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Abstract

In this paper, we analyze the performance
of Lasso-TD, a modification of LSTD in
which the projection operator is defined as
a Lasso problem. We first show that Lasso-
TD is guaranteed to have a unique fixed point
and its algorithmic implementation coincides
with the recently presented LARS-TD and
LC-TD methods. We then derive two bounds
on the prediction error of Lasso-TD in the
Markov design setting, i.e., when the perfor-
mance is evaluated on the same states used
by the method. The first bound makes no as-
sumption, but has a slow rate w.r.t. the num-
ber of samples. The second bound is under
an assumption on the empirical Gram ma-
trix, called the compatibility condition, but
has an improved rate and directly relates the
prediction error to the sparsity of the value
function in the feature space at hand.

1. Introduction

Least-squares temporal difference (LSTD) learn-
ing (Bradtke & Barto, 1996; Boyan, 1999) is a widely
used reinforcement learning (RL) algorithm for learn-
ing the value function V™ of a policy m. More precisely,
LSTD tries to compute the fixed point of the operator
II7T™, where T™ is the Bellman operator of policy w
and II is the projection operator onto a linear func-
tion space spanned by a set of d features {¢;}&;. The
choice of these features has a major impact on the ac-
curacy of the value function estimated by LSTD. The
problem of finding the right space, or in other words
the problem of feature selection, is an important chal-
lenge in many areas of machine learning including RL.
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In many situations, however, there may be no a priori
way of selecting features in order to guarantee good
performance. Recent approaches to value function ap-
proximation in RL instead propose to solve the prob-
lem in very high-dimensional feature spaces F in the
hope that a good set of features lies somewhere in this
basis. In practice, the fact that the number of features
is often larger than the number of samples n < d leads
to the problem of overfitting and poor prediction per-
formance. In order to learn from a small number of
data, one should be able to select a small number of
features (from the large collection of features) that are
the most relevant in approximating the value function.
In regression, a commonly used technique to address
this issue is to solve an ¢; or {5 penalized least-squares
problem, called Lasso or ridge, respectively (see e.g.
Hastie et al., 2001), which provides a way to regularize
the objective function in order to overcome the over-
fitting problem. Among these two methods, Lasso is
of particular interest, because the geometric properties
of the /1-penalty encourage sparse solutions, i.e., so-
lutions that can be expressed in terms of the linear
combination of a small number of features. This is
exactly the type of solution we would hope for when
moving to high-dimensional spaces.

In value function approximation in RL, however, the
objective is not to recover a target function given
its noisy observations, but is instead to approximate
the fixed-point of the Bellman operator given sample
trajectories. This creates some difficulties in apply-
ing Lasso and ridge to this problem. Despite these
difficulties, both #; and /5 regularizations have been
previously studied in value function approximation in
RL. Farahmand et al. presented several such algo-
rithms wherein fs-regularization was added to LSTD
and modified Bellman residual minimization (Farah-
mand et al., 2008), to fitted Q-iteration (Farahmand
et al., 2009), and finite-sample performance bounds for
these algorithms were proved. There has also been al-
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gorithmic work on adding ¢;-penalties to the TD (Loth
et al., 2007), LSTD (Kolter & Ng, 2009; Johns et al.,
2010), and linear programming (Petrik et al., 2010)
algorithms.

