
Generalized Boosting Algorithms for Convex Optimization

Alexander Grubb agrubb@cmu.edu
J. Andrew Bagnell dbagnell@ri.cmu.edu

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA

Abstract

Boosting is a popular way to derive power-
ful learners from simpler hypothesis classes.
Following previous work (Mason et al., 1999;
Friedman, 2000) on general boosting frame-
works, we analyze gradient-based descent al-
gorithms for boosting with respect to any
convex objective and introduce a new mea-
sure of weak learner performance into this
setting which generalizes existing work. We
present the first weak to strong learning
guarantees for the existing gradient boost-
ing work for smooth convex objectives, and
also demonstrate that this work fails for non-
smooth objectives. To address this issue,
we present new algorithms which extend this
boosting approach to arbitrary convex loss
functions and give corresponding weak to
strong convergence results. In addition, we
demonstrate experimental results that sup-
port our analysis and demonstrate the need
for the new algorithms we present.

1. Introduction

Boosting (Schapire, 2002) is a versatile meta-algorithm
for combining together multiple simple hypotheses, or
weak learners, to form a single complex hypothesis
with superior performance. The power of this meta-
algorithm lies in its ability to craft hypotheses which
can achieve arbitrary performance on training data us-
ing only weak learners that perform marginally better
than random. This weak to strong learning guarantee
is a critical feature of boosting.

To date, much of the work on boosting has focused
on optimizing the performance of this meta-algorithm
with respect to specific loss functions and problem set-

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

tings. The AdaBoost algorithm (Freund & Schapire,
1997) is perhaps the most well known and most suc-
cessful of these. AdaBoost focuses specifically on the
task of classification via the minimization of the ex-
ponential loss by boosting weak binary classifiers to-
gether, and can be shown to be near optimal in this
setting. Looking to extend upon the success of Ad-
aBoost, related algorithms have been developed for
other domains, such as RankBoost (Freund et al.,
2003) and mutliclass extensions to AdaBoost (Mukher-
jee & Schapire, 2010). Each of these algorithms pro-
vides both strong theoretical and experimental re-
sults for their specific domain, including correspond-
ing weak to strong learning guarantees, but extending
boosting to these and other new settings is non-trivial.

Recent attempts have been successful at generalizing
the boosting approach to certain broader classes of
problems, but their focus is also relatively restricted.
Mukherjee and Schapire (2010) present a general the-
ory of boosting for multiclass classification problems,
but their analysis is restricted to the multiclass setting.
Zheng et al. (2007) give a boosting method which
utilizes the second-order Taylor approximation of the
objective to optimize smooth, convex losses. Unfortu-
nately, the corresponding convergence result for their
algorithm does not exhibit the typical weak to strong
guarantee seen in boosting analyses and their results
apply only to weak learners which solve the weighted
squared regression problem.

Other previous work on providing general algorithms
for boosting has shown that an intuitive link between
algorithms like AdaBoost and gradient descent exists
(Mason et al., 1999; Friedman, 2000), and that many
existing boosting algorithms can be reformulated to
fit within this gradient boosting framework. Under
this view, boosting algorithms are seen as performing
a modified gradient descent through the space of all
hypotheses, where the gradient is calculated and then
used to find the weak learner which will provide the
best descent direction. Unfortunately, these previous
attempts failed to make explicit all the theory connect-

Generalized Boosting Algorithms for Convex Optimization

ing these two areas and were unable to provide weak
to strong convergence results for this general setting.

Our work aims to rigorously define the mathematics
underlying this connection and show how standard
boosting notions such as that of weak learner perfor-
mance can be extended to the general case. Using this
foundation, we will present the first weak to strong
learning results for the existing gradient boosting al-
gorithm (Mason et al., 1999; Friedman, 2000) for the
special case of smooth convex objectives.

