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Abstract

We consider the general problem of learn-
ing an unknown functional dependency, f :
X !→ Y, between a structured input space
X and a structured output space Y, from la-
beled and unlabeled examples. We formu-
late this problem in terms of data-dependent
regularization in Vector-valued Reproducing
Kernel Hilbert Spaces (Micchelli & Pontil,
2005) which elegantly extend familiar scalar-
valued kernel methods to the general set-
ting where Y has a Hilbert space structure.
Our methods provide a natural extension
of Manifold Regularization (Belkin et al.,
2006) algorithms to also exploit output
inter-dependencies while enforcing smooth-
ness with respect to input data geometry.
We propose a class of matrix-valued kernels
which allow efficient implementations of our
algorithms via the use of numerical solvers
for Sylvester matrix equations. On multi-
label image annotation and text classification
problems, we find favorable empirical com-
parisons against several competing alterna-
tives.

1. Introduction

The statistical and algorithmic study of regression and
binary classification problems has formed the bedrock
of modern machine learning. Motivated by new appli-
cations, data characteristics, and scalability require-
ments, several generalizations and extensions of these
canonical settings have been vigorously pursued in
recent years. We point out two particularly domi-
nant threads of research: (1) semi-supervised learn-
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ing, i.e., learning from unlabeled examples by exploit-
ing the geometric structure of the marginal probabil-
ity distribution over the input space, and (2) struc-
tured multi-output prediction, i.e., learning to simulta-
neously predict a collection of output variables by ex-
ploiting their inter-dependencies. We point the reader
to Chapelle et al. (2006) and Bakir et al. (2007) for
several representative papers on semi-supervised learn-
ing and structured prediction respectively. In this pa-
per, we consider a problem at the intersection of these
threads: non-parametric estimation of a vector-valued
function, f : X !→ Y, from labeled and unlabeled ex-
amples.

Our starting point is multivariate regression in
a regularized least squares (RLS) framework (see,
e.g., Brown & Zidek (1980)), which is arguably the
classical precursor of much of the modern literature
on structured prediction, multi-task learning, multi-
label classification and related themes that attempt
to exploit output structure. We adopt the for-
malism of Vector-valued Reproducing Kernel Hilbert
Spaces (Micchelli & Pontil, 2005) to pose function
estimation problems naturally in an RKHS of Y-
valued functions, where Y in general can be an
infinite-dimensional (Hilbert) space. We derive an ab-
stract system of functional linear equations that gives
the solution to a generalized Manifold Regulariza-
tion (Belkin et al., 2006) framework for vector-valued
semi-supervised learning. For multivariate problems
with n output variables, the kernel K(·, ·) associated
with a vector-valued RKHS is matrix-valued, i.e., for
any x, z ∈ X , K(x, z) ∈ Rn×n. We show that a natural
choice for a matrix-valued kernel leads to a Sylvester
Equation, whose solution can be obtained relatively ef-
ficiently using techniques in numerical linear algebra.
This leads to a vector-valued Laplacian Regularized
Least Squares (Laplacian RLS) model that learns not
only from the geometry of unlabeled data Belkin et al.
(2006) but also from dependencies among output vari-
ables estimated using an output graph Laplacian. We
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find encouraging empirical results with this approach
on semi-supervised multi-label classification problems,
in comparison to several recently proposed alterna-
tives. We begin this paper with relevant background
material on Manifold Regularization and multivari-
ate RLS. Throughout the paper, we draw attention
to mathematical correspondences between scalar and
vector-valued settings.

2. Background

Let us recall the familiar regression and classification
setting where Y = R. Let k : X × X !→ R be a
standard kernel with an associated RKHS family of
functions Hk. Given a collection of labeled examples,
{xi, yi}li=1, kernel-based prediction methods set up a
Tikhonov regularization problem,

f! = argmin
f∈Hk

1

l

l
∑

i=1

V (yi, f(xi)) + γ‖f‖
2
k (1)

where the choice V (t, y) = (t − y)2 leads to Regular-
ized Least Squares (RLS) while V (t, y) = max(0, 1 −
yt) leads to the SVM algorithm. By the classical
Representer theorem (Schölkopf & Smola, 2002), this
family of algorithms reduces to estimation of finite-
dimensional coefficients, a = [α1, . . . , αl]T , for a min-
imizer that can be shown to have the form f!(x) =
∑l

i=1 αik(x, xi). In particular, RLS reduces to solv-
ing the linear system, [Gl

k + γlIl]a = yl where yl =
[y1 . . . yl]T , Il is the l×l identity matrix andGl

k denotes
the Gram matrix of the kernel over the labeled data,
i.e., (Gl

k)ij = k(xi, xj). Let us now review two exten-
sions of this algorithm: first for semi-supervised learn-
ing, and then for multivariate problems where Y = Rn.