In the work by Kolter & Ng (2009) and Johns et al.
(2010), the idea is to find a fixed point solution to
an f1-penalized LSTD problem. The experimental
results reported in these papers are interesting and
ask for theoretical analysis. In this paper, we con-
sider a modification of LSTD, which incorporates an
{1-penalty in its projection operator. We call this
problem Lasso-TD and analyze it in the setting of
pathwise LSTD (Lazaric et al., 2010). Our analysis
may apply to any method which solves for the un-
derlying fixed-point, including the recently proposed
LARS-TD (Kolter & Ng, 2009) and LC-TD (Johns
et al., 2010) algorithms. In this work, we show that a
Lasso-TD solution & always exists and its correspond-
ing value function approximation v = f5 is unique.
Beyond this, the main objective of this paper is to in-
vestigate which “nice” properties of the ¢;-penalized
regression carry forward into the fixed-point setting.
As aresult, we also provide two bounds on the approx-
imation error ||v— f5l|,, where v is the true value func-
tion and |- ||,, denotes the empirical norm at the states
used by the algorithm. The first of these bounds makes
no assumptions and has estimation error which scales
with the ¢;-norm of the best approximation at a rate
of n=1/4. Under the compatibility condition (van de
Geer & Bithlmann, 2009) on the features (more pre-
cisely on the empirical Gram matrix %©T<I>), we prove
a more refined bound which scales with the £p-norm of
the best approximation (i.e., the actual sparsity) and
with a better rate n=1/2. Our results indicate that if
the value function can be well approximated with a
small number of relevant features, then the number of
samples n required to learn a good approximation of
it only scales with the number of relevant features.

2. Preliminaries

For a measurable space with domain X', we let S(X)
and B(X; L) denote the set of probability measures
over X', and the space of bounded measurable func-
tions with domain X and bound 0 < L < oo, respec-
tively. For a measure p € S(X) and a measurable
function f : X — R, we define the ¢5(p)-norm of f,
| fll,, and for a set of n states Xq,...,X, € X, we
define the empirical norm || f||, as

W= [ fafpd)  and AR = 30 A0

We consider the standard RL framework (Sutton &
Barto, 1998) in which a learning agent interacts with

a stochastic environment by following a policy = and
this interaction is modeled as a discrete-time dis-
counted Markov chain (MC). A discounted MC is a
tuple M™ = (X, R™, P™, ), where the state space X
is a subset of a Euclidean space, the reward func-
tion R™ : X — R is uniformly bounded by Rpyax,
the transition kernel P™ is such that for all x € X,
P7(|xz) is a distribution over X, and v € (0,1) is
a discount factor. The value function of a policy ,
V7™ is the unique fixed-point of the Bellman operator
T™ 2 B(X; Vinax = 1222) — B(X; Vinax) defined by

(T"V)(x) = R™(x) + 4 /X P™ (dyl2)V (y).

To approximate the value function V™, we use a linear
approximation architecture with parameter o« € R?
and basis functions ¢; € B(X;L), j =1,...,d. We

T
denote by ¢ : X = R% 6() = (p1(), -+, pal"))
the feature vector, and by F the linear function space
spanned by the basis functions ;.

Let (X1,...,X,) be a sample path (or trajectory) of
size n generated by the Markov chain M. Let v € R"
and r € R™ such that v; = V™(X;) and r = R(Xy)
be the value vector and the reward vector, respectively.
Also, let ® = [¢(X1)T;...;#(X,,) "] be the feature ma-
trix defined at the states, and F,, = {fq = Pa: a €
R?} C R™ be the corresponding vector space.

3. Lasso-TD

Lasso-TD takes a single trajectory {X;}}_, of size n
generated by the Markov chain and the observed re-
wards {R(X;)}}—; as input, and computes the fixed
point o = ﬁ;ﬁ\'ﬁ similar to LSTD. As in LSTD,
T :R™ — R" is the pathwise emperical Bellman oper-
ator (Lazaric et al., 2010) defined as

~ re + 1<t<n,
(Ty)t _ { t T YYt+1 .
Tt t=n.

Lasso-TD departs from LSTD in the definition of the
projection operator. Here Il : R" — F, is the {;-
penalized projection defined as

[lay = @& such that & = argmin ||y — ful|2 + Alle|]1 .
a€Rd

In order to show the existence and uniqueness of the
fixed point v, we show that II\7 is a 7y-contraction
w.r.t. the £o-norm. Lazaric et al. (2010) showed that T
is a y-contraction mapping in ¢3-norm, and Lemma 1

below proves that Il is a non-expansive mapping in

1To simplify the notation, we remove the dependency to
the policy 7 and use M, R, P, V, and T instead of M",
R™, P", V™, and T™ throughout the paper.
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the same norm. As a consequence, ﬁA’? is a contrac-
tion mapping and from the Banach fixed point theo-
rem, there exists a unique fixed point © € F,, of o,7.
We define the Lasso-TD solution & as

& = argmin||T5 — ful2 + Allalli . (1)
a€R?
From the definition of the projection I » we have that
Ja = ®a = I\70, and from the fact that 0 is the
fixed point of II,7T, we deduce that & is solution to
the /1-penalized fixed-point equation:

v = argmin[|7 fa — fall + Mal: - (2)

a€R?