Furthermore, we will also demonstrate that this ex-
isting algorithm can fail to converge on non-smooth
objectives. To rectify this issue, we present new al-
gorithms which do have corresponding strong conver-
gence guarantees for all convex objectives, and demon-
strate experimentally that these new algorithms often
outperform the existing algorithm in practice.

Our analysis is modeled after existing work on gradient
descent algorithms for optimizing over vector spaces.
For convex problems standard gradient descent algo-
rithms are known to provide good convergence results
(Zinkevich, 2003; Boyd & Vandenberghe, 2004; Hazan
et al., 2006) and are widely applicable. However, as de-
tailed above, the modified gradient descent procedure
which corresponds to boosting does not directly follow
the gradient, instead selecting a descent direction from
a restricted set of allowable search directions. This
restricted gradient descent procedure requires new ex-
tensions to the previous work on gradient descent op-
timization algorithms.

A related form of gradient descent with gradient errors
has previously been studied in the analysis of budgeted
learning (Sutskever, 2009), and general results related
to gradient projection errors are given in the litera-
ture. While these results apply to the boosting setting,
they lack any kind of weak to strong guarantee. Con-
versely, we are primarily interested in studying what
algorithms and assumptions are needed to overcome
projection error and achieve strong final performance
even in the face of mediocre weak learner performance.

The rest of the paper is as follows. We first explicitly
detail the Hilbert space of functions and various op-
erations within this Hilbert space. Then, we discuss
how to quantify the performance of a weak learner in
terms of this vector space. Following that, we present
theoretical weak to strong learning guarantees for both
the existing and our new algorithms. Finally we pro-
vide experimental results comparing all algorithms dis-
cussed on a variety of tasks.

2. L2 Function Space

Previous work (Mason et al., 1999; Friedman, 2000)
has presented the theory underlying function space
gradient descent in a variety of ways, but never in a
form which is convenient for convergence analysis. Re-
cently, Ratliff (2009) proposed the L2 function space
as a natural match for this setting. This representa-
tion as a vector space is particularly convenient as it
dovetails nicely with the analysis of gradient descent
based algorithms.

Given a measurable input set X , an output vector
space V, and measure µ, the function space L2(X ,V, µ)
is the set of all functions f : X → V such that the
Lebesgue integral ∫

X
‖f(x)‖2V dµ (1)

is finite. We will specifically consider the special case
where µ is a probability measure P with density func-
tion p(x), so that (1) is equivalent to EP [‖f(x)‖2].

This Hilbert space has a natural inner product and
norm:

〈f, g〉P =

∫
X
〈f(x), g(x)〉V p(x) dx

= EP [〈f(x), g(x)〉V]

‖f‖2P = 〈f, f〉P
= EP [‖f(x)‖2V].

We parameterize these operations by P to denote their
reliance on the underlying data distribution. In the
case of the empirical probability distribution P̂ these
quantities are simply the corresponding empirical ex-
pected value. For example, the inner product becomes

〈f, g〉P̂ =
1

N

N∑
n=1

〈f(xn), g(xn)〉V

In order to perform gradient descent over such a space,
we need to compute the gradient of functionals over
said space. We will use the notion of a subgradient to
allow for optimization of non-smooth functions. The
standard subgradient definition:

R[f] ≥ R[g] + 〈f − g,∇R[f]〉P

where ∇R[f] is a (function space) subgradient of the
functional R : L2(P) → R at f , makes these sub-
gradients relatively straightforward to compute for a
number of functionals.

Generalized Boosting Algorithms for Convex Optimization

For example, for the point-wise loss over a set of train-
ing examples,

Remp[f] =
1

N

N∑
n=1

l(f(xn), yn)

the subgradients in L2(X ,V, P̂) are the set:

∇Remp[f] = {g | g(xn) ∈ ∇l(f(xn), yn)}

where ∇l(f(xn), yn) is the set of subgradients of the
pointwise loss l with respect to f(xn). For differen-
tiable l, this is just the partial derivative of l with
respect to input f(xn).

