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Abstract

Iterative methods that take steps in approxi-
mate subgradient directions have proved to
be useful for stochastic learning problems
over large or streaming data sets. When the
objective consists of a loss function plus a
nonsmooth regularization term, whose pur-
pose is to induce structure (for example, spar-
sity) in the solution, the solution often lies
on a low-dimensional manifold along which
the regularizer is smooth. This paper shows
that a regularized dual averaging algorithm
can identify this manifold with high probabil-
ity. This observation motivates an algorith-
mic strategy in which, once a near-optimal
manifold is identified, we switch to an al-
gorithm that searches only in this manifold,
which typically has much lower intrinsic di-
mension than the full space, thus converg-
ing quickly to a near-optimal point with the
desired structure. Computational results are
presented to illustrate these claims.

1. Introduction

Stochastic approximation methods have recently
proved to be effective in solving stochastic learning
problems. Each step of these methods evaluates an ap-
proximate subgradient at the current iterate, based on
a subset (perhaps a single item) of the data. This infor-
mation is used, possibly in combination with subgradi-
ent information from previous iterates and a damping
or line-search parameter, to obtain the next iterate.

We focus on objectives that consist of a smooth loss
function in conjunction with a nonsmooth regularizer.
A classic problem of this form is !1-regularized logis-
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tic regression. Xiao (2010) recently described a dual-
averaging method, in which the smooth term is ap-
proximated by an averaged gradient, while the regu-
larization term appears explicitly in each subproblem.
This approach can be viewed as an extension of the
method of Nesterov (2009) to the case in which a reg-
ularization term is present. Other methods have been
proposed to minimize nonsmooth functions (for ex-
ample, approaches based on smooth approximations
(Nesterov, 2005)), but these approaches are less ap-
pealing when the regularizers have simple structure
that allows them to be handled explicitly.

A characteristic of problems with nonsmooth regular-
izers is that the solution often lies on a manifold of low
dimension. In !1-regularized problems, for instance,
the number of nonzero components at the solution is
often a small fraction of the dimension of the full space.
Where a reliable method for identifying an optimal (or
near-optimal) manifold is available, we have the pos-
sibility of invoking an algorithm that searches just in
the low-dimensional space defined by this manifold —
possibly a very different algorithm to one that would
be used on the full space. One example of this type
of approach is seen in LPS (Shi et al., 2008; Wright,
2010), a batch optimization method for !1-regularized
logistic regression, which takes inexact Newton steps
on the space of apparently nonzero variables, to sup-
plement the partial gradient steps that are used in the
full space. In logistic regression, and probably in other
cases, it can be much less expensive to compute first-
and second-order information on a restricted subspace
than on the full space.

Identification of optimal manifolds has been stud-
ied in the context of convex constrained optimization
(Burke & Moré, 1994; Wright, 1993) and nonsmooth
nonconvex optimization (Hare & Lewis, 2004). In the
latter setting, the optimal manifold is defined to be a
smooth surface passing through the optimum, param-
eterizable by relatively few variables, such that the
restriction of the objective to the manifold is smooth.
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When a certain nondegeneracy condition is satisfied,
this manifold may be identified without knowing the
solution, usually as a by-product of an algorithm for
solving the problem.

In this paper, we investigate the ability of a regular-
ized dual averaging (RDA) algorithm described in Xiao
(2010) to identify the optimal manifold. We also in-
vestigate this behavior computationally for the case of
!1-regularized logistic regression, and suggest a tech-
nique for switching to a different method once a near-
optimal manifold is identified, thus avoiding the sub-
linear asymptotic convergence rate that characterizes
stochastic gradient methods.

The RDA algorithm averages the gradient information
collected at the iterates, and the averaged gradient
tend to converge to the optimal gradient as the iterates
converge to a solution. Taken in conjunction with the
nondegeneracy condition, this property provides the
key to identification.