This latter formulation is the one used in Kolter &
Ng (2009) and Johns et al. (2010). By introducing
a contraction mapping in the function space F,, we
are able to prove the existence of the fixed-point v €
Fn, and deduce that the parameter & (as defined by
Eq. 1) is the solution to Eq. 2, which is an ¢;-penalized
fixed-point formulation in the parameter space. Note
that although v is unique, the solution & of Eq. 2 may
not be unique (if there are several minimizers to the
problem in Eq. 1), but any solution « to Eq. 2 is such
that ®« is a fixed point of ﬁ,\?, thus ®a = v. From an
algorithmic perspective, one may use the formulation
in Eq. 2 in order to compute & (see e.g. Kolter & Ng,
2009; Johus et al., 2010). We will now prove that the
projection operator is a non-expansion.

Lemma 1. For any =,y € R, ﬁ,\ satisfies

[Tz —Taylln < [lz—yla -z —y — (M —Ihy)|5. (3)

Proof. We prove the result for a general proximal op-
erator. Let g : R? — R be any convex function (e.g.,
g(a) = A|a|1). For any y € R™, we define

oy = arg min H@Oz - y||i + g(a),
a€R

and write Iy = ®a,,. Since oy, is a minimum,

0€a(ly—@- 3 +90) () = ~ 207 (y— ay) +g(en),

and thus 287 (y— ®ay) € dg(ay). From the definition
of sub-gradient, for any z € R?%, we have

(2~ ay, 287 (y — Ba)) < 9(2) — glax)

By choosing z = a,, we obtain <am — Oy, %@T(y -
Pay)) < g(as) — g(ay), which may be rewritten as

2 ~ ~ ~
E<Hw — Iy, y — L) < glaz) — gloy).
With a similar reasoning, we may deduce

2 ~ ~ ~
E<H)\y — I,z — Hm:) < g(ay) — g(az).

By adding these inequalities, we obtain
||ﬁAx - ﬁ,\yHi < <ﬁ>\m - ﬁAy,x - y>.
The claim follows using the fact that

|z —y — (e —Iy)lln = |z — ylln + [Tz — Dyl
—2<ﬁxx—ﬁAy,m—y>. O

From Lemma 1, we deduce that ﬁ,\? is a contraction
mapping w.r.t. the fo-norm, which guarantees the ex-
istence and uniqueness of the fixed point ¢ of IT,\7.
Note that we did not require any assumptions in order
to show the existence and uniqueness of this solution,
however, additional assumptions may be necessary in
order to find these solutions algorithmically (Kolter &
Ng, 2009; Johns et al., 2010).

4. Markov Design Bounds

In Section 3, we defined Lasso-TD and showed that
the operator I, 7 always has a unique fixed point ®a.
In this section, we derive two bounds for the perfor-
mance of ®a, i.e., the performance of f5 evaluated at
the states of the trajectory used by the algorithm. In
Section 4.1, we derive a performance bound that has
an estimation error with the rate O(||a||;n~1/4). Al-
though this bound has a poor rate, it does not require
any assumption on the empirical Gram matrix %CI)TCI).
In Section 4.2, we derive a bound with a better rate
O(||a|lon~'/?), where this improvement is at the cost
of introducing an additional assumption on the empir-
ical Gram matrix, called the compatibility condition.

4.1. /1-Oracle Inequality

The main theorem of this section shows a natural con-
nection between the prediction performance of Lasso-
TD (which is an ¢;-regularized fixed point problem)
and the ¢1-norm of the best approximation of v in F,.