Similarly the expected loss,

R[f] = EP [EY [l(f(x), y(x))]],

has the following subgradients in L2(X ,V, P):

∇R[f] = {g | g(x) ∈ EY [∇l(f(x), y)]} .

3. Restricted Gradient Descent

We now outline the gradient-based view of boosting
(Mason et al., 1999; Friedman, 2000) and how it re-
lates to gradient descent. In contrast to the standard
gradient descent algorithm, boosting is equivalent to
what we will call the restricted gradient descent set-
ting, where the gradient is not followed directly, but
is instead replaced by another search direction from
a set of allowable descent directions. We will refer to
this set of allowable directions as the restriction set.

From a practical standpoint, a projection step is neces-
sary when optimizing over function space because the
functions representing the gradient directly are diffi-
cult to represent and do not generalize to new inputs
well. In terms of the connection to boosting, the re-
striction set corresponds directly to the set of hypothe-
ses generated by a weak learner.

We are primarily interested in two aspects of this re-
stricted gradient setting: first, appropriate ways to
find the best allowable direction of descent, and sec-
ond, a means of quantifying the performance of a re-
striction set. Conveniently, the function space view of
boosting provides a simple geometric explanation for
these concerns.

Given a gradient∇ and candidate direction h, the clos-
est point h′ along h can be found using vector projec-
tion:

h′ =
〈∇, h〉
‖h‖2

h (2)

Algorithm 1 Naive Gradient Projection Algorithm

Given: starting point f0, step size schedule {ηt}Tt=1

for t = 1, . . . , T do
Compute subgradient ∇t ∈ ∇R[f].
Project ∇t onto hypothesis space H, finding near-
est direction h∗.
Update f : ft ← ft−1 − ηt

〈h∗,∇t〉
‖h∗‖2 h

∗.

end for

Now, given a set of possible descent directions H the
vector h∗ which minimizes the resulting projection er-
ror (2) also maximizes the projected length:

h∗ = arg max
h∈H

〈∇, h〉
‖h‖

. (3)

This is a generalization of the projection operation in
Mason et al. (1999) to functions other than classifiers.

Alternatively, one can find h∗ by directly minimizing
the distance between ∇ and h∗,

h∗ = arg min
h∈H

‖∇ − h‖2 (4)

thereby reducing the final projected distance found us-
ing (2). This projection operation is equivalent to the
one given by Friedman (2000).

These two projection methods provide relatively sim-
ple ways to search over any restriction set for the ’best’
descent direction. The straightforward algorithm (Ma-
son et al., 1999; Friedman, 2000) for peforming re-
stricted gradient descent which uses these projection
operations is given in Algorithm 1.

In order to analyze the restricted gradient descent al-
gorithms, we need a way quantify the relative strength
of a given restriction set. A guarantee on the perfor-
mance of each projection step, typically referred to
in the traditional boosting literature as the edge of a
given weak learner is crucial to the convergence anal-
ysis of restricted gradient algorithms.

For the projection which maximizes the inner product
as in (3), we can use the generalized geometric notion
of angle to bound performance by requiring that

〈∇, h〉 ≥ cos θ‖∇‖‖h‖

while the equivalent requirement for the norm-based
projection in (4) is

‖∇ − h‖2 ≤ (1− (cos θ)2)‖∇‖2.

Parameterizing by cos θ, we can now concisely define
the performance potential of a restricted set of search
directions, which will prove useful in later analysis.

Generalized Boosting Algorithms for Convex Optimization

Definition 1. A restriction set H has edge γ if for
every projected gradient ∇ there exists a vector h ∈ H
such that either 〈∇, h〉 ≥ γ‖∇‖‖h‖ or ‖∇ − h‖2 ≤
(1− γ2)‖∇‖2.

This definition of edge is parameterized by γ ∈ [0, 1],
with larger values of edge corresponding to lower pro-
jection error and faster algorithm convergence.

3.1. Relationship to Previous Boosting Work

Though these projection operations apply to any L2

hypothesis set, they also have convenient interpreta-
tions when it comes to specific function classes tradi-
tionally used as weak learners in boosting.