1.1. Notations

We use ‖ · ‖ (without a subscript) to denote the Eu-
clidean norm ‖ · ‖2 , and card(M) to denote the car-
dinality of a finite set M . The distance function
dist (w,C) for w ∈ Rn and a convex set C ⊂ Rn is
defined by dist (w,C) := infc∈C ‖w − c‖. The effec-
tive domain of Ψ : Rn → R ∪ {+∞} is defined by
domΨ := {w ∈ Rn |Ψ(w) < +∞}; ri C denotes the
relative interior of a convex set C, that is, the interior
relative to the affine span of C (the smallest affine set
which can be expressed as the intersection of hyper-
planes containing C).

2. Regularized Stochastic Online
Learning

In regularized stochastic learning, we consider the fol-
lowing problem:

min
w∈Rn

φ(w) := f(w) + Ψ(w) (1)

where f(w) := EξF (w; ξ) =
∫

Ξ F (w; ξ)dP (ξ) and ξ is a
random vector with a probability distribution which is
supported on the set Ξ ∈ Rd. We assume that there is
a open neighborhood O of domΨ which is contained in
domF (·, ξ) for all ξ ∈ Ξ, where the expectation is well
defined and finite valued. We assume that F (w, ξ) is
a smooth convex function for w ∈ O and every ξ ∈ Ξ,
and Ψ : Rn → R ∪ {+∞} is a closed proper convex
function with domΨ closed. We use w∗ to denote the
optimal solution of (1).

One method for obtaining an approximation to w∗ is

to draw random variables ξj , j ∈ N independently
from the space Ξ, where N is an index set of finite
cardinality, and solve

min
w∈Rn

φ̃N (w) := f̃N (w) + Ψ(w) (2)

where f̃N (w) := 1
card(N )

∑

j∈N F (w; ξj). This ap-
proach requires batch optimization, which does not
scale well for N with large cardinality.

In regularized stochastic online learning, we encounter
a previously unknown cost function F (·; ξt) : Rn → R

for ξt ∈ Ξ in each time t ≥ 1, where {ξt}t≥1 forms
an i.i.d. sequence of random samples. At each time t,
we make a decision wt using the information gathered
up to the time t, and attempt to generate a sequence
{wt}t≥1 such that

lim
t→∞

E [F (wt; ξ) + Ψ(wt)] = f(w∗) + Ψ(w∗).

2.1. Regularized Dual Averaging Algorithm

In the regularized dual averaging (RDA) algorithm
(Xiao, 2010), we define the dual average ḡt to be the
average of the approximate gradients ∇F (wj ; ξj) of
f(wj) up to time t, that is,

ḡt :=
1

t

t
∑

j=1

∇F (wj ; ξj). (3)

(The differentiation of F is taken for its first argu-
ment.) The following subproblem is solved to obtain
the iterate wt+1:

wt+1 = argmin
w∈Rn

{

〈ḡt, w〉+Ψ(w) +
γ√
t
‖w − w1‖2

}

.

(4)

As the objective function in (4) is strongly convex for
γ > 0, wt+1 is uniquely defined. Note that wt+1 de-
pends on the history of random variables ξj up to time
t; this history is denoted by ξ[t] := {ξ1, ξ2, . . . , ξt}. In
particular, we have that wt+1 is independent of later
samples ξt+1, ξt+2, . . . .

2.2. Regret Bound for RDA Algorithm

We assume that there exists a bound G > 0 for the
norms of the gradients, that is,

‖∇F (w; ξ)‖ ≤ G, ∀w ∈ O, ∀ξ ∈ Ξ.

Similarly to Nesterov (2009), we choose w1 ∈
argminw∈Rn Ψ(w) and assume without loss of general-
ity that Ψ(w1) = 0. We also assume that the distance
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between the solution w∗ of (1) and w1 is bounded by
a constant D > 0, that is,

‖w∗ − w1‖ ≤ D.

We define the regret with respect to w∗ as follows:

Rt :=
t

∑

j=1

(F (wj ; ξj)+Ψ(wj))−
t

∑

j=1

(F (w∗; ξj)+Ψ(w∗)).