Theorem 1. Let § > 0. Let {X;}7, be a trajectory
generated by the Markov chain, and let v,Pa € R"
be vectors whose components are the value function
and the Lasso-TD prediction at {X:}}—,, respectively.
Then, with probability 1 — ¢ (w.r.t. the trajectory), we
have

1
[lv = falln < =7 inf [Hv—faln (4)

2log(2d/d)\ 1/4 1
¥ umenah(( BN )]

V2n

Remark 1. We should first emphasize that this
bound makes no assumption on either the state dis-
tribution or the empirical Gram matrix (related to
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the correlation of the features). The bound consists
of an approximation error term (i.e., the ¢5 distance
between v and the function f,) and an estimation er-
ror term that scales with the ¢1-norm ||«||; at the rate
n~1/4. Intuitively, this means that if there exists a
good approximation fz € F, of the value function
that has small ¢;-norm, i.e., ||@|]; is small, then the
approximation f5 obtained by Lasso-TD will perform
almost as well as f5. For this reason, we refer to this
bound as an ¢;-oracle inequality. This result perfectly
matches the results for ¢;-regularized methods for re-
gression in the deterministic design setting where the
prediction error of the Lasso solution is related to the
£1-norm of the best approximation of the target func-
tion in F,, (see e.g., Massart & Meynet 2010). Finally,
although the properties of the ¢;-penalty tend to pro-
duce “sparse” solutions and often behave similar to
the fyp-penalty, we may not deduce such behavior from
this bound. However in Section 4.2, we will show that
under suitable conditions the Lasso-TD solution has
a strong connection with the sparsity of the functions
that approximate v in F,,.

Remark 2. (Lasso-TD vs. LSTD) We may also
compare the Lasso-TD bound to the Markov design
LSTD bound reported in Lazaric et al. (2010). To ease
the comparison, we report simplified versions of both
bounds where O hides constants, logarithmic terms in
0, and dominated terms. Let a* = argmin,epa |[v —
falln and let af, be the LSTD solution. The Lasso-TD
bound in Eq. 4 may be written as

i 1 ~ lla*||3 log d\ %
[[v fa|n<17{||v fa*||n+0<(n) )

while the performance of LSTD can be bounded as
1

o = farlln + ”é( d),
W 1—7 np

where v, is the smallest strictly positive eigenvalue of
the empirical Gram matrix. Although in Lasso-TD the
constant (1 —v)~! in front of the approximation er-
ror is larger than (1 —~2)~1/2, both bounds share the
same dependency on the accuracy of f,«, the best ap-
proximation of the value function in the vector space
Fn. On the other hand, the estimation errors dis-
play significantly different behaviors. The estimation
error of LSTD has a better rate n~'/2? compared to
the rate n=1/4 for Lasso-TD. However, Lasso-TD at-
tains a much smaller estimation error whenever the
dimensionality d is of the same order as (or larger
than) the number of samples. Similar to regression,
in this case LSTD tends to overfit the noise in the
data, while Lasso-TD performs better as a regulariza-
tion method. In fact, in LSTD the estimation error

lv = faplln <

increases as d'/2, while Lasso-TD has a milder depen-
dency of order ||a*||1logd. Finally, we note that the
bound for LSTD reported in Lazaric et al. (2010) has
an additional dependency on v, 1
pear in the bound for Lasso-TD.

? which does not ap-

Remark 3. (Lasso-TD vs. LSTD-RP) Another
interesting comparison is to the LSTD with ran-
dom projections (LSTD-RP) algorithm introduced
in Ghavamzadeh et al. (2010). LSTD-RP first gen-
erates a new function space G spanned by d' (with
d" <« d) features obtained as linear random combi-
nations of the features ¢; of F and then runs stan-
dard LSTD on it. Let agp be the solution returned
by LSTD-RP. After optimizing the dimensionality d’
of the randomly generated linear space as suggested
in Ghavamzadeh et al. (2010), LSTD-RP achieves the
following performance bound

1
V— Ja ngi
H fRP” m

v 5 (|3 logny /e
+ 1-— ’yO (( niy, ) ) ’