Semi-supervised learning typically proceeds by mak-
ing assumptions such as smoothness of the predic-
tion function with respect to an underlying low-
dimensional data manifold or presence of clusters as
detected using a relatively large set of u unlabeled ex-
amples, {xi}

N=l+u
i=l+1 . We will use the notation N =

l+u. In Manifold Regularization (Belkin et al., 2006),
a nearest neighbor graph, W , is constructed, which
serves as a discrete probe for the geometric structure
of the data. The Laplacian L of this graph provides a
natural intrinsic measure of data-dependent smooth-
ness:

fTLf =
1

2

N
∑

i,j=1

Wij(f(xi)− f(xj))
2

where f = [f(x1) . . . f(xN )]. Thus, it is natural to

extend (1) as follows,

f! = argmin
f∈Hk

1

l

l
∑

i=1

(yi − f(xi))
2 + γA‖f‖

2
k + γIf

TLf

(2)
where γA, γI are referred to as ambient and intrin-
sic regularization parameters. By using reproducing
properties of Hk, the Representer theorem can corre-
spondingly be extended to show that the minimizer
has the form, f!(x) =

∑N
i=1 αik(x, xi) involving both

labeled and unlabeled data. The Laplacian RLS algo-
rithm estimates a = [α1 . . . αN ]T by solving the linear
system [JN

l GN
k + lγILG

N
k + lγAIN ]a = y where GN

k is
the Gram matrix of k with respect to both labeled and
unlabeled examples, IN is the N ×N identity matrix,
JN
l is an N ×N diagonal matrix with first l diagonal

entries equaling 1 and the rest being 0 valued, and y
is the N × 1 label vector with yi = 0, i > l. Laplacian
RLS and Laplacian SVM tend to give similar empirical
performance (Sindhwani et al., 2005).

Consider now two natural approaches to extending
Laplacian RLS for the multivariate case Y = Rn. Let
f = (f1 . . . fn) be components of a vector-valued func-
tion where each fi ∈ Hk. Let the jth output label of
the xi be denoted as yij . Then, one formulation for
multivariate LapRLS is to solve,

f! = argmin
fj∈Hk

1≤j≤n

1

l

l
∑

i=1

n
∑

j=1

(yij − fj(xi))
2 + γA‖fj‖

2
k

+γItrace[F
TLF] (3)

where Fij = fj(xi), 1 ≤ i ≤ N, 1 ≤ j ≤ n. Let α

be an N × n matrix of expansion coefficients, i.e., the
minimizers have the form fj(x) =

∑N
i=1 αijk(xi, x). It

is easily seen that the solution is given by,

[JN
l GN

k + lγILG
N
k + lγAlIN ]α = Y (4)

where Y is the label matrix with Yij = 0 for i > l and
all j. It is clear that this multivariate solution is equiv-
alent to learning each output independently – ignor-
ing prior knowledge such as the availability of a sim-
ilarity graph Wout over output variables. Such prior
knowledge can naturally be incorporated by adding a
smoothing term to (3) which, for example, enforces fi
to be close to fj in the RKHS norm ‖ · ‖k if output
i is similar to output j, i.e., (Wout)ij is sufficiently
large. We defer this development to later in the pa-
per as both these two solutions are special cases of
a broader vector-valued RKHS framework for Lapla-
cian RLS where they correspond to certain choices of
a matrix-valued kernel. We first give a self-contained
review of the language of vector-valued RKHS in the
following section.
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3. Vector-Valued RKHS

The study of RKHS has been extended to vector-
valued functions and further developed and ap-
plied in machine learning (see (Carmeli et al., 2006;
Micchelli & Pontil, 2005; Caponnetto et al., 2008) and
references therein). In the following, denote by X a
nonempty set, Y a real Hilbert space with the inner
product 〈·, ·〉Y , L(Y) the Banach space of bounded lin-
ear operators on Y.