The RDA algorithm has the following property for the
regularized stochastic online learning:

Theorem 1. For any instantiation of the sequence
{wj}tj=1 generated by the RDA algorithm, we have:

Rt ≤
(

γD2 +
G2

γ

)√
t, ∀t ≥ 1.

Proof. See Corollary 2 of Xiao (2010).

2.3. Manifold and Assumptions

We define some terminology regarding (differential)
manifolds following Vaisman (1984).

Definition 1. A set M ⊂ Rn is a manifold about
z̄ ∈ M, if it can be described locally by a collection of
at least twice continuously differentiable (i.e. Cp, for
p ≥ 2) functions with linearly independent gradients.
That is, there exists a map H : Rn → Rk that is Cp

around z̄ with ∇H(z̄)T ∈ Rk×n, surjective, such that
points z near z̄ lie in M if and only if H(z) = 0.

Definition 2. The normal space to M at z̄, denoted
by NM(z̄), is the range space of ∇H(z̄).

We assume that the following conditions hold through-
out the paper:

• Unbiasedness: As in Nemirovski et al. (2009),
we assume that ∇f(w) = ∇EξF (w; ξ) =
Eξ∇F (w; ξ) for w independent of ξ. This implies

E[∇F (wt; ξt)] = E
[

E[∇F (wt; ξt) | ξ[t−1]]
]

= E [∇f(wt)] .

• Lipschitz Property: For all t ≥ 1, F (w; ξt)
is differentiable with Lipschitz continuous deriva-
tives in w with a uniform constant L > 0, i.e.,

‖∇F (w; ξt)−∇F (w′; ξt)‖ ≤ L‖w−w′‖, ∀w,w′ ∈ O.

This assumption implies ∇f(w) is also Lipschitz
continuous on O with the same constant L.

• Nondegeneracy: w∗ is nondegenerate, that is,

0 ∈ ri ∂φ(w∗).

• Partial Smoothness: Ψ(·) is (C2-) partly smooth
(Hare & Lewis, 2004) at w∗ relative to a optimal
manifold M containing w∗, that is,

(i) (Smoothness) The function Ψ restricted to
M, denoted by Ψ|M, is C2 near w∗.

(ii) (Regularity) Ψ is subdifferentially regular at
all points w ∈ M near w∗, with ∂Ψ(w) /= ∅.

(iii) (Sharpness) The affine span of ∂Ψ(w∗) is a
translate of NM(w∗).

(iv) (Sub-continuity) The set-valued mapping
∂Ψ : M ⇒ Rn is continuous at w∗.

Partial smoothness of φ(·) follows from this con-
dition since f(·) is smooth, which follows from the
smoothness of F (·; ξ) for each ξ ∈ Ξ.

• Strong Local Minimizer: w∗ is a strong local
minimizer of φ relative to the optimal manifold
M, that is, there exists cM > 0 and rM > 0 such
that

φ|M(w) ≥ φ|M(w∗) + cM‖w − w∗‖2,
∀w ∈ M∩O s.t. ‖w − w∗‖ ≤ rM.

Along with the other assumptions above, this im-
plies that w∗ is in fact a strong local minimizer
of φ (Lee & Wright, 2011, Theorem 5), i.e. there
exists 0 < c < cM and 0 < r̄ < rM such that

φ(w) ≥ φ(w∗) + c‖w − w∗‖2, (5)

∀w ∈ O s.t. ‖w − w∗‖ ≤ r̄.

2.4. Manifold Identification

We now state a fundamental manifold identification
result that will be used in our analysis.

Theorem 2. For φ which is partly smooth at the non-
degenerate minimizer w∗ relative to the manifold M,
there is a threshold ε̄ > 0 such that ∀w ∈ O with
‖w−w∗‖ < ε̄, and dist (0, ∂φ(w)) < ε̄, we have w ∈ M.