Unlike LSTD, the estimation error in both Lasso-TD
and LSTD-RP has the same decreasing rate w.r.t. the
number of samples n. The main difference here is
that Lasso-TD scales with ||a*||1, while ||a*||2 appears
in the LSTD-RP bound. This difference is consistent
with the definition of the two algorithms as ¢; and ¢o
regularization methods. Since ||a*||2 < ||a*|]1, LSTD-
RP bound is in general tighter than Lasso-TD’s. How-
ever, in Thm. 2 we show that under certain assump-
tions, the Lasso-TD bound may be refined and its esti-
mation error would depend on the ¢p-norm of a* (the
sparsity of a*) and would have a better rate n~1/2,

lv = faxlln

In order to prove Thm. 1, we first state and prove a
Lemma about the Markov design model (Lazaric et al.,
2010). The model of regression with Markov design
is a regression problem where the data {(X;,Y:)}7
are generated such that {X;}}_, is a trajectory sam-
pled from a Markov chain, Y; = f(X;) + & consists of
noisy function evaluations, and f is the target func-
tion. Each noise term &; is bounded and adapted to
the filtration generated by X7i.;41, and have zero-mean
conditioned on X, i.e.,

&l <Cand  E[G]X,.., X =0,  (5)

The following lemma provides a bound on the perfor-
mance of Lasso for the Markov design setting that has
a slow rate, but does not require any assumptions.

Lemma 2. We consider the model of regression with
Markov design. Let fs € Fp be the Lasso prediction of
the (noisy) values Y = {Y;}7, i.e., foa = P& =11,Y.
For any § > 0, with probability at least 1 — §, we have
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2log(2d /6
1f = fall2 < |If = fall? +6CL||al|: %7

for any da € F,.

Proof of Lemma 2. We define £ € R™ to be the vector
with components &. From the definition of & we have

1Y = falln + Mlédls < [[Y = fall2 + Alalli . (6)
We may write |[Y — fall2 — ||Y — fal|? as
1Y = falla = 1Y = falln = [I[Y = flln +20Y = £, f = fa)nt
1 = fallt = (1Y = FIR + 20V = £, f = fadu + 1S = fal 2)
= |If = falln = 1If = falln + 206, fa = fa)n ,

and thus, Eq. 6 may be written as

I1f = falln + Al < 11f = fallzn + el +2<€,fa—fa>(n7)

The term 2(, fa — fa)n in Eq. 7 may be bounded as

2 ~ R
206, fa = fohn < = max | > €pi(X0)| lla—allr -
al
We now define the event
2 n
a={> _max | ;gtwi(xt) <o} ®)

Under £ we have
2(€, fa = fa)n < Xollé — alls < Xolldl|1 + ollall1
and thus using Eq. 7, we obtain
1= Fal 2+ O=20)llalh < 1~ fall2+ A+ A0) falls - (9)

For any A > 2y, Eq. 9 may be written as

A 3\
If = falln + Sllall < 1If - falln + - llefls. (10)
From the conditions on the noise in the Markov design
setting, we have that for any i =1,...,d
E[§epi(Xe)[ X1, ..oy Xe] = i (X)E[&] X0, ..., Xe] =0,

and since &;p;(X:) is adapted to the filtration gen-
erated by Xi,...,X¢y1, it is a martingale difference
sequence w.r.t. that filtration. Hence by applying
Azuma’s inequality, we may deduce that with prob-
ability 1 — 6

’th%‘(Xt) < CL+/2nlog(2/4)

where we used the fact that |&p;(X:)| < CL for any 4
and ¢t. By union bound over all features, we have that
with probability 1 — d

(11)

,,,,,

2 max ‘thgoi(Xt) <20L M.
t=

n i=1,...,d

The result follows by setting Ay = 2CL M,

A = 2)g, and plugging this value of A in Eq. 10. O

Proof of Theorem 1. Step 1: Using the triangle in-
equality, we have
llo = falla < llo = T olln + [[To = falla - (12)

From the ~-contraction of f[,\?, and the fact that f5
is its unique fixed point, we obtain

ITAT o= falln = [T T v =TT falln < yllv—falln - (13)
Thus from Eq. 12 and 13, we have
1 A
lv = falln < 1_VIIU—HATUIIn- (14)

