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Abstract

We analyze a class of estimators based
on a convex relaxation for solving high-
dimensional matrix decomposition problems.
The observations are the noisy realizations
of the sum of an (approximately) low rank
matrix Θ! with a second matrix Γ! en-
dowed with a complementary form of low-
dimensional structure. We derive a gen-
eral theorem that gives upper bounds on the
Frobenius norm error for an estimate of the
pair (Θ!,Γ!) obtained by solving a convex
optimization problem. We then specialize
our general result to two cases that have been
studied in the context of robust PCA: low
rank plus sparse structure, and low rank plus
a column sparse structure. Our theory yields
Frobenius norm error bounds for both deter-
ministic and stochastic noise matrices, and
in the latter case, they are minimax optimal.
The sharpness of our theoretical predictions
is also confirmed in numerical simulations.

1. Introduction

In this paper, we study a class of high-dimensional
matrix decomposition problems. Suppose that we ob-
serve a matrix Y ∈ Rd1×d2 that is (approximately)
equal to the sum of two unknown matrices: how to
recover good estimates of the pair? Of course, this
problem is ill-posed in general, so that it is necessary
to impose some kind of low-dimensional structure on
the matrix components, one example being rank con-
straints. The framework of this paper supposes that
one matrix component (denoted Θ!) is low-rank, ei-

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

ther exactly or in an approximate sense, and allows for
general forms of low-dimensional structure for the sec-
ond component Γ!. Two particular cases of structure
for Γ! that have been considered in past work are ele-
mentwise sparsity (Chandrasekaran et al., 2009; 2010;
Candes et al., 2009; Hsu et al., 2010) and column-wise
sparsity (McCoy & Tropp, 2010; Xu et al., 2010).

Problems of matrix decomposition are motivated by
a variety of applications. Many classical methods
for dimensionality reduction, among them principal
components analysis (PCA), are based on estimat-
ing a low-rank matrix from data. It is natural to
ask whether or not such estimation procedures are
robust to errors. Particularly harmful are gross er-
rors that might affect only a few observations, but in
an uncontrolled and potentially even adversarial fash-
ion. This leads to different forms of robust PCA,
which can be formulated in terms of matrix decom-
position (Chandrasekaran et al., 2009; Candes et al.,
2009; Hsu et al., 2010; Xu et al., 2010), using the ma-
trix Γ! to model the adversarial errors. Other ap-
plications include controlling sensor failures in video
and image processing (Candes et al., 2009), perform-
ing figure-background separation in video processing,
and dealing with malicious users in recommendation
systems (Xu et al., 2010). Related decompositions
arise in Gaussian covariance selection with hidden vari-
ables (Chandrasekaran et al., 2010).

More concretely, this paper focuses on matrix decom-
positions of the form

Y = Θ! + Γ! +W, (1)

where W is some type of observation noise that is
potentially dense, and can either be deterministic or
stochastic. The matrix Θ! is assumed to be either ex-
actly low-rank, or well-approximated by a low-rank
matrix, whereas the matrix Γ! is assumed to have
a complementary type of low-dimensional structure,
such as sparsity. Our goal is to recover accurate es-
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timates of the decomposition (Θ!,Γ!) based on the
noisy observations Y . In this paper, we analyze sim-
ple estimators based on convex relaxations involving
the nuclear norm, and a second general norm R.

Some interesting special cases of the model (1)
have been examined in some recent work, al-
most exclusively in the noiseless setting (W = 0).
Chandrasekaran et al. (2009) studied the case when
Γ! is assumed to be sparse, with a relatively small
number s of non-zero entries. In the noiseless setting,
they gave sufficient conditions for exact recovery for
an adversarial sparsity model, meaning the non-zero
positions of Γ! can be arbitrary. Subsequent work
by Candes et al. (2009) studied the same model but
under a random sparsity model, in which the non-
zero positions are chosen uniformly at random. Most
closely related is the work of Hsu et al. (2010), who
also analyze the noisy case with elementwise spar-
sity, but require the rank of Γ! to be constrained by
rs ≤ d1d2/(log d1 log d2); this scaling is not minimax-
optimal, in contrast to the results presented here. In
very recent work, Xu et al. (2010) proposed and an-
alyzed a different column-sparse model, in which the
matrix Γ! has a relatively small number s # d2 of
non-zero columns.