For a classification-based weak learner with outputs in
{−1,+1} and an optimization over single output func-
tions f : X → R, projecting as in (3) is equivalent to
solving the weighted classification problem over exam-
ples {xn, sgn(∇(xn))}Nn=1 and weights wn = |∇(xn)|.

The projection via norm minimization in (4) is directly
analogous to solving the regression problem

h∗ = arg min
h∈H

1

N

N∑
n=1

‖∇(xn)− f(xn)‖2

using the gradient outputs as regression targets.

Similarly, our notion of weak learner performance in
Definition 1 can be related to previous work. Like our
measure of edge which quantifies performance over the
trivial hypothesis h(x) = 0,∀x, previous work has used
similar quantities which capture the advantage over
baseline hypotheses.

For weak learners which are binary classifiers, as is the
case in AdaBoost (Freund & Schapire, 1997), there is
an equivalent notion of edge which refers to the im-
provement in performance over predicting randomly.
We can show that Definition 1 is an equivalent mea-
sure:

Theorem 1. For a weak classifier space H with out-
puts in {−1,+1}, the following statements are equiva-
lent: (1) H has edge γ for some γ > 0, and (2) for any
non-negative weights wn over training data xn, there
is a classifier h ∈ H which achieves an error of at most
(1

2 −
δ
2)

∑
n wn for some δ > 0.

A similar result can be shown for more recent work on
multiclass weak learners (Mukherjee & Schapire, 2010)
when optimizing over functions with mutliple outputs
f : X → Rk:

Theorem 2. For a weak multiclass classifier space H
with outputs in {1, . . . ,K}, let the modified hypothe-
sis space H′ contain a hypothesis h′ : X → RK for

each h ∈ H such that h′(x)k = 1 if h(x) = k and
h′(x) = − 1

K−1 otherwise. Then, the following state-
ments are equivalent: (1) H′ has edge γ for some
γ > 0, and (2) H satisfies the performance over base-
line requirements detailed in Theorem 1 of (Mukherjee
& Schapire, 2010).

Proofs and more details on these equivalences can be
found in the extended version of the paper (Grubb &
Bagnell, 2011).

4. Convergence Analysis

We now focus on analyzing the behavior of variants of
the basic restricted gradient descent algorithm shown
in Algorithm 1 on problems of the form:

min
f∈F
R[f],

where allowable descent directions are taken from some
restriction set H ⊂ F .

In line with previous boosting work, we will specifically
consider cases where the edge requirement in Defini-
tion 1 is met for some γ, and seek convergence results
where the empirical objective Remp[ft] approaches the
optimal training performance minf∈F Remp[f].

While we consider L2 function space specifically, the
convergence analysis presented can be extended to op-
timization over any Hilbert space using restricted gra-
dient descent.

4.1. Smooth Convex Optimization

The convergence analysis of Algorithm 1 relies on two
critical properties of the objective functional R.

A functional R is λ-strongly convex if ∀f, f ′ ∈ F :

R[f ′] ≥ R[f] + 〈∇R[f], f ′ − f〉 +
λ

2
‖f ′ − f‖2

for some λ > 0, and Λ-strongly smooth if

R[f ′] ≤ R[f] + 〈∇R[f], f ′ − f〉 +
Λ

2
‖f ′ − f‖2

for some Λ > 0. Using these two properties, we can
now derive a convergence result for unconstrained op-
timization over smooth functions.

Theorem 3. Let Remp be a λ-strongly convex and Λ-

strongly smooth functional over L2(X , P̂) space. Let
H ⊂ L2 be a restriction set with edge γ. Let f∗ =
arg minf∈FRemp[f]. Given a starting point f0 and

step size ηt = 1
Λ , after T iterations of Algorithm 1

we have:

Remp[fT]−Remp[f∗] ≤ (1−γ
2λ

Λ
)T (Remp[f0]−Remp[f∗]).