Step 2: We now provide a high probability bound
for ||v — IIyTw||,. This is a consequence of Lemma 2
applied to the vectors Y = Tv and [f(Xt)]::l = v.
Since v is the value function at the points {X;}7 q,
from the definition of the pathwise Bellman operator,
we have that for 1 <t < n—1, & = y[V(Xy) —
[P(dy|X)V(y)], and & = —v [ P(dy|X,)V(y).
Thus, Eq. 5 holds for 1 <t < n — 1. Here we may
choose C = 29Vjax for a bound on {ft}?;f, and
C = YVhmax for a bound on &,. Azuma’s inequality
may be applied only to the sequence of n — 1 terms,
thus instead of Eq. 11, we obtain

< YWmaxL(2v/2nlog(2d/8) + 1) ,

ey

1 — 4.

2’}/VmaxL(2\/%id/5) + %), A= 2)\0, and plug—

ging in this value of A in Eq. 10, we deduce that with
probability 1 — §, we have

with  probability Setting A9 =

llo =TT ol[7 < lo— falln (15)

2log(2d/9) 1
n 12wmaxL|\a|\1( s %)
The claim follows by taking the square-root of Eq. 15

and combining it with Eq. 14. O
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4.2. Sparsity Oracle Inequality

In Section 4.1, we derived a bound on the prediction
performance of the Lasso-TD solution which does not
require any assumption on the existence of the station-
ary distribution of the policy under evaluation and on
the empirical Gram matrix. However, as discussed in
Remark 2, the estimation error in Thm. 1 has a poor
rate (compared to LSTD, n~/ instead of n~'/2) and
scales with the ¢;-norm of «, which is not directly re-
lated to the sparsity of a. In this section, we derive
an improved bound whose estimation error depends on
lla]lo and decreases as n~'/2 at the cost of an extra
assumption on the empirical Gram matrix %@TCI).

Prediction bounds in the deterministic design setting
for Lasso in linear models may be derived under a va-
riety of different assumptions on the empirical Gram
matrix. The most common assumption is the cele-
brated restricted isometry property (RIP) (see e.g.,
Candes & Tao 2005) which guarantees that the fea-
ture matrix restricted on an index set S approximately
preserves the norm of any vector. Although sufficient
to prove both prediction and reconstruction proper-
ties of Lasso, the RIP assumption is rarely satisfied
in practice. van de Geer & Biithlmann (2009) report
a thorough analysis of a number of different sufficient
condition for sparsity oracle inequalities (i.e., perfor-
mance bounds depending on the sparsity of the prob-
lem). The compatibility condition is one of the weakest
of these assumptions, and thus, may be satisfied by a
fairly general class of Gram matrices (van de Geer &
Biihlmann, 2009).

Before stating the main result of this section, we in-
troduce some notations and define a condition on the
empirical Gram matrix 1®7®. Let S C {1,...,d}
be an index set, s = |S| be its cardinality, and
S¢ = {1,...,d} — S be its complement. For a vec-
tor @ € R? and an index set S C {1,...,d}, we denote
by ag € R? the vector with non-zero entries in the in-
dex set S, i.e., ag) = o, {i € S}. For a vector a € R,
we denote by S, = {i : a; # 0} the set of indices of
the non-zero entries, or the active set, of o, s, = |S4|
the cardinality of S, or the sparsity indez of a, and
S¢ = {i: a; = 0} the complement of S,. Note that
from the definition of S, we have agc = 0.

Definition 1 (Compatibility Condition). Let S C
{1,...,d} be an index set and R(K,S) = {a € R? :
[lase||l1 < K||las||1 # 0} be a restriction set. We call

sllfallz

lleus|[?

Y?(K,S) = min { ca € R(K, S)} (16)

the (K, S)-restricted {i-eigenvalue of the empirical
Gram matriz. The empirical Gram matriz satisfies

the (K, S)-compatibility condition if (K, S) > 0.

We are now ready to derive a better bound for the
prediction performance of Lasso-TD.

