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Abstract

Minimization of the rank loss or, equivalently,
maximization of the AUC in bipartite rank-
ing calls for minimizing the number of dis-
agreements between pairs of instances. Since
the complexity of this problem is inherently
quadratic in the number of training exam-
ples, it is tempting to ask how much is ac-
tually lost by minimizing a simple univariate

loss function, as done by standard classifica-
tion methods, as a surrogate. In this paper,
we first note that minimization of 0/1 loss is
not an option, as it may yield an arbitrar-
ily high rank loss. We show, however, that
better results can be achieved by means of a
weighted (cost-sensitive) version of 0/1 loss.
Yet, the real gain is obtained through margin-
based loss functions, for which we are able to
derive proper bounds, not only for rank risk
but, more importantly, also for rank regret.
The paper is completed with an experimental
study in which we address specific questions
raised by our theoretical analysis.

1. Introduction

Bipartite ranking refers to the problem of learning a
ranking function from a training set of positively and
negatively labeled examples. Applied to a set of un-
labeled instances, a ranking function is expected to
establish a total order in which positive instances pre-
cede negative ones. The most commonly used criterion
for measuring the quality of a ranking function is the
area under the ROC curve, or AUC for short. Roughly
speaking, it corresponds to the fraction of correctly or-
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dered pairs of instances. Focusing on loss minimiza-
tion in this paper, we shall mostly refer to a reciprocal
measure, namely the rank loss defined as 1−AUC.

Since the rank loss is defined on pairs of instances,
most ranking methods use a pairwise approach to
learning. The basic idea is to reduce ranking to binary
classification by treating each pair of instances (x, x�)
as a single object, to be classified as positive if x should
precede x� and as negative if x should ranked below
x� (Herbrich et al., 1999; Freund et al., 2003; Agar-
wal et al., 2005; Duchi et al., 2010). Unfortunately,
this approach scales quadratically with the training
set size. Only in some special cases (when surrogate
convex loss of a very specific form, such as hinge loss or
exponential loss, is used), computational tricks allow
for reducing complexity, so that the algorithms scale
subquadratically with the number of training exam-
ples (Freund et al., 2003; Joachims, 2006). But even
in these cases, the pairwise approach yields more diffi-
cult optimization problems, compared to binary clas-
sification, and requires special algorithms to solve the
problem.

It seems legitimate, therefore, to ask whether this ad-
ditional complexity is actually warranted, especially in
light of several experimental studies suggesting that
simple scoring classifiers, notably those minimizing
margin loss functions, perform quite strongly in terms
of AUC (Cortes & Mohri, 2003; Joachims, 2005; Steck,
2007). Such classifiers can be used for ranking in an
obvious way, namely by sorting instances according to
their classification scores. In some specific cases, it can
even be proved that minimization of a margin-based
loss yields the same solution as the pairwise approach
(Rudin et al., 2005). On the other hand, there are also
counterexamples showing that a small classification er-
ror (0/1 loss) does not necessarily imply a small rank
loss, especially when the classes are unbalanced.

In this paper, we therefore seek to answer the follow-
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ing question: What do we lose in terms of ranking
performance when training a simple scoring classifier,
seeking to minimize a standard (univariate) loss on the
original data, instead of training a ranker on pairs of
instances? The main contribution of the paper is the
derivation of several upper bounds on the drop in per-
formance, expressed in terms of risk and regret. As
univariate loss functions, we analyze the standard 0/1
loss and a balanced version thereof (Section 3), as well
as the exponential and logistic loss (Section 4). Fi-
nally, we also present results of an experimental study
in which we address specific questions raised by our
theoretical analysis (Section 5).

2. Setting and Problem Statement

Let (x, y) ∈ X × Y be the object-label pair gener-
ated according to the distribution P (x, y), where X
is a feature space and Y = {−1, 1}. In the classifica-
tion problem, the purpose is to construct a classifier

c : X → R that accurately predicts values of y. The
accuracy is measured in terms of a (univariate) loss

function � : Y × R → R, where �(y, z) is the penalty
for predicting z ∈ R when the true label is y ∈ Y . The
overall accuracy of the classifier c is measured in terms
of its expected classification loss (classification risk):

L�(c) := E [�(y, c(x))] =
�

�(y, c(x))dP (x, y) (1)

We allow the output of the classifier to be a real num-
ber rather than a class label in order to incorporate
margin loss functions into this framework.