Let YX denote the vector space of all functions f :
X → Y. A function K : X × X → L(Y) is said to
be an operator-valued positive definite kernel if
for each pair (x, z) ∈ X × X , K(x, z) ∈ L(Y) is a
self-adjoint operator and

N
∑

i,j=1

〈yi,K(xi, xj)yj〉Y ≥ 0 (5)

for every finite set of points {xi}Ni=1 in X and {yi}Ni=1

in Y. As in the scalar case, given such a K, there
exists a unique Y-valued RKHS HK with reproducing
kernel K. The construction of the space HK proceeds
as follows. For each x ∈ X and y ∈ Y, we form a
function Kxy = K(., x)y ∈ YX defined by

(Kxy)(z) = K(z, x)y for all z ∈ X.

Consider the set H0 = span{Kxy | x ∈ X, y ∈ Y} ⊂

YX. For f =
∑N

i=1 Kxi
wi, g =

∑N
i=1 Kziyi ∈ H0, we

define

〈 f, g 〉HK
=

N
∑

i,j=1

〈wi,K(xi, zj)yj〉Y .

Taking the closure of H0 gives us the Hilbert space
HK . The reproducing property is

〈f(x), y〉Y = 〈f,Kxy〉HK
for all f ∈ HK . (6)

As in the scalar case, applying Cauchy-Schwarz in-
equality gives

|〈f(x), y〉Y | ≤
√

||K(x, x)|| ||f ||HK
||y||Y .

Thus for each x ∈ X, each y ∈ Y, the evaluation
operator Ex|y : f → 〈f(x), y〉Y is bounded as a linear
operator from HK to R. As in the scalar case, the
converse is true by the Riesz Representation Theorem.

Let Kx : Y → HK be the linear operator with Kxw
defined as above, then

||Kxy||
2
HK

= 〈K(x, x)y, y〉Y ≤ ||K(x, x)|| ||y||2Y ,

which implies that

||Kx : Y → HK || ≤
√

||K(x, x)||,

so that Kx is a bounded operator for each x ∈ X. Let
K∗

x : HK → Y be the adjoint operator of Kx, then
from (6), we have

f(x) = K∗
xf for all x ∈ X, f ∈ HK . (7)

From this we deduce that for all x ∈ X and all f ∈ HK ,

||f(x)||Y ≤ ||K∗
x|| ||f ||HK

≤
√

||K(x, x)|| ||f ||HK
,

that is for each x ∈ X, the evaluation operator Ex :
HK → Y defined by Exf = K∗

xf is a bounded linear
operator. In particular, if κ = supx∈X

√

||K(x, x)|| <
∞, then ||f ||∞ = supx∈X ||f(x)||Y ≤ κ||f ||HK

for all
f ∈ HK . In this paper, we will be concerned with
kernels for which κ < ∞.

3.1. Vector-valued Regularized Least Squares

Let Y be a separable Hilbert space. Let z =
{(xi, yi)mi=1} be the given labeled data. Consider now
the vector-valued version of regularized least square
algorithm in HK , with γ > 0:

fz,γ = arg min
f∈HK

1

m

m
∑

i=1

||f(xi)− yi||
2
Y + γ||f ||2HK

. (8)

From Inverse Problems literature, recall the famil-
iar Tikhonov Regularization form in Hilbert spaces:
argminx∈H1

‖Ax − b‖2H2
+ γ‖x‖2H1

, where H1,H2 are
Hilbert Spaces and A : H1 !→ H2 is a bounded linear
operator. To cast (8) into this familiar form, we can
consider an approach as in Caponnetto & Vito (2007).
First, we set up the sampling operator Sx : HK → Ym

defined by Sx(f) = (f(x1), . . . , f(xm)). By definition,
we have for any f ∈ HK and y = (y1, . . . , ym) ∈ Ym,
〈Sxf,y〉Ym =

∑m
i=1〈Sxi

f, yi〉Y =
∑m

i=1〈f, S
∗
xi
yi〉HK

=
∑m

i=1〈f,Kxi
yi〉HK

= 〈f,
∑m

i=1 Kxi
yi〉HK

. It follows
that the adjoint operator S∗

x
: Ym → HK is given by

S∗
x
y = S∗

x
(y1, . . . , ym) =

m
∑

i=1

Kxi
yi, and the operator

S∗
x
Sx : HK → HK is given by S∗

x
Sxf =

m
∑

i=1

Kxi
f(xi).

We can now cast expression (8) into the familiar
Tikhonov form,

fz,γ = arg min
f∈HK

1

m
||Sxf − y||2Ym + γ||f ||2HK

.