Generalized Boosting Algorithms for Convex Optimization

The result above holds for the fixed step size 1
Λ as well

for step sizes found using a line search along the de-
scent direction. The analysis uses the strong smooth-
ness requirement to obtain a quadratic upper bound
on the function and then makes guaranteed progress
by selecting the step size which minimizes this bound,
with larger gains made for larger values of γ. A com-
plete proof is provided in the extended version of the
paper (Grubb & Bagnell, 2011).

Theorem 3 gives, for smooth objective functionals, a

convergence rate of O((1− γ2λ
Λ)T). This is very similar

to the O((1−4γ2)
T
2) convergence of AdaBoost (Freund

& Schapire, 1997), with both requiring O(log(1
ε)) iter-

ations to get performance within ε of optimal. While
the AdaBoost result generally provides tighter bounds,
this relatively naive method of gradient projection is
able to obtain reasonably competitive convergence re-
sults while being applicable to a much wider range of
problems. Additionally, the proposed method derives
no benefit from loss-specific optimizations and can use
a much broader class of weak learners. This compar-
ison is a common scenario within optimization: while
highly specialized algorithms can often perform bet-
ter on specific problems, general solutions often ob-
tain equally impressive results, albeit less efficiently,
while requiring much less effort to implement. One
such example is the Frank-Wolfe algorithm (1956) for
quadratic programming.

Unfortunately, the naive approach to restricted gra-
dient descent breaks down quickly in more general
cases such as non-smooth objectives. Consider the
following example objective over two points x1, x2:
R[f] = |f(x1)|+ |f(x2)|. If we consider the hypothesis
set h ∈ H such that h(x1) ∈ {−1,+1} and h(x2) = 0,
clearlyH has positive edge with respect to the possible
subgradients of R. But, any combination of hypothe-
ses in H will always leave the output of x2 unchanged,
leading to arbitrarily poor performance.

An algorithm which only ever attempts to project sub-
gradients ofR, such as Algorithm 1, will not be able to
obtain strong performance results for cases like these.
The algorithms in the next section overcome this ob-
stacle by projecting modified versions of the subgradi-
ents of the objective at each iteration.

4.2. General Convex Optimization

For the convergence analysis of general convex func-
tions we now switch to using the no-regret learning
framework. We now want to minimize the regret :

T∑
t=1

[Rt[ft]−Rt[f∗]]

Algorithm 2 Repeated Gradient Projection Algo-
rithm

Given: starting point f0, step size schedule {ηt}Tt=1

for t = 1, . . . , T do
Compute subgradient ∇t ∈ ∇R[f].
Let ∇′ = ∇t, h∗ = 0.
for k = 1, . . . , t do

Project ∇′ onto hypothesis space H, finding
nearest direction h∗k.

h∗ ← h∗ +
〈h∗k,∇′〉
‖h∗k‖2

h∗k.

∇′ ← ∇′ − h∗k.
end for
Update f : ft ← ft−1 − ηth∗.

end for

over a sequence of convex functionals Rt, where f∗ =
arg min
f∈F

∑T
t=1Rt[f] is the fixed hypothesis which min-

imizes loss in hindsight.

By showing that the average regret approaches 0 as
T grows large, for decreasing step sizes and a fixed
objective function Rt = R for all timesteps t, it can
be shown that the optimality gap R[ft] − R[f∗] also
approaches 0.

In what follows, we restrict our analysis to the case
when Rt = R. This is because the true online setting
typically involves receiving a new dataset at every time
t, and hence a different data distribution P̂t, effectively
changing the underlying L2 function space at every
time step, making comparison of quantities at different
time steps difficult in the analysis. The convergence
analysis for the online case is beyond the scope of this
paper and is not presented here.