The risk of a classifier is not always a good indicator
of the performance of the learning method, since even
the optimal classifier c∗ (which has access to the distri-
bution P (x, y)) will normally have a non-zero risk. We
call c∗ a Bayes classifier. It has to minimize expected
loss conditioned on x:

c∗(x) = arg min
z

E [�(y, z)|x]

= arg min
z

�
�(y, z)dP (y|x) (2)

The risk of c∗, denoted L∗
� , is called Bayes risk. It of-

fers a reasonable baseline for comparison and suggests
to define the regret of a classifier c as follows:

Reg�(c) = L�(c)− L∗
� (3)

2.1. Ranking

In bipartite ranking, the goal is to learn a rank-

ing function (ranker) r : X × X → {−1, 0, 1}, where
r(x, x�) = 1 means that x is ranked higher than x�,

while r(x, x�) = 0 signifies a tie; for consistency, we
assume r to satisfy r(x, x�) = −r(x�, x). The accuracy
of a ranking function is measured by the rank loss,
namely the probability of incorrectly ordering two ex-
amples (x, 1) and (x�,−1), one positive and one nega-
tive, drawn independently from P (x, y) (ties are bro-
ken randomly). More precisely,

Lrank(r) := P (r(x, x�) = −1|y > y�)

+
1
2
P (r(x, x�) = 0|y > y�) = (4)

=
� |1− r(x, x�)|

2
dP (x|y=1)dP (x�|y�=−1).

Like in the classification case, we introduce the Bayes

ranker r∗. Given P (x, y), it can be derived explicitly
(Clémençon et al., 2008; Balcan et al., 2008; Ailon &
Mohri, 2008):

r∗(x, x�) = sgn (η(x)− η(x�)) , (5)

where η(x) = P (y = 1 |x), and:

sgn (z) =






1 z > 0
0 z = 0
−1 z < 0

is a sign function. The rank regret of a ranker r is then
defined as follows:

Regrank(r) = Lrank(r)− L∗
rank, (6)

where L∗
rank := Lrank(r∗).

2.2. Problem Statement

Each classifier c can be turned into a ranker rc as fol-
lows:

rc(x, x�) = sgn (c(x)− c(x�)) .

By a slight abuse of notation, we will speak about
the rank risk of c and denote it by Lrank(c), hav-
ing in mind the risk of the associated ranker rc, i.e.,
Lrank(c) := Lrank(rc). As an important observation,
note that the Bayes ranker r∗ can be constructed
in this way. Indeed, consider a classifier c̃(x) of
the form c̃(x) = f(η(x)), with a strictly monotoni-
cally increasing function f(·). Then, (5) implies that
r∗ = sgn (c̃(x)− c̃(x�)).

The purpose of the paper is to address the following
problem: Given a classifier c with classification regret
Reg�(c) for some loss function �, what is the maximum
rank regret of c, Regrank(c)? In other words, how can
we bound Regrank(c) in terms of Reg�(c)? We will also
consider a weaker objective, namely bounding the rank
risk Lrank(c) in terms of the classification risk L�(c).
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Remark. Although we focus on the “generalization
error” of the classifier (the expected loss according to
P ), our analysis equally applies to the training er-
ror and the optimization process on the training data
D = {(x1, y1), . . . , (xn, yn)}. To this end, P is simply
replaced by the empirical distribution (i.e., the relative
frequency in D). The risk then simply reduces to the
average loss on D.

3. The Case of 0/1 Loss

The simple 0/1 loss function (also called “classification
error”)

�0/1(y, z) = 1[zy ≤ 0]

(where 1[C] is the indicator function, equal to 1 if
predicate C holds and 0 otherwise) is by far the most
commonly used performance measure for classification.
Yet, a simple observation immediately excludes any
interesting bound on the regret, i.e., a bound of the
form

Regrank(c) ≤ f
�
Reg0/1(c)

�
, (7)

where Reg0/1 denotes the classification regret for 0/1
loss and f(·) is a function that becomes small as
x → 0. It follows from (2) that the function c∗(x) =
sgn (η(x)− 1/2) is a Bayes classifier for 0/1 loss. Plug-
ging this function into (7), the right-hand side is 0,
while the left hand-side can be much larger than 0,
since rc∗(x, x�) = sgn (c∗(x)− c∗(x�)) will not be a
Bayes ranker for most of the distributions.