Proof. Suppose for contradiction that no such ε̄ exists.
Let {εj}j≥1 be any sequence of positive numbers such
that εj ↓ 0. Then for each j ≥ 1 we have wj such that
‖wj − w∗‖ < εj , dist (0, ∂φ(wj)) < εj but wj /∈ M.
Considering the sequence {wj}j≥1, we have that wj →
w∗, and dist (0, ∂φ(wj)) → 0. With convexity, these
imply φ(wj) → φ(w∗), since ∀aj ∈ ∂φ(wj) we have
φ(wj)−φ(w∗) ≤ aTj (wj −w∗) ≤ ‖aj‖‖wj −w∗‖. Con-
vexity implies prox-regularity, so by applying Theo-
rem 5.3 of Hare & Lewis (2004), we have that wj ∈ M
for all j sufficiently large, giving a contradiction.
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Recalling the quantity r̄ from (5), we define the sub-
sequence S by

S :=
{

j ∈ {1, 2, . . . } |

E
[

I(‖wj−w∗‖≤r̄)‖wj − w∗‖2
]

≤ j−1/4, and

E
[

I(‖wj−w∗‖>r̄)‖wj − w∗‖
]

≤ (1/r̄)j−1/4
}

,

where I(A) is an indicator variable for the event A
which satisfies I(A) = 1 when the event A is true or
I(A) = 0 otherwise.

Then we can show the following properties for j ∈ S.
Lemma 1. For any ε > 0, we have

P (‖wj − w∗‖ > ε) <
1

ε

(

1

ε
+

1

r̄

)

j−1/4, ∀j ∈ S. (6)

Defining
St := S ∩ {1, 2, . . . , t},

we have

1

t
card(St) > 1− 2

c

(

γD2 +
G2

γ

)

t−1/4, (7)

that is, the density of St in {1, 2, . . . , t} is 1−O(t−1/4).

Proof. See Appendix.

Now we state the manifold identification property of
the RDA algorithm.

Theorem 3. The iterate wj generated by the RDA al-
gorithm belongs to the optimal manifold M with prob-
ability at least 1 − (ζ1 + ζ2)j−1/4 for all sufficiently
large j ∈ S, where

ζ1 :=
3max(1, L)

ε̄

(

3max(1, L)

ε̄
+

1

r̄

)

,

ζ2 := 1.2(3/ε̄)2ν,

ν :=
[

Lµ+ 2
√
G(G+ 4Lµ)1/2

]2
, and

µ :=
1√
c

(

γD2 +
G2

γ

)1/2
[

1 +
1

r̄
√
c

(

γD2 +
G2

γ

)1/2
]

.

Proof. Let ε̄ > 0 be the threshold defined in Theo-
rem 2. We focus on the iterates wj for which the fol-
lowing event occurs:

E1 : ‖wj − w∗‖ ≤ ε̄

3max(L, 1)
, (8)

where L is the Lipschitz constant. Note that (8) triv-
ially implies the condition ‖wj−w∗‖ ≤ ε̄ of Theorem 2.
We have from (6) that for all j ∈ S,

P(‖wj − w∗‖ ≤ ε̄) ≥ P(E1) ≥ 1− ζ1j
−1/4. (9)

The other condition in Theorem 2 is

dist
(

0,∇f(wj) + ∂Ψ(wj)
)

≤ ε̄.

By adding and subtracting terms, we have

∇f(wj) + aj = (∇f(wj)−∇f(w∗)) + (∇f(w∗)− ḡj−1)

− 2γ√
j − 1

(wj − w1)

+

(

ḡj−1 + aj +
2γ√
j − 1

(wj − w1)

)

(10)

for any aj ∈ ∂Ψ(wj). We choose the specific aj that
satisfies the optimality of the subproblem (4), that is,

0 = ḡj−1 + aj +
2γ√
j − 1

(wj − w1).

This choice eliminates the last term in (10). For the
other three terms, we have the following observations.