This problem has a unique solution, given by

fz,γ = (S∗
x
Sx +mγI)−1S∗

x
y (9)

This function has the explicit form fz,γ =
∑m

i=1 Kxi
ai

with fz,γ(x) =
∑m

i=1 K(x, xi)ai, where the vectors
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ai ∈ Y satisfy the m linear equations

m
∑

j=1

K(xi, xj)aj +mγai = yi. (10)

for 1 ≤ i ≤ m. This result was first reported in
Micchelli & Pontil (2005). It is a special case of our
Proposition 1 below. In the scalar case Y = R it spe-
cializes to the well known Regularized Least squares
solution reviewed in Section 2. Note that in the
finite-dimensional case Y = Rn, the kernel function
is matrix-valued; and unless it is diagonal, outputs are
not treated independently.

4. Vector-valued Manifold
Regularization

Let z = {(xi, yi)li=1} ∪ {(xi)
u+l
i=l+1} be the given set of

labeled and unlabeled data. Let M : Yu+l → Yu+l ∈
L(Yu+l) be a symmetric, positive operator, that is
〈y,My〉Yu+l ≥ 0 for all y ∈ Yu+l. Here Yu+l is the
usual u+ l-direct product of Y, with inner product

〈(y1, . . . , yu+l), (w1, . . . , wu+l)〉Yu+l =
u+l
∑

i=1

〈yi, wi〉Y .

For f ∈ HK , let f = (f(x1), . . . , f(xu+l)) ∈ Yu+l.
Consider the following optimization problem

fz,γ = arg min
f∈HK

1

l

l
∑

i=1

V (f(xi), yi) + γA||f ||
2
K

+γI〈f ,M f〉Yu+l , (11)

where V is some convex error function, and γA, γI > 0
are regularization parameters.

4.1. Representer Theorem

Theorem 1. The minimization problem (11) has a

unique solution, given by fz,γ =
∑u+l

i=1 Kxi
ai for some

vectors ai ∈ Y, 1 ≤ i ≤ u+ l.

Proof. Denote the right handside of (11) by Il(f).
Then Il(f) is coercive and strictly convex in f ,
and thus has a unique minimizer. Let HK,x =

{
∑u+l

i=1 Kxi
yi : y ∈ Yu+l}. For f ∈ H⊥

K,x, by the
reproducing property, the sampling operator Sx satis-
fies

〈Sxf,y〉Yu+l = 〈f,
u+l
∑

i=1

Kxi
yi〉HK

= 0.

This holds true for all y ∈ Yu+l, thus

Sxf = (f(x1), . . . , f(xu+l)) = 0.

For an arbitrary f ∈ HK , consider the orthogonal de-
composition f = f0 + f1, with f0 ∈ HK,x, f1 ∈ H⊥

K,x.
Then, because ||f0 + f1||2HK

= ||f0||2HK
+ ||f1||2HK

, the
result just obtained shows that

Il(f) = Il(f0 + f1) ≥ Il(f0)

with equality if and only if ||f1||HK
= 0, that is f1 = 0.

Thus the minimizer of (11) must lie in HK,x.

4.2. Vector-valued Laplacian RLS

For manifold regularization of vector-valued functions
using least square error, the minimization problem is

fz,γ = argmin
1

l

l
∑

i=1

||f(xi)− yi||
2
Y + γA||f ||

2
K

+γI〈f ,M f〉Yu+l , (12)

for some γA > 0, γI > 0. The operator M : Yu+l →
Yu+l can be expressed as an operator-valued matrix
M = (Mij)

u+l
i,j=1 of size (u + l) × (u + l), with each

Mij : Y → Y being a linear operator, so that (M f)i =
∑u+l

j=1 Mijfj =
∑u+l

j=1 Mijf(xj).

Proposition 1. The minimization problem (12) has a

unique solution fz,γ =
∑u+l

i=1 Kxi
ai, where the vectors

ai ∈ Y satisfy the u+ l linear equations:

u+l
∑

j=1

K(xi, xj)aj+lγI

u+l
∑

j,k=1

MikK(xk, xj)aj+lγAai = yi,

(13)
for 1 ≤ i ≤ l, and

γI

u+l
∑

j,k=1

MikK(xk, xj)aj + γAai = 0, (14)

for l + 1 ≤ i ≤ u+ l.

Remark 1. We emphasize that in general, the vec-
tors ai’s can be infinite dimensional, being elements
of Y. Thus (13) and (14) are generally linear sys-
tems of functional equations. The finite dimensional
case, where we have a system of linear equations, is
discussed below.

Proof. We know that (12) has a unique solution by
Theorem 1. Using the sampling operator Sx, we write

fz,γ = argmin
1

l
||Sxl

f − y||2Yl + γA||f ||
2
K

+γI〈Sx,u+lf,MSx,u+lf〉Yu+l .