Theorem 2. Let {X;}}, be a trajectory generated by
the Markov chain, and v, & € R™ be the vectors whose
components are the value function and the Lasso-TD
prediction at {X}}_,, respectively. For any § > 0,
with probability 1 — §, we have

T 1—7aeU

lv = falln < inf [Ilv—faln (17)

12wmaxw5< 2log(2d/0) 1)]
+ + 1
P n 2n

for any o € R? such that the empirical Gram ma-
triz 2@ T ® satisfies the (3, Sq)-compatibility condition,
where U C RY is the set of such a’s.

Remark 1. (Sparsity Oracle Inequality) The
bound of Eq. 17 shares the same structure as the
bound in Eq. 4, where the prediction error is di-
vided into an approximation error and an estimation
error terms. The main difference is that the esti-
mation error improved from O~((||a||%10g d/n)l/4) to
O((s log d/ym)'/?), where s = ||a|o. It is interesting
to note that up to a logarithmic factor logd and ig-
noring the dependency on 1 and v, this is the same
performance LSTD would obtain using the features in
the set S, instead of the whole function space F. This
type of bounds is usually referred to as sparsity oracle
inequalities. In fact, Eq. 17 shows that if there exists
an s-sparse « with small approximation error (e.g., the
minimizer of the RHS of the bound), Lasso-TD is able
to take advantage of its sparsity and obtain a predic-
tion performance which is approximately equivalent to
the one achieved by searching directly in the space
with dimensionality s. Furthermore, this performance
bound also shows the effectiveness of Lasso-TD in solv-
ing high-dimensional problems where the number of
features d is larger than the number of samples n. In
fact, with a fixed number of samples n, as d increases,
the performance of LSTD becomes worse and worse,
while Lasso-TD attains an almost constant prediction
accuracy (O(logd)), because the number of relevant
features s does not change with d. Finally, this result
supports the claim that the fixed point method Lasso-
TD has the same properties as Lasso in regression.

Remark 2. (Sparse Value Functions) As dis-
cussed in Remark 1, in order for Lasso-TD to be effec-
tive, a sparse approximation of the value function must
exist. While in regression this assumption is natural
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in many domains, in RL we need to characterize the
control problems which are likely to generate sparse
value functions in a given feature space. Although a
full analysis of this problem is beyond the scope of
this paper, in the following we try to present some
characteristics which are sufficient to expect Lasso-
TD to perform well. Let us consider the class of con-
tinuous MDPs with finite actions, smooth dynamics
(i.e., smooth stochastic transition kernel), and smooth
reward function. In this case, for any policy 7, the
corresponding value function V™ is piecewise smooth.?
From approximation theory, we know that piecewise-
smooth functions can be accurately approximated by
localized features, such as wavelets (see e.g., Mallat
1999). As a result, if we define F as the linear func-
tion space spanned by a set of d wavelets, any value
function is likely to be well-approximated by functions
in F with a relatively small number of non-zero coeffi-
cients. In this case, even if d is large so as to guarantee
small approximation errors, we expect Lasso-TD to re-
quire few samples (i.e., n be of the same order as the
sparsity of the best solution) to learn an accurate ap-
proximation of the value function at hand.

Remark 3. (Lasso-TD vs. LSTD-RP) In Re-
mark 3 of Section 4.1, we mentioned that LSTD-
RP may achieve a better performance than Lasso-
TD in the general no-assumption case. On the
other hand, when the compatibility assumption holds,
Lasso-TD achieves an estimation error of order
O( (slogd)/(¢n)) which has a better decreasing rate
than LSTD-RP and displays a direct connection with
the sparsity s of a. On the other hand, LSTD-RP does
not take advantage of the possible sparsity of o and
provides bounds in terms of the ¢s-norm of «, which
may be larger than s.

Remark 4. As mentioned at the beginning of this
section, many different assumptions have been pro-
posed to derive sparsity oracle inequalities for predic-
tion in regression, among which compatibility is the
weakest sufficient condition. In Thm. 2, we showed
that similar to regression, the compatibility condition
is a sufficient assumption to prove a sparsity oracle
inequality for Lasso-TD. Although verifying this con-
dition is often infeasible (all the possible index sets
S should be checked), in practice the empirical Gram
matrix is likely to satisfy the compatibility condition
(see van de Geer & Bithlmann 2009 for a detailed dis-
cussion and examples).