(i) For all j satisfying (8), the Lipschitz property of
∇f implies that the following event is true:

E2 : ‖∇f(wj)−∇f(w∗)‖ ≤ ε̄/3.

(ii) From Theorem 11 of Lee & Wright (2011), we
have for any ε > 0 and t ≥ 1:

P(‖∇f(w∗)− ḡt‖ > ε) < ε−2νt−1/4.

By setting ε = ε̄/3 and t = j − 1, we have

P(‖∇f(w∗)− ḡj−1‖ > ε̄/3) < ζ2j
−1/4, ∀j ≥ 2.

Hence, denoting by E3 the event ‖∇f(w∗) −
ḡj−1‖ ≤ ε̄/3, we have that for j ≥ 2

P(¬E3) < ζ2j
−1/4. (11)

(iii) For all j satisfying (8), we have

2γ(j − 1)−1/2‖wj − w1‖
≤ 2γ(j − 1)−1/2(‖wj − w∗‖+ ‖w1 − w∗‖)

≤ 2γ(j − 1)−1/2

(

ε̄

3max(L, 1)
+D

)

.

Therefore, the event

E4 : 2γ(j − 1)−1/2‖wj − w1‖ ≤ ε̄/3

is true whenever j ≥ j0, where we define j0 by

j0 := 1 +

⌈

36γ2

ε̄2

(

ε̄

3max(L, 1)
+D

)2
⌉

.
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Therefore for j ∈ S with j ≥ j0, by definition of the
events E1, E2, E3, and E4 above, the probability that
Theorem 2 will hold is

P

(

‖wj − w∗‖ ≤ ε̄ ∧ dist (0, ∂φ(wj)) < ε̄
)

≥P

(

E1 ∧ E2 ∧ E3 ∧ E4

)

= P(E1 ∧ E3)

≥ 1− P(¬E1)− P(¬E3) ≥ 1− (ζ1 + ζ2)j
−1/4

where the last inequality is due to (9) and (11).

Lemma 1 tells us that the sequence S is “dense” in
{1, 2, . . . }, while Theorem 3 states that for all suffi-
ciently large j ∈ S, wj lies on the optimal manifold
with probability approaching one as j increases.

3. Dual Averaging with Manifold
Identification

We present a simple strategy motivated by our analysis
above, in which the RDA method gives way to a local
phase after a near-optimal manifold M is identified.

3.1. RDA+ Algorithm

Algorithm 1 summarizes our algorithm called RDA
+.

The algorithm starts with RDA steps until it identifies
a near-optimal manifold, then switches to the LPS al-
gorithm (Wright, 2010) to search a reduced space until
an optimality criterion is satisfied.

For choosing a manifold as a candidate, we use a sim-
ple heuristic inspired by Theorem 3 that if the past
τ consecutive iterates have been on the same mani-
fold, we take M to be approximately optimal. Before
commencing the local phase, however, we “safeguard”
by expanding M to incorporate additional dimensions
that may yet contain the minimizer. Our simple ap-
proach will work provided that the expanded M is a
superset of the optimal manifold, since LPS is able to
move to more restricted submanifolds of M.

3.2. Specification for !1-regularization

We describe the details of Algorithm 1 for !1-
regularization (Ψ(w) = λ‖w‖1 for some λ > 0, yielding
a starting point of w1 = 0). The !1-norm encourages
sparsity in the solution w∗. The manifold embracing
w∗ ∈ Rn corresponds to the set of points in Rn that
have the same sign and nonzero patterns as w∗.

Computation of wj+1: For this regularizer, we have
a closed-form solution for the subproblem (4):

[wj+1]i =

√
j

2γ
soft(−[ḡj ]i, λ), i = 1, 2, . . . , n,

Algorithm 1 RDA
+ Algorithm.

1: Input: γ > 0, τ ∈ N.
2: Initialize: set w1 ∈ argminw Ψ(w) and ḡ0 = 0.
3: Dual Averaging:
4: for j = 1, 2, . . . do
5: Compute a gradient gj ← ∇F (wj ; ξj).
6: Update the average gradient:

ḡj ← j−1
j ḡj−1 +

1
j gj .