Differentiating gives

fz,γ = (S∗
xl
Sxl

+ lγAI + lγIS
∗
x,u+lMSx,u+l)

−1S∗
xl
y.
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This is equivalent to

(S∗
xl
Sxl

+ lγAI + lγIS
∗
x,u+lMSx,u+l)fz,γ = S∗

xl
y.

By definition of the sampling operators, this is

l
∑

i=1

Kxi
fz,γ(xi) + lγAfz,γ + lγI

u+l
∑

i=1

Kxi
(M fz,γ)i

=
l

∑

i=1

Kxi
yi,

which we will rewrite as

fz,γ = −
γI
γA

u+l
∑

i=1

Kxi
(M fz,γ)i

+
l

∑

i=1

Kxi

yi − fz,γ(xi)

lγA
.

This shows that there are vectors ai’s in Y such
that fz,γ =

∑u+l
i=1 Kxi

ai. We have fz,γ(xi) =
∑u+l

j=1 K(xi, xj)aj , and

(M fz,γ)i =
u+l
∑

k=1

Mik

u+l
∑

j=1

K(xk, xj)aj .

Thus we have for 1 ≤ i ≤ l:

ai = −
γI
γA

u+l
∑

k=1

Mik

u+l
∑

j=1

K(xk, xj)aj

+
yi −

∑u+l
j=1 K(xi, xj)aj

lγA
,

which gives formula (13). Similarly, ai =

− γI

γA

∑u+l
j,k=1 MikK(xk, xj)aj , for l + 1 ≤ i ≤ u + l,

implying (14). This completes the proof.

Example 1. For Y = R, and choosing M to be the
graph Laplacian, it can be easily verified that (13,14)
specializes to (2). This gives the scalar case for mani-
fold regularization as obtained in Belkin et al. (2006).
Example 2. For Y = Rn (or any n-dimensional inner
product space), the kernel K(x, z) is an n× n matrix.
Let G be the Nn×Nn block matrix, whose (i, j) block
is the n × n matrix K(xi, xj), where N = l + u. Let
a = (a1, . . . , au+l) and y = (y1, . . . , yu+l) be column
vectors in Rn(u+l), with each ai, yi ∈ Rn, and yl+1 =
. . . = yu+l = 0. Then the system of linear equations
(13), (14) becomes

(

JNn
nl G+ lγIMG+ lγAINn

)

a = y, (15)

where M now is a positive semidefinite matrix of size
n(u+ l)× n(u+ l), JNn

nl = diag(1, . . . , 1, 0, . . . , 0), the
Nn×Nn diagonal matrix where the first nl diagonal
positions are 1, and the rest 0.

4.3. Vector-valued graph Laplacian

LetG = (V,E) be an undirected graph of size |V | = N ,
with symmetric, nonnegative weight matrix W . For
an Rn-valued function f = (f1, . . . , fn), we define
∆f = (Lf1, . . . , Lfn), where L is the scalar Laplacian.
Thus one can set ∆ to be a block diagonal matrix of
size nN × nN , with each block (i, i) being the scalar
graph Laplacian of size N×N . For f = (fk)nk=1, where
fk = (fk(x1), . . . , fk(xN )), we have 〈f ,∆f〉RnN =
∑n

k=1〈fk, Lfk〉RN = 1
2

∑N
i,j=1 Wij ||f(xi)−f(xj)||2Rn . It

is clear that here we have ∆ = In ⊗ L, where ⊗ de-
notes the Kronecker (tensor) matrix product (compare
with the examples of the last section). It is straight-
forward to generalize to Y-valued function spaces,
where Y is any separable Hilbert space, by defining
(∆f)i =

∑N
j=1 Wij(f(xi)− f(xj)), and

〈f ,∆f〉YN =
1

2

N
∑

i,j=1

Wij ||f(xi)− f(xj)||
2
Y .

Example 3. Using notation from 4.2, let M = L ⊗ In
and K(x, z) = k(x, z)In where k(x, z) is a scalar kernel
and In is the n×n identity matrix. Then (15) reduces
to Multivariate Laplacian RLS (3) which is equivalent
to n independent scalar Laplacian RLS solutions.