In this paper, we study a general class of matrix de-
composition problems that include these models as
special cases. Our main contribution is to provide a
general result (Theorem 1) on approximate recovery of
the unknown decomposition from noisy observations,
valid for a fairly general class of structural constraints
on Γ! (explained in next section). The upper bound
in Theorem 1 consists of multiple terms, each of which
has a natural interpretation in terms of the estima-
tion and approximation errors associated with the sub-
problems of recovering Θ! and Γ!. We then special-
ize this general result to the case of elementwise or
column-wise sparsity models for Γ!, thereby obtaining
recovery guarantees for matrices Θ! that may be either
exactly or approximately low-rank, as well as matrices
Γ! that may be either exactly or approximately sparse.
In addition, our results hold for general noisy obser-
vations (W $= 0). To the best of our knowledge, these
are the first results that apply to this broad class of
models. Moreover, the rates obtained by our analysis
cannot be improved in general. Indeed, when the noise
matrix W is stochastic, our results can be shown to be
minimax-optimal up to constant factors.

An interesting feature of our analysis is that, in con-
trast to the past work just discussed, we do not impose
incoherence conditions on the singular vectors of Θ!;
rather, we control the interaction with a milder con-

dition involving the dual norm of the regularizer. In
the special case of elementwise sparsity, this dual norm
enforces an upper bound on the “spikiness” of the low-
rank component. As we show, this type of milder con-
straint is both necessary and sufficient for the approx-
imate recovery that is of interest in the noisy setting.

The remainder of the paper is organized as follows.
In Section 2, we set up the problem in a precise way,
and describe the estimators. Section 3 is devoted to
the statement of our main result, as well as its various
corollaries for special cases of the matrix decomposi-
tion problem. Section 4 provides proofs of the main
corollaries. In Section 5, we provide numerical simu-
lations that illustrate the sharpness of our theoretical
predictions. Proofs of the main theorem and other
technical results can be found in the full-length ver-
sion of this paper (Agarwal et al., 2011).

2. Convex relaxations and matrix
decomposition

In this paper, we consider a family of regularizers
formed by a combination of the nuclear norm

|||Θ|||N : =

min{d1,d2}∑

j=1

σj(Θ), (2)

or the sum of singular values of Θ, which acts as
a convex surrogate to a rank constraint for Θ! (see
e.g. Recht et al. (2010) and references therein), with a
norm-based regularizer R : Rd1×d2 → R+ used to con-
strain the structure of Γ!. We provide a general theo-
rem applicable to a class of regularizers R that satisfy
a certain decomposability property (Negahban et al.,
2009), and then consider in detail a few particular
choices of R that have been studied in past work, in-
cluding the elementwise "1-norm, and the columnwise
(1, 2)-norm (see Examples 1 and 2 below).

In the presence of noise (W $= 0), it is natural to con-
sider the family of estimators

min
(Θ,Γ)

{
1

2
|||Y − (Θ + Γ)|||2F + λd|||Θ|||N + µdR(Γ)

}
,

where (λd, µd) are non-negative regularization param-
eters, to be chosen by the user, and ||| · |||F is the Frobe-
nius norm. Our theory also provides choices of these
parameters that guarantee good properties of the as-
sociated estimator. Although the estimator is reason-
able, it turns out that an additional constraint yields
an equally simple estimator that has attractive prop-
erties, both in theory and in practice.