The convergence results to follow are similar to previ-
ous convergence results for the standard gradient de-
scent setting (Zinkevich, 2003; Hazan et al., 2006), but
with a number of additional error terms due to the gra-
dient projection step. Sutskever (2009) has previously
studied the convergence of gradient descent with gra-
dient projection errors using an algorithm similar to
Algorithm 1, but the analysis does not focus on the
weak to strong learning guarantee we seek. In order
to obtain this guarantee we now present two new al-
gorithms.

Our first general convex solution, shown in Algorithm
2, overcomes this issue by using a meta-boosting strat-
egy. At each iteration t instead of projecting the
gradient ∇t onto a single hypothesis h∗, we use the
naive algorithm to construct h∗ out of a small num-

Generalized Boosting Algorithms for Convex Optimization

ber of restricted steps, optimizing over the distance
‖∇t − h∗‖2. By increasing the number of weak learn-
ers trained at each iteration over time, we effectively
decrease the gradient projection error at each itera-
tion. As the average projection error approaches 0, the
performance of the combined hypothesis approaches
optimal.

Theorem 4. Let Remp be a λ-strongly convex func-
tional over F . Let H ⊂ F be a restriction set with edge
γ. Let ‖∇R[f]‖P̂ ≤ G. Let f∗ = arg minf∈FRemp[f].

Given a starting point f0 and step size ηt = 2
λt , after

T iterations of Algorithm 2 we have:

1

T

T∑
t=1

[Remp[ft]−Remp[f∗]] ≤ G2

λT
(1 + lnT +

1− γ2

γ2
).

The proof (Grubb & Bagnell, 2011) relies on the fact
that as the number of iterations increases, our gra-
dient projection error approaches 0 at the rate given
in Theorem 3, causing the behavior of Algorithm 2
to approach the standard gradient descent algorithm.
The additional error term in the result is a bound on
the geometric series describing the errors introduced
at each time step.

Theorem 5. Let Remp be a convex functional over
F . Let H ⊂ F be a restriction set with edge γ. Let
‖∇R[f]‖P̂ ≤ G and ‖f‖P̂ ≤ F for all f ∈ F . Let
f∗ = arg minf∈FRemp[f]. Given a starting point f0

and step size ηt = 1√
t
, after T iterations of Algorithm

2 we have:

1

T

T∑
t=1

[Remp[ft]−Remp[f∗]] ≤ F 2

2
√
T

+
G2

√
T

+2FG
1− γ2

γ2
.

Again, the result is similar to the standard gradient
descent result, with an added error term dependent
on the edge γ.

An alternative version of the repeated projection al-
gorithm allows for a variable number of weak learners
to be trained at each iteration. An accuracy thresh-
old for each gradient projection can be derived given
a desired accuracy for the final hypothesis, and this
threshold can be used to train weak learners at each
iteration until the desired accuracy is reached.

Algorithm 3 gives a second method for optimizing over
convex objectives. Like the previous approach, the
projection error at each time step is used again in pro-
jection, but a new step is not taken immediately to
decrease the projection error. Instead, this approach
keeps track of the residual error left over after projec-
tion and includes this error in the next projection step.

Algorithm 3 Residual Gradient Projection Algo-
rithm

Given: starting point f0, step size schedule {ηt}Tt=1

Let ∆ = 0.
for t = 1, . . . , T do

Compute subgradient ∇t ∈ ∇R[f]. ∆← ∆ +∇t.

Project ∆ onto hypothesis space H, finding near-
est direction h∗.
Update f : ft ← ft−1 − ηt

〈h∗,∆〉
‖h∗‖2 h

∗.

Update residual: ∆← ∆− 〈h
∗,∆〉
‖h∗‖2 h

∗

end for

This forces the projection steps to eventually account
for past errors, preventing the possibility of systematic
error being adversarially introduced through the weak
learner set.

As with Algorithm 2, we can derive similar conver-
gence results for strongly-convex and general convex
functionals for this new residual-based algorithm.

Theorem 6. Let Remp be a λ-strongly convex func-
tional over F . Let H ⊂ F be a restriction set with edge
γ. Let ‖∇R[f]‖P̂ ≤ G. Let f∗ = arg minf∈FRemp[f].