7: Compute the next iterate:
wj+1 ← the solution of the subproblem (4).

8: if there is M such that wj+2−i ∈ M for i =
1, 2, . . . , τ then

9: Local Phase:
10: Expand M and use LPS to search for solution

on manifold M, starting at wj+1;
11: end if
12: end for

where soft(u, a) := sgn(u)max{|u| − a, 0} is the well-
known soft-threshold function, where sgn(u) equals 1
if u > 0, −1 if u < 0, and 0 if u = 0.

Acceleration: To generate the approximate solution
in the local phase of Algorithm 1, we use an empirical
estimate φ̃N in (2) as a surrogate objective function
and then solve

min
w∈M

φ̃N |M(w),

where N is drawn from available samples. LPS calcu-
lates first- and second-order information for φ̃N on the
subset of components defined by M. Since the intrin-
sic dimension of M is usually much smaller than the
dimension n of the full space, these restricted gradi-
ents and Hessians are much cheaper to compute than
their full-space counterparts.

Checking Optimality: From the optimality condi-
tion for (2), we define the optimality measure δ(wj):

δ(wj) :=
1√
n

inf
aj∈∂Ψ(wj)

‖∇f̃N (wj) + aj‖. (12)

Since δ(w∗) ≈ 0 for sufficiently large sample set N
because of the law of large numbers, we can stop the
algorithm when δ(wj) drops below a certain threshold.

Safeguarding: For a more robust implementation,
we augment M before starting the local phase, adding
components i for which [wj+1]i = 0 but [ḡj ]i is close
to one of the endpoints of its allowable range; that is,

[wj+1]i = 0 and |[ḡj ]i| > ρλ (13)

for some fixed ρ ∈ (0, 1]. This is motivated from The-
orem 11 of Lee & Wright (2011), which indicates that
ḡj approaches ∇f(w∗) in probability as j increases.
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4. Experiments

We use the MNIST data set which consists of gray-
scale images of digits represented by 28 × 28 pixels,
and focus on differentiation between the digits 6 and
7, yielding 12183 training and 1986 test examples.
The digits are classified via logistic regression with !1-
regularization (Ψ(w) = λ‖w‖1 for some λ > 0). The
empirical estimate φ̃N is taken for the full training
set. For the training example selected by ξt at time
t ≥ 1, we use its feature vector xt ∈ Rn−1 and label
yt ∈ {−1, 1} to define the corresponding loss function
for w̃ ∈ Rn−1, b ∈ R and w = (w̃, b):

F (w; ξt) = log
(

1 + exp
(

−yt(w̃
Txt + b)

)

)

.

We compare RDA
+ to several other algorithms: SGD,

TG, RDA, and LPS. The stochastic gradient descent (SGD)
method (for instance, Nemirovski et al., 2009) for !1-
regularization consists of the iterations

[wt+1]i = [wt]i − αt

(

[gt]i + λsgn ([wt]i)
)

, i = 1, . . . , n.

The truncated gradient (TG) method (Langford et al.,
2009) truncates the iterates in every K steps. That is,

[wt+1]i =
{

trnc
(

[wt]i − αt[gt]i, λTG
t

)

if mod(t,K) = 0,

[wt]i − αt[gt]i otherwise,

where λTG
t := αtλK, mod(t,K) is the remainder on

division of t by K, and

trnc(ω, λTG
t ) =

{

0 if |ω| ≤ λTG
t ,

ω − λTG
t sgn(ω) otherwise.