In order to understand the need for an additional con-
straint, it should be noted that, without further con-
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straints, the model (1) is unidentifiable even in the
noiseless setting (W = 0). As has been discussed in
past work, no method can recover the components
(Θ!,Γ!) unless the low-rank component is “incoher-
ent” with the matrix Γ!. For instance, supposing for
the moment that Γ! is a sparse matrix, consider a rank
one matrix with Θ!

11 $= 0, and zeros in all other posi-
tions. In this case, it is clearly impossible to disentan-
gle Θ! from a sparse matrix. Past work on both ma-
trix completion and decomposition has ruled out these
types of troublesome cases via conditions on the sin-
gular vectors of the low-rank component Θ!, and used
them to derive sufficient conditions for exact recovery
in the noiseless setting. In this paper, we impose a
milder condition with the goal of performing approx-
imate recovery. It should be noted that in the more
realistic setting of noisy observations and/or matrices
that are not exactly low-rank, such approximate recov-
ery is the best that can be expected, and indeed, we
also show that our rates are minimax-optimal, mean-
ing that no algorithm can do substantially better.

For a given regularizer R, we define the quantity
κd(R) := sup

V "=0
|||V |||F/R(V ), which measures the rela-

tion between the regularizer and the Frobenius norm.
Moreover, we define the associated dual norm R∗(U) :
= supR(V )≤1 〈〈V, U〉〉, where 〈〈V, U〉〉 : = trace(V TU)

is the trace inner product on the space Rd1×d2 . Our
estimators are based on constraining the interaction
between the low-rank component Θ! and Γ! via the
quantity

ϕR(Θ) := κd(R∗)R∗(Θ). (3)

With these definitions, the analysis of this paper is
based on the family of estimators

min
(Θ,Γ)

{1

2
|||Y − (Θ + Γ)|||2F + λd |||Θ|||N + µd R(Γ)

}
,

(4)

subject to ϕR(Θ) ≤ α for some fixed parameter α. Let
us consider some examples to provide intuition.

Example 1 (Sparsity and elementwise "1-norm). Sup-
pose that Γ! is assumed to be sparse, with s # d1d2
non-zero entries. In this case, the sum Θ! + Γ! corre-
sponds to the sum of a low rank matrix with a sparse
matrix. This type of decomposition is motivated in
various applications, among them robust forms of
PCA (Candes et al., 2009) and Gaussian graph se-
lection with hidden variables (Chandrasekaran et al.,
2010). Since Γ! is sparse, an appropriate choice of

regularizer is the elementwise "1-norm

R(Γ) = ‖Γ‖1 : =
d1∑

j=1

d2∑

k=1

|Γjk|. (5)

It is straightforward to verify that

R∗(U) = ‖U‖∞ : = max
j=1,...,d1

max
k=1,...,d2

|Ujk|, (6)

and moreover, that κd(R∗) =
√
d1d2. Consequently,

in this specific case, the general convex program (4)
takes the form

min
(Θ,Γ)

{1

2
|||Y − (Θ + Γ)|||2F + λd |||Θ|||N + µd ‖Γ‖1

}

such that ‖Θ‖∞ ≤ α√
d1 d2

. (7)

The constraint involving ‖Θ‖∞ serves to control
the “spikiness” of the low rank component, with
larger settings of α allowing for more spiky matri-
ces; it arises in low-rank matrix completion prob-
lems (Negahban & Wainwright, 2010), as well as in the
recent work of Hsu et al. (2010). More concretely, if we
consider matrices with |||Θ|||F ≈ 1, then setting α ≈ 1
allows only for matrices for which |Θjk| ≈ 1/

√
d1d2 in

all entries. If we want to permit the maximally spiky
matrix with all its mass in a single position, then the
parameter α must be of the order

√
d1d2. In practice,

we are interested in settings of α in between these two
extremes.