2The value function V7™ is smooth in all the subsets of
X where the policy 7 is constant, whereas its gradient is
discontinuous in states where m changes.

Similar to Thm. 1, in order to prove Thm. 2, we first
state and prove a Lemma about the Markov design
model. This lemma provides a Lasso bound for the
Markov design setting that has a fast rate, but requires
some assumptions on the empirical Gram matrix.

Lemma 3. We consider the model of regression with
Markov design. Let ®& € F;, be the Lasso prediction
of the (noisy) values Y = {Y;}7, i.e., 8& =11,Y. For
any 6 > 0, with probability at least 1 — §, we have

6CLy/s [2log(2d/6)
G

)

f = Falln < IIF = falln +

n

for any a € R? such that the empirical Gram ma-
trix %@Té satisfies the (3, Sy )-compatibility condition.
Note that s = sq and 1 = (3, 5,).

Proof of Lemma 3. To simplify the notations, we
write S instead of S,. If the event & defined by Eq. 8
holds, for any A > 2o, Eq. 7 may be written as

. Alia
1F=falls+Alalk < Nl =Falla+Allolh+5 [la—all . (18)
By reordering of Eq. 18, we obtain

A As
If = falln + Sllasellr < 1S = falla + Sllas —as|h

N 3 &
+A(llaslls = llasll) < NIf = fallz + 5 llas — aslls.
(19)
Since for ||f — falln > ||f — fal|n the statement of the

lemma is true with probability one, we only consider
the case where ||f — falln < ||f — falln. In this case,
we may deduce from Eq. 19 that (& — «) € R(3,5),
and thus
sl|fa — folln
Y2 '
Replacing ||as — agl|1 in Eq. 19 from Eq. 20 and using
the triangle inequality, we have

llas — aslf < (20)

2 2, 3A
17 = Jalls < 17 = fall+ 252217 = Salla +117 = ala):
(21)
Solving Eq. 21 for ||f — fal|n, we obtain
3./5A
0 = falln <NF = Sullo+ 222 (22

The rest of the proof is similar to the end of the proof

of Lemma 3, we first set A\g = 2CL M and

A = 2)g that event & holds with probability 1 — 4,
and then plug in X in Eq. 22. O

Proof of Theorem 2. Similar to Theorem 1, we first
bound |lv — fa|ln as in Eq. 14, and then bound
[lv — I\T ||, using Lemma 3. O
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5. Conclusions

In this paper, we analyzed the performance of Lasso-
TD, a fixed point TD method in which the projec-
tion operator is defined as a Lasso problem. We first
showed that this method is guaranteed to always have
a unique fixed point and that its algorithmic imple-
mentation coincides with the LARS-TD (Kolter & Ng,
2009) and LC-TD (Johns et al., 2010) methods. We
derived bounds on the prediction error of Lasso-TD in
the Markov design setting, i.e., when the performance
is evaluated on the same states used to train Lasso-
TD. Although the first bound holds in a very general
setting where no assumption is required, its estima-
tion error has a slow decreasing rate w.r.t. the number
of samples. At the cost of an extra assumption on
the empirical Gram matrix, we also derived a sparsity
oracle inequality which directly relates the prediction
error to the sparsity of the value function in the fea-
ture space at hand. To the best of our knowledge, this
is the first analysis of ¢;-regularized TD methods and
is also the first result showing that Lasso-TD enjoys
similar properties as Lasso in regression.

A number of open questions remains to be investi-
gated: 1) Derivation of bounds on the estimation of a*
when v = f,+. This is the case where the value func-
tion lies in the function space, also known as the high
dimensional assumption. 2) Analysis of the sparsity
of the Lasso-TD solution, i.e., ||@||o. 3) Extension to
the random design setting, where the predictive per-
formance is evaluated over the entire state space ac-
cording to the stationary distribution of the policy.
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