5. Matrix-valued Kernels and
Numerical Implementation

Proposition 1 provides general functional solutions to
Vector-valued Manifold Regularization. We now fo-
cus our attention to finite dimensional output spaces
Y = Rn and in particular to solving Equation (15).
We address two questions: what is an appropri-
ate choice for a matrix-valued kernel, and how can
(15) be solved more efficiently than the prohibitive
O(N3n3) complexity of a general dense linear system
solver. For a list of vector-valued kernels considered
so far in the literature, see Micchelli & Pontil (2005);
Caponnetto et al. (2008); Baldassarre et al. (2010).
For practical applications, in this paper we consider
matrix-valued kernels of the form,

K(xi, xj) = k(xi, xj)
(

γOL
†
out + (1− γO)In

)

(16)

where k(·, ·) is a scalar-valued kernel, 0 ≤ γO < 1 is
a real-valued parameter, In is the n × n identity ma-
trix and L†

out is the pseudo-inverse of the normalized
Laplacian matrix, Lout, of a similarity graphWout over
outputs. We assume that Wout is either available as
prior knowledge or, as in Section 6, estimated from
nearest neighbor graphs over the available labels. We
note the following properties of this kernel that justi-
fies its choice in practical problems.
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Universality: Let X be a Hausdorff topological
space, 0 ≤ γO < 1 and k(·, ·) be a universal scalar
valued kernel, e.g., the Gaussian kernel k(x, z) =

e−
‖x−z‖2

2σ2 . Then, HK is universal, i.e., any continuous
function from a compact subset of X to Y can be uni-
formly approximated by functions in HK . This obser-
vation follows from Theorem 12 of Caponnetto et al.
(2008).
Regularization: Let f = (f1, . . . , fn) be a vector-
valued function such that each fi ∈ Hk. When γO = 1,
the norm of a vector-valued function in the RKHS in-
duced by (16) is given by Baldassarre et al. (2010),

‖f‖2K =
1

2

n
∑

i,j=1

‖fi − fj‖
2
k

(Wout)ij
√

didj
+

n
∑

i=1

‖fi‖
2
k

where W is the adjacency matrix of a similarity graph
over outputs, di =

∑

j(Wout)ij , and ‖ · ‖k is the norm
in the scalar-valued RKHS induced by k(·, ·). When
γO = 0, K becomes diagonal and reduces to multi-
variate Laplacian RLS, Eq. (3), where each output is
estimated independently of others. Thus, γO parame-
terizes the degree to which output inter-dependencies
are enforced in the model.
Computational Consequences: The Gram matrix
of the vector-valued kernel is the Kronecker product,
G = GN

k ⊗ Q, where GN
k is the Gram matrix of

the scalar kernel over labeled and unlabeled data and
Q =

(

γOL
†
out + (1− γO)In

)

. Using M = L⊗ In as in

Section 4.3, the linear system (15) becomes the follow-
ing,
[

JNn
nl (GN

k ⊗Q) + lγI(L⊗ In)(G
N
k ⊗Q) + lγAIN

]

a = y.

Applying only basic properties of Kronecker products,
it can be shown that this is identical to solving the
following Sylvester Equation for the matrix A, where
a = vec(AT ),

−
1

lγA
(JN

l GN
k + lγILG

N
k )AQ−A+

1

lγA
Y = 0. (17)

This Sylvester equation can be solved much more ef-
ficiently than directly calling a dense linear solver
for (15). The number of floating point operations
of a popular implementation1 (Golub et al., 1979) is
5
2N

3 + 10n3 + 5N2n + 2.5Nn2. Note that this com-
plexity is of the same order as that of (non-linear) RLS
with N (or n) labeled datapoints. Larger-scale itera-
tive solvers are also available for such problems.

6. Empirical Studies

We consider semantic scene annotation and hierar-
chical text categorization as empirical testbeds for