♣
Example 2 (Column-sparsity and block columnwise
regularization). Motivated by robust PCA, Xu et al.
(2010) have analyzed models in which Γ! has a rela-
tively small number s # d2 of non-zero columns. In
this case, it is natural to impose the (1, 2)-norm regu-
larizer

R(Γ) = ‖Γ‖1,2 : =
d2∑

k=1

‖Γk‖2, (8)

where Γk is the kth column of Γ. For this choice, it
can be verified that

R∗(U) = ‖U‖∞,2 : = max
k=1,2,...,d2

‖Uk‖2, (9)

where Uk denotes the kth column of U . Also, κd(R∗) =√
d2. Consequently, in this specific case, the convex

program (4) takes the form

min
(Θ,Γ)

{1

2
|||Y − (Θ + Γ)|||2F + λd |||Θ|||N + µd ‖Γ‖1,2

}

such that ‖Θ‖∞,2 ≤ α√
d2

. (10)

Again the constraint on ‖Θ‖∞,2 serves to limit the
“spikiness” of the low rank component, where in this
case, spikiness is measured columnwise. ♣
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3. Main results and their consequences

In this section, we state our main results, and illustrate
some of their consequences.

3.1. Decomposable regularizers

Our results apply to the family of convex pro-
grams (4) whenever the regularizer R is decompos-
able (Negahban et al., 2009). The notion of decom-
posability is defined in terms of a pair of subspaces,
which (in general) need not be orthogonal comple-
ments. Here we consider a special case of decompos-
ability:

Definition 1. Given a subspace M ⊆ Rd1×d2 and its
orthogonal complementM⊥, a norm-based regularizer
R is decomposable with respect (M,M⊥) if for all U ∈
M, and V ∈ M⊥.

R(U + V ) = R(U) +R(V ) (11)

To provide some intuition, the subspace M should be
thought of as the nominal model subspace; in our re-
sults, it will be chosen such that the matrix Γ! lies
within or close to M. The orthogonal complement
M⊥ represents deviations away from the model sub-
space, and the equality (11) guarantees that such de-
viations are penalized as much as possible.

As discussed at more length by Negahban et al.
(2009), a large class of norms are decomposable with
respect to interesting1 subspace pairs. Of particular
relevance to us is the decomposability of the elemen-
twise "1-norm ‖Γ‖1, and the columnwise (1, 2)-norm
‖Γ‖1,2 discussed in Examples 1 and 2 respectively. Be-
ginning with the elementwise "1-norm, given an arbi-
trary subset S ⊆ {1, 2, . . . , d1} × {1, 2, . . . , d2} of ma-
trix indices consider the subspace pair

M(S) : =
{
U ∈ R

d1×d2 | Ujk = 0 ∀(j, k) /∈ S
}

(12)

and its orthogonal complement M⊥(S). It is easy to
see that for any U ∈ M(S) and V ∈ M⊥(S), we
have ‖U + V ‖1 = ‖U‖1 + ‖V ‖1, showing that the ele-
mentwise "1-norm is decomposable with respect to the
pair (M(S),M⊥(S)). Similarly, it is straightforward
to verify that the columnwise (1, 2)-norm is decompos-
able with respect to subspace pairs defined analogously
with S ⊆ {1, 2, . . . , d2} a subset of column indices.

For any decomposable regularizer and non-trivial sub-
space M, we define the compatibility constant

Ψ(M,R) : = sup
U∈M\{0}

R(U)

|||U |||F
. (13)

1Note that any norm is (trivially) decomposable with
respect to the pair (M,M⊥) = (Rd1×d2 , {0}).

For example, for the "1-norm and the set M(S)
previously defined, an elementary calculation yields
Ψ(M(S); ‖ · ‖1) =

√
|S|.