We use K = 10 for enhanced regularization effect. For
the stepsize αt in SGD and TG, we adopt a variable step-
size scheme (Zinkevich, 2003; Nemirovski et al., 2009),
choosing αt = (D/G)

√

2/t. This gives SGD a regret
bound of Rt ≤ 2

√
2GD

√
t for λ7 G (as can be shown

by a slight modification of Theorem 1 in Zinkevich
(2003)), which is comparable to the simplified bound of
RDA for γ = G/D, i.e. Rt ≤ 2GD

√
t. We use γ = 5000

(determined by cross validation) to run RDA
+ and RDA,

and set αt = γ−1
√

2/t for SGD and TG. For LPS and the
local phase of RDA+, we set the Newton threshold to
200 and use no sampling in the gradient and Hessian
computation. We set w1 = 0 for all algorithms.

Progress in Time: We first run RDA
+ with random

permutations of the training samples, stopping when
τ = 100 consecutive iterates have the same sparsity
pattern, after seeing all samples at least once. (All re-
peated runs required at most 19327 iterations to stop.)
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Figure 1. Convergence of iterates, measured in terms of the
optimality measure (left) and the number of nonzero com-
ponents in the iterates (right). SGD, TG, RDA and LPS are
run up to the time taken for RDA+ to achieve 10−4 optimal-
ity value. The black dot-dashed lines indicate the event of
phase switching in RDA

+.

In the safeguarding test (13), we use ρ = 0.85. Then
we run the local phase of RDA+ until we obtain a solu-
tion for which the optimality measure value in (12) is
less than 10−4. We record the total runtime of RDA+,
and then run all the other algorithms up to the run-
time of RDA+. (They may stop earlier if they achieve
the desired optimality.)

We compare the convergence speed of the algorithms,
in terms of the optimality measure and the number of
nonzero components. Figure 1 presents the results for
three different values of λ. The optimality plots (on
the left) show that RDA+ achieves the target optimality
much faster than other algorithms, including LPS. The
RDA algorithm behaves better than SGD and TG, but it
still hardly achieves the target value.

The plots on the right in Figure 1 show the number of
nonzeros in the iterates. RDA tends to produce much
sparser iterates with less fluctuation than SGD and TG,
but it fails to reduce the number of nonzeros to the
smallest number identified by RDA

+ in the given time,
apparently for λ = 1.0 and λ = 0.1.

We mark the events of switching to the local phase for
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RDA
+ with black dot-dashed lines. In the local phase,

RDA
+ behaves very similarly to LPS, sharing the typ-

ical behavior of nonmonotonic decrease in optimality.
However, the local phase often converges faster than
LPS, because it can operate on the reduced space cho-
sen by the initial phase of RDA+. The number of nonze-
ros often increases in the event of switching, since the
safeguarding can add more elements. This behavior
can be diminished by using more conservative (larger)
ρ values.

Quality of Solutions: In Figure 2, we compare the
quality of the solutions in terms of optimality, the
number of nonzeros, and test error rate. We run the
algorithms with the same setting used in the previous
experiments, except for LPS; now we run LPS without
any time limit to use it as the baseline of comparison.
(The runtime of LPS was about four times longer than
that of RDA

+ on average.) The experiments are re-
peated for 100 different random seeds, for each of the
seven λ values in the range of [0.01, 10].

We can observe that only the solutions from RDA
+

achieve the desired optimality and the smallest num-
ber of nonzeros, with almost identical quality to the
solutions from LPS. The solutions (both with and with-
out averaging) from SGD, TG, and RDA are suboptimal,
leaving much scope for zeroing out many more compo-
nents of the iterates. RDA achieves a similar number of
nonzeros to RDA

+ for large λ values, but more nonze-
ros on smaller values of λ. In terms of the test er-
ror rate, RDA+ produces slightly better solutions than
SGD, TG, and RDA overall. Although the improvement
is marginal, we note that high accuracy is difficult to
achieve solely with the stochastic online learning algo-
rithms in limited time. The averaged iterates of SGD
and TG show smaller test error for λ ≥ 1 than others,
but they need a large number of nonzero components,
despite the strong regularization imposed.