Let c = 2
γ2 . Given a starting point f0 and step size

ηt = 1
λt , after T iterations of Algorithm 3 we have:

1

T

T∑
t=1

[R[ft]−Remp[f∗]] ≤ 2c2G2

λT
(1 + lnT +

2

T
).

Theorem 7. Let Remp be a convex functional over
F . Let H ⊂ F be a restriction set with edge γ. Let
‖∇R[f]‖P̂ ≤ G and ‖f‖P̂ ≤ F for all f ∈ F . Let f∗ =
arg minf∈FRemp[f]. Let c = 2

γ2 . Given a starting

point f0 and step size ηt = 1√
t
, after T iterations of

Algorithm 3 we have:

1

T

T∑
t=1

[Remp[ft]−Remp[f∗]] ≤ F 2

2
√
T

+
c2G2

√
T

+
c2G2

2T
3
2

.

Again, the results are similar bounds to those from the
non-restricted case. Like the previous proof, the extra
terms in the bound come from the penalty paid in pro-
jection errors at each time step, but here the residual
serves as a mechanism for pushing the error back to
later projections. The analysis relies on a bound on
the norm of the residual ∆, derived by observing that
it is increased by at most the norm of the gradient
and then multiplicatively decreased in projection due
to the edge requirement. This bound on the size of
the residual presents itself in the c term present in the

Generalized Boosting Algorithms for Convex Optimization

Figure 1. Test set loss vs number of weak learners used for
a maximum margin structured imitation learning problem
for all three restricted gradient algorithms.

bound. Complete proofs are presented in the extended
version of the paper (Grubb & Bagnell, 2011).

In terms of efficiency, these two algorithms are sim-
ilarly matched. For the strongly convex case, the
repeated projection algorithm takes O(T 2) projected
steps to obtain an average regret O(lnT

T + 1
γ2T), while

the residual algorithm uses O(T) projected steps and
has average regret O(lnT

γ4T). The major difference lies
in frequency of the gradient evaluation, where the
repeated projection algorithm evaluates the gradient
much less often than the than the residual algorithm.

5. Experimental Results

We present preliminary experimental results for these
new algorithms on three tasks, an imitation learning
problem, a ranking problem and a set of sample clas-
sification tasks.

The first experimental setup is an imitation learning
problem based on structured prediction called Maxi-
mum Margin Planning (Ratliff et al., 2009). In this
setting, a demonstrated policy is provided as exam-
ple behavior and the goal is to learn a cost function
over features of the environment which produce poli-
cies with similar behavior. This is done by optimizing
over a convex, non-smooth loss function which mini-
mizes the difference in costs between the current and
demonstrated behavior. Previous attempts in the lit-
erature have been made to adapt boosting to this set-
ting (Ratliff et al., 2009; Bradley, 2009), similar to the
naive algorithm presented here, but no convergence
results for this settings are known.

Figure 2. Test set disagreement (fraction of violated con-
straints) vs number of weak learners used for the MSLR-
WEB10K ranking dataset for all three restricted gradient
algorithms.

Figure 1 shows the results of running all three of the al-
gorithms presented here on a sample planning dataset
from this domain. The weak learners used were neural
networks with 5 hidden units each.

The second experimental setting is a ranking task
from the Microsoft Learning to Rank Datasets, specif-
ically MSLR-WEB10K, using the ranking version of
the hinge loss and decision stumps as weak learners.
Figure 2 shows the test set disagreement (the percent-
age of violated ranking constraints) plotted against the
number of weak learners.

As a final test, we ran our boosting algorithms on sev-
eral multiclass classification tasks from the UCI Ma-
chine Learning Repository (Frank & Asuncion, 2010),
using the ‘connect4’, ‘letter’, ‘pendigits’ and ‘satimage’
datasets. All experiments used the multiclass exten-
sion to the hinge loss (Crammer & Singer, 2002), along
with multiclass decision stumps for the weak learners.