3.2. A general result

We begin by stating a result for a general decompos-
able regularizer R, and a general noise matrix W . In
later subsections, we specialize this result to particu-
lar choices of regularizers, and then to stochastic noise
matrices. We denote the operator norm of a matrix,
or equivalently its largest singular value, by ||| · |||op.
Theorem 1. Given observations Y from the
model (1), suppose that we solve the convex pro-
gram (4) with regularization parameters (λd, µd) such
that

λd ≥ 4|||W |||op, and µd ≥ 4R∗(W ) +
4 α

κd
. (14)

Then there is a universal constant c1 such that
for any matrix pair (Θ!,Γ!) with ϕR(Θ!) ≤ α, and
for all integers r = 1, 2, . . . ,min{d1, d2}, and any R-
decomposable pair (M,M⊥),

|||Θ̂−Θ!|||2F + |||Γ̂− Γ!|||2F︸ ︷︷ ︸
e2(Θ̂;Γ̂)

≤ c1KΘ! + c1K!
Γ, (15)

where

K!
Θ : = λ2

d

{
r +

1

λd

min{d1,d2}∑

j=r+1

σj(Θ
!)

}
, and

K!
Γ : = c1µ

2
d

{
Ψ2(M;R) +

1

µd
R(ΠM⊥(Γ!))

}
.

Remarks: Note that the rate (15) is defined by a
sum of two terms: the terms K!

Θ and K!
Γ correspond

(respectively) to the complexities associated with the
sub-problems of recovering Θ! and Γ!. Each term is
further divided into a sum of two sub-terms, which
have an interpretation as the estimation error and
the approximation error. Considering for instance the
term K!

Θ, as will be clarified in the sequel, the term λ2
dr

corresponds to the estimation error associated with a
rank r matrix, whereas the term λd

∑min{d1,d2}
j=r+1 σj(Θ!)

corresponds to the approximation error associated
with representing Θ! (which might be full rank) by
a matrix of rank r. A similar interpretation applies to
the two components of K!

Γ.

Since the inequality (15) corresponds to a family of
upper bounds indexed by r and the subspace M, these
quantities can be chosen adaptively, depending on the
structure of the matrices (Θ!,Γ!), so as to obtain the
tightest possible upper bound. In the simplest case,



Noisy Matrix Decomposition via Convex Relaxation: Optimal Rates in High Dimensions

the matrix Θ! is exactly low rank (say rank r), and
Γ! lies within a R-decomposable subspace M. In this
case, the approximation errors vanish, and Theorem 1
guarantees that the squared Frobenius error is at most

e2(Θ̂; Γ̂) ≤ c1λ
2
dr + c1µ

2
dΨ

2(M;R). (16)

3.3. Results for "1-norm regularization

Theorem 1 holds for any regularizer that is decompos-
able with respect to some subspace pair. As previously
noted, an important example of a decomposable reg-
ularizer is the elementwise "1-norm, which is decom-
posable with respect to subspaces of the form (12). If
we make the additional assumption that Θ! has rank
r and Γ! is exactly sparse, with at most s # d1d2
entries, then the simplified form (16) implies immedi-
ately that

|||Θ̂−Θ!|||2F + |||Γ̂− Γ!|||2F ≤ c1λ
2
dr + c1µ

2
ds,

where we have used the fact that Ψ2(M(S); ‖ · ‖1) = s
for the model subspace defined by a subset S of cardi-
nality s.

Further specializing to the case of exact observations
(W = 0), yields a form of approximate recovery—
namely

|||Θ̂−Θ!|||2F + |||Γ̂− Γ!|||2F ! α2 s

d1d2
. (17)

This guarantee is weaker than the exact recovery re-
sults obtained in other previous work; however, this
past work imposed incoherence requirements on the
singular vectors of the low-rank component Θ! that
are more restrictive than the conditions of Theorem 1.
It is important to note that without imposing these in-
coherence conditions, exact recovery is impossible, and
moreover, the approximate recovery guarantee (17)
cannot be improved. Indeed, consider the matrix Θ! =

α√
d1d2

'1fT , where the vector f ∈ Rd2 has s
d1

entries

equal to one, and the remainder zero. By construc-
tion, this matrix is rank one, satisfies ‖Θ!‖∞ ≤ α√

d1d2

,

and |||Θ!|||2F = α2 s
d1d2

. In addition, it has at most s
non-zero entries, meaning that under our model, an
“adversary” could set Γ! = −Θ!, so that we observe
the all-zeroes matrix Y = Θ! +Γ! = 0. Consequently,
under the conditions of Theorem 1, no method can
estimate to greater accuracy than α2s

d1d2
, even in the

noiseless setting (W = 0).