1
In Matlab X = dlyap(A,B,C) solves AXB − X + C = 0

Vector-valued Manifold Regularization (abbreviated
VVMR) implemented by solving (17). To the best
of our knowledge, these are the first applications of
vector-valued RKHS methods to multi-label learning
problems. We empirically explore the value of incorpo-
rating unlabeled data in conjunction with dependen-
cies across multiple output variables. A study is con-
ducted to evaluate the quality of out-of-sample exten-
sion to unseen test data in comparison to transductive
performance on the unlabeled set, and a comparison is
presented against several recent state of the art multi-
label learning methods. For our performance evalua-
tion metric, we compute mean of the area under the
ROC curve over all labels, as also used in Sun et al.
(2011).
Semantic Scene Annotation: The data for this
problem domain is drawn from Boutell et al. (2004).
The task is to annotate images of natural scenes with 6
semantic categories: Beach, Sunset, Fall foliage, Field,
Mountain and Urban given a 294-dimensional feature
representation of color images. Thus each image xmay
be associated with a multi-label y ∈ R6 where yi = 1
indicates presence and yi = −1 indicates absence of
the ith semantic category. We split the 2407 images
available in this dataset into a training set (labeled +
unlabeled) of 1204 images and a test set of 1203 im-
ages. All results reported in section are averaged over
10 random choices of 100 labels, treating the remain-
ing training images as unlabeled data.
RCV1 - Hierarchical Text Categorization:
The data for this problem domain is drawn
from Lewis et al. (2004). The task is to place
Reuters news-stories into a hierarchy of categories
spanning various Corporate, Government, Markets
and Economics related sub-topics. We used a
subset of 6000 documents split evenly between
a training (labeled+unlabeled) and a test set,
available at http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/multilabel.html. We elim-
inated words with small document and category fre-
quencies resulting in a 2900-dimensional dataset with
25 categories. All results reported in this section are
averaged over 10 random choices of 50 labels, treating
the rest of the training set as unlabeled data.
Hyperparameters: Note that model selection in semi-
supervised settings is a challenging problem in its own
right, and not the focus of this paper. For scene an-
notation, we set γA = 0.0001 and used RBF scalar
kernels with σ = 4.3, a default value corresponding
to the median of pairwise distances amongst train-
ing datapoints. We use 5 and 2 nearest neighbor
graphs to construct the input and the output normal-
ized Graph Laplacians respectively. For RCV1, we
use linear scalar kernels which are the most popular

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
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choice for text datasets. We set γA = 1 and used 50
and 20 nearest neighbor graphs to construct the in-
put (iterated to degree 5) and the output normalized
Graph Laplacians respectively. The fixed choices of
some of these hyperparameters are based on values re-
ported in Sindhwani et al. (2005) for image and text
datasets. No further optimization of these values was
attempted.
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Figure 1. Influence of unlabeled data (γI) and output de-
pendencies (γO): scene (top) and text (bottom) datasets.

Performance Enhancements with Unlabeled
Data and Output Dependencies: In Figure 6, we
evaluate Vector-valued Manifold Regularization in pre-
dicting the unknown multi-labels of the unlabeled set
as a function of γI and γO. As the influence of un-
labeled data is increased (γI taken steadily from 0 to
0.1), on both datasets we see a significant improve-
ment in performance for any fixed value of γO. This
entire performance curve shows consistent lift as γO
is steadily increased from 0 to 1. These results show
the benefit of incorporating both the data geometry
and the output dependencies in a single model. On
RCV1, unlabeled data shows greater relative benefit
when output dependencies are weakly enforced sug-
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Figure 2. Transductive and Inductive AUCs across outputs
(colored) on scene (top) and text (bottom) datasets.

gesting that it also provides robustness against im-
precise model selection. Note that the special case,
γI = 0, γO > 0 corresponds the vector-valued RLS,
while γI > 0, γO = 0 corresponds to multivariate
Laplacian RLS. In general, vector-valued manifold reg-
ularization outperforms these extremes.
Out-of-sample Generalization: In Figure 6, we
show a scatter plot of performance on the unseen
test set (induction) versus the performance on un-
labeled data (transduction) for each of the different
labels across the 10 random choices of labeled data.
In nearly all cases, we see high-quality out-of-sample
generalization from the unlabeled set to the test set.
Purely transductive semi-supervised multilabel meth-
ods (Chen et al., 2008; Liu et al., 2006) do not natu-
rally provide an out-of-sample extension.
Comparisons: We compared V VMR, i.e., solv-
ing (17), with several recently proposed supervised
and semi-supervised multilabel learning methods: (1)
KCCA (Sun et al., 2011): a kernelized version of
Canonical correlation analysis applied to labeled input
and output data; its ridge parameter was optimized
over {0, 10k,−3 ≤ k ≤ 3}, (2) M3L (Hariharan et al.,
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2010): a large-scale margin based method for multi-
label learning; its C parameter was optimized in the
range 10k,−3 ≤ k ≤ 3, (3) SMSE2 (Chen et al.,
2008): a transductive method that enforces smooth-
ness with respect to input and output graphs; its pa-
rameters (analogous to γA, γO) were optimized over
the range reported in Chen et al. (2008) and (4)
CNMF (Liu et al., 2006): a constrained non-negative
matrix factorization approach that also transductively
exploits a given input and output similarity structure;
its parameters were also optimized over the ranges
reported in Liu et al. (2006). Note that these semi-
supervised methods do not provide an out of sample
extension as our method naturally can. From Table 1,
we see that V VMR provides statistically significant
improvements (paired t-test at p = 0.05) over each of
these alternatives in predicting the labels of unlabeled
data. Exactly the same choices of input-output sim-
ilarity graphs, and scalar kernel functions were used
across different methods in this comparison.