Of particular interest are the experiments where the
naive approach to restricted gradient descent clearly
fails to converge. In line with the presented con-
vergence results, both non-smooth algorithms ap-
proach optimal training performance at relatively sim-
ilar rates, while the naive approach cannot overcome
this particular condition and fails to achieve strong
performance.

Acknowledgements

We would like to thank Kevin Waugh, Daniel Munoz
and the ICML reviewers for their helpful feedback.

Generalized Boosting Algorithms for Convex Optimization

Figure 3. Performance on multiclass classification experiments over the UCI ‘connect4’, ‘letter’, ‘pendigits’ and ‘satimage’
datasets. The algorithms shown are the naive projection (black dashed line), repeated projection steps (red solid line),
and the residual projection algorithm (blue long dashed line).

This work was conducted through collaborative par-
ticipation in the Robotics Consortium sponsored by
the U.S Army Research Laboratory under the Col-
laborative Technology Alliance Program, Cooperative
Agreement W911NF-10-2-0016.

References

Boyd, S. and Vandenberghe, L. Convex Optimization.
Cambridge University Press, New York, NY, USA,
2004.

Bradley, D. M. Learning in Modular Systems. PhD
thesis, The Robotics Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA, 2009.

Crammer, K. and Singer, Y. On the algorithmic im-
plementation of multiclass kernel-based vector ma-
chines. J. Mach. Learn. Res., 2:265–292, March
2002.

Frank, A. and Asuncion, A. UCI machine learning
repository, 2010. URL http://archive.ics.uci.

edu/ml.

Frank, M. and Wolfe, P. An algorithm for quadratic
programming. Naval Research Logistics Quarterly,
3:95–110, 1956.

Freund, Y. and Schapire, R. E. A decision-theoretic
generalization of on-line learning and an application
to boosting,. Journal of Computer and System Sci-
ences, 55(1):119 – 139, 1997.

Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y.
An efficient boosting algorithm for combining pref-
erences. J. Mach. Learn. Res., 4:933–969, 2003.

Friedman, J. H. Greedy function approximation: A
gradient boosting machine. Annals of Statistics, 29:
1189–1232, 2000.

Grubb, A. and Bagnell, J. A. Generalized boosting
algorithms for convex optimization (with proofs).
arXiv, arXiv:1105.2054 [cs.LG], 2011.

Hazan, E., Kalai, A., Kale, S., and Agarwal, A. Log-
arithmic regret algorithms for online convex opti-
mization. In Proceedings of the 19th Annual Con-
ference on Learning Theory, pp. 499–513, 2006.

Mason, L., Baxter, J., Bartlett, P. L., and Frean, M.
Functional gradient techniques for combining hy-
potheses. In Advances in Large Margin Classifiers.
MIT Press, 1999.

Mukherjee, I. and Schapire, R. E. A theory of multi-
class boosting. In Advances in Neural Information
Processing Systems 22, Cambridge, MA, 2010. MIT
Press.

Ratliff, N. Learning to Search: Structured Predic-
tion Techniques for Imitation Learning. PhD thesis,
The Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, USA, 2009.

Ratliff, N., Silver, D., and Bagnell, J. A. Learning
to search: Functional gradient techniques for imi-
tation learning. Autonomous Robots, 27(1):25–53,
July 2009.

Schapire, R. E. The boosting approach to machine
learning: An overview. In MSRI Workshop on Non-
linear Estimation and Classification, 2002.

Sutskever, I. A simpler unified analysis of budget per-
ceptrons. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, pp. 985–
992, New York, NY, USA, 2009. ACM.

Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen,
K., and Sun, G. A general boosting method and
its application to learning ranking functions for web
search. In Advances in Neural Information Process-
ing Systems 19, Cambridge, MA, 2007. MIT Press.

Zinkevich, M. Online convex programming and gen-
eralized infinitesimal gradient ascent. In Proceed-
ings of the 20th International Conference on Ma-
chine Learning, 2003.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