Our discussion thus far has applied to general matrices
W . More concrete results can be obtained by assuming
that W is stochastic.

Corollary 1. Suppose Θ! has rank at most r with
‖Θ!‖∞ ≤ α√

d1d2

, and Γ! has at most s non-zero en-

tries. If the noise matrix W has i.i.d. N(0, ν2/(d1d2))

entries, and we solve the convex program (7) with

λd = 8ν√
d1

+ 8ν√
d2

, and µd = 16ν
√

log(d1d2)
d1d2

+ 4α√
d1d2

, then

with probability greater than 1− exp
(
− 2 log(d1d2)

)
,

the error e2(Θ̂, Γ̂) of any solution is at most

e2(Θ̂, Γ̂) ≤ c1ν
2

(
r

d1
+

r

d2
+

s log(d1d2)

d1d2

)
+ c1

α2 s

d1d2
.

In this case the settings of λd, µd are based on upper
bounding |||W |||op and ‖W‖∞. With a slightly modi-
fied argument, this bound can be sharpened by reduc-
ing the logarithmic term to log(d1d2

s ). This bound is
minimax-optimal, meaning that no estimator (regard-
less of its computational complexity) can achieve much
better estimates for the matrix classes and noise model
given here, which we further discuss in section 3.5.

3.4. Results for ‖ · ‖1,2 regularization

As another illustration of the consequences of The-
orem 1, we now turn to the columnwise (1, 2)-norm
previously defined in Example 2. As before, specializ-
ing Theorem 1 to this decomposable regularizer yields
the following guarantee:

Corollary 2. Suppose Θ! has rank at most r with
‖Θ!‖∞,2 ≤ α√

d2

, and Γ! has at most s non-

zero columns. If the noise matrix W has i.i.d.
N(0, ν2/(d1d2)) entries, and we solve the convex pro-
gram (10) with λd = 8ν√

d1

+ 8ν√
d2

and

µd = 8ν

(√
1

d2
+

√
log d2
d1d2

)
+

4α√
d2

,

then with probability greater than
1− exp

(
− 2 log(d2)

)
, the error e2(Θ̂, Γ̂) of any

solution is bounded by

c1ν
2

(
r

d1
+

r

d2
+

s

d2
+

s log d2
d1d2

)
+ c2

α2s

d2
. (18)

Remarks: Note that the setting of λd is the same
as in Corollary 1, whereas the parameter µd is chosen
based on upper bounding ‖W‖∞,2, corresponding to
the dual norm of the columnwise (1, 2)-norm. As with
Corollary 1, an alternative argument can be used to
replace the logarithmic term with log(d2/s), and the
resulting bound can be shown to be minimax optimal.

3.5. Lower Bounds

For the case of i.i.d Gaussian noise matrices, Corol-
laries 1 and 2 guarantee that our estimators achieve
certain Frobenius errors. In this section, we turn to
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the complementary question: what are the fundamen-
tal (algorithm-independent) limits of accuracy in noisy
matrix decomposition? Given some family F of ma-
trices, the associated minimax error is given by

M(F) : = inf
(Θ̃,Γ̃)

sup
(Θ!,Γ!)

E
[
|||Θ̃−Θ!|||2F + |||Γ̃− Γ!|||2F

]
,

where the infimum ranges over all estimators (Θ̃, Γ̃)
that are (measurable) functions of the data Y , and the
supremum ranges over all pairs (Θ!,Γ!) ∈ F . Here the
expectation is taken over the Gaussian noise matrix
W , under the linear observation model (1).

For the case of elementwise sparsity, the relevant fam-
ily is the set Fsp(r, s, α) of matrix pairs such that Θ!

has rank at most r and elementwise spikiness ‖Θ!‖∞ ≤
α√
d1d2

; and such that Γ! has at most s non-zero entries.

