see text). The
left plot displays the cumulated returns of the topmost
stock of this list; vertical black bars indicate the iterations
during which this stock had absolute majority in the port-
folio (the kin ark plot may be misleading because of its
size and the width of the vertical bars). The center plot
displays the cumulated returns of another stock appearing
in the list (convention for vertical black bars are the same).
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found the golden eggs to put in our Twain’s basket,
we do believe that this possible bond between theory
and such attainable experimental performances is as
interesting as ordinary looking eggs with silver yolk to
start filling this basket. In particular, our results show
that the mean-divergence model may present new av-
enues for research on popular on-line learning algo-
rithms like EG (Kivinen & Warmuth, 1997), such as
the ways the parameters of the expected utility theory
(Pratt, 1964) may be plugged in the algorithms and
bounds. This also includes the experimental stand-
point, as looking at the results in (Borodin et al.,
2004) (djia and tse in their Table 1: we used the
same data) clearly displays that working with certainty
equivalents or premiums, instead of returns like in the
original EG, skyrockets returns to the point that we be-
come much more than a legal contender to ANTICOR

(Borodin et al., 2004): we may beat it by orders of
magnitude.

Table 6. Premiums on s&p500: pm, pkl, pis (left to right).
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