Table 1. Comparison with competing algorithms (bold in-
dicates statistically significant improvements)

Dataset Scene RCV1
KCCA 84.0(0.5) 80.0(2.3)
M3L 81.7(0.8) 84.3(1.5)

SMSE2 55.4(0.5) 52.5(0.7)
CNMF 52.7(5.5) 50.8(1.4)

VVMR 84.9!(2.3) 85.2!(1.4)

7. Conclusion

We consider this paper as a preliminary foray into
more widespread adoption of vector-valued RKHS for-
malism for structured semi-supervised problems. Our
results confirm that output dependencies and data ge-
ometry can both be exploited in a complementary fash-
ion. Our choice of the kernel was dictated by certain
natural regularization properties and computational
tractability. The theoretical, algorithmic and empir-
ical study of a wider class of operator-valued kernels
offers a rich avenue for future work.

References

Bakir, G.H., Hofmann, T., Schlkopf, B., Smola, A.J.,
Taskar, B., and Vishwanathan, S.V.N (Ed). Predicting
Structured Data. MIT Press, 2007.

Baldassarre, L., Rosasco, Lorenzo, Barla, Annalisa, and
Verri, Alessandro. Vector-field learning with spectral
filtering. In Proceedings of the European Conference
on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD), vol-
ume 7, pp. 2399–2434, 2010.

Belkin, M., Niyogi, P., and Sindhwani, V. Manifold reg-
ularization: A geometric framework for learning from
labeled and unlabeled examples. Journal of Machine
Learning Research, 7:2399–2434, 2006.

Boutell, M.R., Luo, J., Shen, X., and Brown, C.M. Learn-
ing multi-label scene classification. Pattern Recognition,
2004.

Brown, P.J. and Zidek, J.V. On adaptive multivariate re-
gression. Annals of Statistics, 1980.

Caponnetto, A. and Vito, E. De. Optimal rates for regu-
larized least-squares algorithm. Foundations of Compu-
tational Mathematics, 7(3):331–368, 2007.

Caponnetto, A., Pontil, M., C.Micchelli, and Ying, Y. Uni-
versal multi-task kernels. Journal of Machine Learning
Research, 9:1615–1646, 2008.

Carmeli, C., Vito, E. De, and Toigo, A. Vector valued
reproducing kernel Hilbert spaces of integrable functions
and Mercer theorem. Analysis and Applications, 4:377–
408, 2006.

Chapelle, O., Schlkopf, B., and Zien, A. (Ed). Semi-
supervised Learning. MIT Press, 2006.

Chen, G., Song, Y., Wang, F., and Zhang, C. Semi-
supervised multi-label learning by solving a sylvester
equation. In SIAM Conference on Data Mining (SDM),
2008.

Golub, G.H., Nash, S., and Van Loan, C.F. A hessenberg-
schur method for the problem A X + X B = C.
IEEE Transactions on Automatic Control, AC-24:909–
913, 1979.

Hariharan, B., Zelnik-Manor, L., Vishwanathan, S. V. N.,
and Varma, M. Large scale max-margin multi-label clas-
sification with priors. In Proceedings of the International
Conference on Machine Learning, 2010.

Lewis, D. D., Yang, Y., and Li, F. Rcv1: A new benchmark
collection for text categorization research. Journal of
Machine Learning Research, 5:361–397, 2004.

Liu, Y., Jin, R., and Yang, L. Semi-supervised multi-label
learning by constrained non-negative matrix factoriza-
tion. In The Twentieth Conference on Artificial Intelli-
gence (AAAI), 2006.

Micchelli, C. A. and Pontil, M. On learning vector-valued
functions. Neural Computation, 17:177–204, 2005.

Schölkopf, B. and Smola, A. Learning with kernels:
Support Vector Machines, Regularization, Optimization,
and Beyond. The MIT Press, Cambridge, 2002.

Sindhwani, V., Niyogi, P., and M.Belkin. Beyond the point
cloud: from transductive to semi-supervised learning. In
Proceedings of the International Conference on Machine
Learning, 2005.

Sun, Liang, Ji, Shuiwang, and Ye, Jieping. Canonical cor-
relation analysis for multilabel classification: A least
squares formulation, extensions and analysis. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 1:194–200, 2011.