Similarly, for columnwise sparsity, we let Fcol(r, s, α)
be the set of matrix pairs such that Θ! has rank at
most r and columnwise spikiness ‖Θ!‖∞,2 ≤ α√

d2

; and

such that Γ! has at most s non-zero columns.

Theorem 2 (Minimax lower bound). There is
a universal constant c0 > 0 such that for all
α ≥ 8

√
log(d1d2), the minimax risk M(Fsp(r, s, α)) is

lower bounded by

c0ν
2

(
r

d1
+

r

d2
+

s log(d1d2

s )

d1d2

)
+ c0

α2 s

d1d2
,

and the minimax risk M(Fcol(r, s, α)) is lower bounded
by

c0ν
2

(
r

d1
+

r

d2
+

s

d2
+

s log(d2−s
s/2 )

d1d2

)
+ c0

α2 s

d2
.

These lower bounds match the sharper versions of
Corollaries 1 and 2 that we discuss in the text fol-
lowing the corollaries up to constants. Consequently,
up to constant factors, Corollaries 1 and 2 cannot be
improved upon by any estimator.

4. Proof sketches for main theorem
corollaries

Due to lack of space, we only outline the proofs of
the corollaries, referring the reader to the long ver-
sion (Agarwal et al., 2011) for all technical details.

4.1. Proof of Corollary 1

In order to prove this result, we need to verify that
the stated choice of (λd, µd) satisfies the requirements
of Theorem 1. Recall that here R(·) = ‖ · ‖1 and
R∗(·) = ‖ · ‖∞. Based on the discussion follow-
ing the corollary, we only need to verify that λd ≥

4|||W |||op and µd ≥ 4‖W‖∞ + 4 α√
d1d2

. By known re-

sults on the singular values of Gaussian random matri-
ces (Davidson & Szarek, 2001), for the given Gaussian
random matrix, we have

P

[
|||W |||op ≥ 4ν

{
1√
d1

+
1√
d2

}]
≤ 2 exp

(
− c(d1 + d2)

)
.

Consequently, setting λd ≥ 16ν
{

1√
d1

+ 1√
d2

}
ensures

that the requirement (14) is satisfied. As for the asso-
ciated requirement for µd, it suffices to upper bound
‖W‖∞. Since the entries of W are i.i.d. and sub-
Gaussian with parameter ν/

√
d1d2, the sub-Gaussian

tail bound combined with union bound yields

P

[
‖W‖∞ ≥ 4

ν√
d1d2

log(d1d2)

]
≤ exp(− log d1d2),

from which the statement of Corollary 1 follows.

In order to obtain the sharper minimax optimal result,
need to directly analyze the |〈〈W, ∆̂Γ〉〉| term using a
result of Gordon et al. (2007). Details are omitted due
to lack of space.

4.2. Proof of Corollary 2

Recall that here R(·) = ‖·‖1,2 and R∗(·) = ‖·‖∞,2. To
prove the Corollary, we need to show that the condi-
tions of Theorem 1 on λd, µd hold with high probabil-
ity. It is easily seen that the setting of λd is the same
as Corollary 1. Hence, we only need to establish an
upper bound on ‖W‖∞,2 to complete the proof. Let
Wk be the kth column of the matrix. Then for any
fixed k

P

[
‖Wk‖2 ≥ E‖Wk‖2 + t

]
≤ exp

(
−

t2d1d2
ν2

)
.

Since Wk is a Gaussian random vector, we have

E‖Wk‖2 ≤
ν√
d1d2

√
d1 =

ν√
d2

,

and combined with union bound,

P
[
max

k
‖Wk‖2 ≥

ν√
d2

+ t
]
≤ d2 exp

(
−

t2d1d2
ν2

)
.