5. Conclusion

We have shown that the RDA algorithm is effective for
producing solutions with a smaller set of active ele-
ments than other subgradient methods, and also iden-
tifies the optimal manifold with probability approach-
ing one as iterations proceed. This observation en-
ables us to apply alternative optimization techniques
with faster convergence rate on the near-optimal man-
ifold, enabling more rapid convergence to near-optimal
points than plain stochastic gradient approaches.
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Figure 2. Quality of the solutions, in terms of the opti-
mality, the number of nonzero components, and the test
error rate (measured for 100 different random permuta-
tions). SGD, TG, and RDA are run up to the time taken for
RDA

+ to achieve 10−4 optimality solutions, whereas LPS is
run without such limit. The plots for RDA+ and LPS on the
left are duplicated to the right for comparison.
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Appendix: Proof of Lemma 1

To measure card(Sc
t ) for Sc

t := {1, 2, . . . , t} \ St, we
define indicator variables for j ≥ 1:

χj
− :=

{

1 if E
[

I(‖wj−w∗‖≤r̄)‖wj − w∗‖2
]

> j−1/4,

0 otherwise.

χj
+ :=

{

1 if E
[

I(‖wj−w∗‖>r̄)‖wj − w∗‖
]

> (1/r̄)j−1/4,

0 otherwise.

Since Sc
t contains all j ∈ {1, 2, . . . , t} that satisfy

χj
− = 1 or χj

+ = 1, card(Sc
t ) ≤

∑t
j=1(χ

j
− + χj

+). For
∑t

j=1 χ
j
−, we note that

t
∑

j=1

E
[

I(‖wj−w∗‖≤r̄)‖wj − w∗‖2
]

≥
t

∑

j=1

χj
−E

[

I(‖wj−w∗‖≤r̄)‖wj − w∗‖2
]

>
t

∑

j=1

χj
−j

−1/4 ≥ t−1/4
t

∑

j=1

χj
−. (14)

From Theorem 9 of Lee & Wright (2011), we have

1

t

t
∑

j=1

E[I(‖wj−w∗‖≤r̄)‖wj − w∗‖2]

≤ 1

c

(

γD2 +
G2

γ

)

t−1/2.

Applying this bound to (14), we deduce that

1

t

t
∑

j=1

χj
− ≤ 1

c

(

γD2 +
G2

γ

)

t−1/4.

Similar arguments for the term
∑t

j=1 χ
j
+ with

E[I(‖wj−w∗‖>r̄)‖wj − w∗‖], j = 1, 2, . . . , t lead to

1

t

t
∑

j=1

χj
+ ≤ 1

c

(

γD2 +
G2

γ

)

t−1/4.

Therefore, the fraction card(St)/card({1, 2, . . . , t}) is

1

t
card(St) = 1− 1

t
card(Sc

t )

≥ 1− 1

t

t
∑

j=1

(χj
− + χj

+)

> 1− 2

c

(

γD2 +
G2

γ

)

t−1/4,

thus proving (7). For (6), we have for any ε > 0 that

P(‖wj − w∗‖ > ε)

= P(‖wj − w∗‖ > ε, ‖wj − w∗‖ ≤ r̄)

+ P(‖wj − w∗‖ > ε, ‖wj − w∗‖ > r̄) (15)

Focusing on the first term, we have for all j ∈ S that

P(‖wj − w∗‖ > ε, ‖wj − w∗‖ ≤ r̄)

= P(I(‖wj−w∗‖≤r̄)‖wj − w∗‖ > ε)

< ε−2
E
[

I(‖wj−w∗‖≤r̄)‖wj − w∗‖2
]

≤ ε−2j−1/4 (16)

due to the Markov inequality and the definition of S.
Similarly for the second term in (15), we have for all
j ∈ S

P(‖wj − w∗‖ > ε, ‖wj − w∗‖ > r̄)

< ε−1
E
[

I(‖wj−w∗‖>r̄)‖wj − w∗‖
]

≤ ε−1r̄−1j−1/4 (17)

Applying (16) and (17) to (15) results in (6).