Setting t = 2ν
√

log d2

d1d2
gives that with probability at

least 1− exp
(
− 3 log d2

)

‖W‖∞,2 ≤
ν√
d2

+ 2ν

√
log d2
d1d2

.
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5. Experimental results

In this section, we present simulation studies demon-
strating the accuracy of our theory. The first set of
experiments apply to a low-rank matrix Θ! ∈ Rd×d

corrupted by an arbitrary sparse matrix Γ!. For posi-
tive parameters γ and β, we varied the rank of Θ! as
r = γd, and the sparsity of Γ! as s = βd2/ log(d2), and
we generated the noise matrix W with i.i.d. N(0, 1/d)
entries. With these choices, Corollary 1 guarantees
that (w.h.p.) the squared Frobenius error should be
upper bounded as c1γ + c2β, where c1, c2 are univer-
sal constants. For dimension d = 100 and sparsity
s = 2171, Figure 1 shows plots of squared Frobenius
error as the rank parameter γ is varied: as predicted,
the error grows linearly with γ.
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Figure 1. Plot of the squared Frobenius norm joint
error of Θ̂ and Γ̂. We vary γ ∈ {0.05 : 0.05 : 0.5},
and set d = 100 with sparsity level s = 2171. The
growth of the function is linear in γ or r, which
experimentally demonstrates the

√
r error scaling

predicted by the theory.

For dimension d = 100 and rank r = 10, Figure 2
shows the squared Frobenius error as the sparsity pa-
rameter β is varied. Consistent with the predictions of
Corollary 1, the squared Frobenius error scales linearly
with β.

We now turn to simulations for a low-rank matrix
corrupted by a column-sparse matrix Γ!, in this case
studying how the error scales with the matrix dimen-
sion d. In all cases, for a matrix Θ! with rank r, we
generate the matrix Γ! with s = 3r non-zero columns
of arbitrary magnitude.

Figure 3 plots the squared Frobenius error versus the
matrix dimension d; it contains two curves, one with
rank r = 10 and d ∈ {100 : 25 : 300}, and the sec-
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Figure 2. Plot of the squared Frobenius norm joint
error of Θ̂ and Γ̂ where we fix d = 100 and r = 10,
and vary β ∈ {0.5 : 0.5 : 5, 6, 7, 10, 20}.

ond with rank r = 15 and d ∈ 1.5 ∗ {100 : 25 : 300}.
In both cases, the error decreases as d increases, con-
sistent with Corollary 2. Furthermore, when r is in-
creased by a factor of 3/2, the dimension needs to be
increased by the same factor in order to achieve the
same error. In Figure 4, we plot the squared inverse
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Squared error versus d
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Figure 3. Plot demonstrating that as d increases
we see a decrease in the total error as predicted.
Here, s = 3r and r = 10 and 15.

Frobenius error with dimension and observe that the
squared inverse error increases linearly in the dimen-
sion d, consistent with Corollary 2.

6. Discussion

In this paper, we provided conditions under which a
low-rank matrix and a sparse matrix can be recovered



Noisy Matrix Decomposition via Convex Relaxation: Optimal Rates in High Dimensions

100 200 300 400 5000.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

d

In
v
er

se
F
ro

b
en

iu
s

er
ro

r
sq

u
a
re

d
Inverse squared error versus d

 

 

r = 10
r = 15

Figure 4. Plot of the inverse squared Frobenius
norm error, which demonstrates that the error de-
creases as 1/

√
d for s = 3r and r = 10 and 15.

Furthermore, scaling the rank and matrix dimen-
sions by the same amount results in nearly identical
errors.

from the noisy sum. The results apply to broad classes
of structural assumptions on the low-dimensional com-
ponent generalizing several previous results to a noisy
observation model. The error rates of our estimator
can be shown to be minimax optimal for both elemen-
twise and columnwise sparsity models. A key feature
of our results is the weakening of the incoherence as-
sumption made in most of the existing literature. In
future work, it will be interesting to study other family
of decompositions in which recovery is possible under
some regularity conditions.
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