In particular, 0/1 loss is not consistent : even if c con-
verges to c∗ in terms of the 0/1 loss, rc does not con-
verge to r∗ in terms of the rank loss. In fact, this ex-
ample also shows that consistency cannot be assured
unless rc∗ = r∗, i.e., the Bayes ranker r∗ can be derived
from the Bayes classifier c∗. Since r∗ is any monotonic
transformation of the conditional probability η, this
means that, in one way or the other, c∗ must estimate
conditional probabilities.

3.1. Risk Bound

Given that a useful bound cannot be obtained in terms
of the regret, let us now turn to the risk itself. Denote
by L0/1 the classification risk for 0/1 loss.
Lemma 3.1. For a classifier c, let α and β denote the

probability of a false negative and a false positive pre-

diction, respectively. Moreover, let p denote the prob-

ability of the positive class. Then,

Lrank(c) ≤
α

p
+

β

1− p
− αβ

p(1− p)
. (8)

Proof. Let α = P (c(x) ≤ 0, y = 1) and β = P (c(x) ≥

0, y = −1). Consider the event E of selecting two ex-
amples (x, y) and (x�, y�) such that y = 1 and y� = −1;
the probability of E is p(1− p). Moreover, note that a
ranking error can only occur if (x, y) is a false negative
or if (x�, y�) is a false positive, since correct classifi-
cation of both instances implies correct ranking. The
probabilities of these two events are α/p and β/(1−p),
respectively, and since they are independent (condi-
tioned on E), the probability of their union is given by
the right-hand side of (8).

Theorem 3.1. Let the distribution P (x, y) be such

that the prior of the positive class is equal to p. Then,

for every classifier c,

Lrank(c) ≤
L0/1(c)

min{p, 1− p} . (9)

Proof. According to the previous lemma,

Lrank(c) ≤
α

p
+

β

1− p
− αβ

p(1− p)

≤ α

p
+

β

1− p

≤ α + β

min{p, 1− p}

=
L0/1(c)

min{p, 1− p} ,

which proves the theorem.

According to both bounds, namely (8) and the less
tight version (9), L0/1(c) → 0 does indeed imply
Lrank(c) → 0. Both bounds critically depend on the
class distribution, however, and may become loose in
the case of strongly imbalanced classes. As an il-
lustration, consider the majority classifier, for which
L0/1(c) = min{p, 1 − p} while Lrank(c) = 1/2. Once
again, this shows that strong classification (at least in
the sense of 0/1 loss, indeed a debatable measure in the
case of strongly imbalanced class distributions) does
not necessarily imply strong ranking performance.

3.2. Balanced Loss

From the previous discussion, one may conclude that
imbalanced class distributions are undesirable from a
ranking point of view. Indeed, the bound (8) suggests
that false negative and false positive predictions have
a different influence on the ranking performance. In
fact, ignoring the last term in (8), which involves both
α and β, the influence of α on the bound (measured in
terms of the derivative) is 1/p, while the influence of β
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is 1/(1− p). This suggests that minimizing a balanced

version of the 0/1 loss, namely a loss of the form

�b(y, z) = w(y)1[zy ≤ 0],

may help improve ranking performance. More specifi-
cally, taking w(1) = (2p)−1 and w(−1) = (2(1− p))−1

guarantees pw(1) + (1 − p)w(−1) = 1 and thus yields
a re-scaling of the loss within [0, 1]. According to the
balanced loss thus defined, a wrong classification of an
instance from the minority class is punished stronger
than a wrong classification of an instance from the ma-
jority class.

Alternatively, the values w(1)P (y = 1) = 1/2 =
w(−1)P (y = −1) can be considered as new priors,
perfectly balancing the class distribution. Indeed, in
terms of the balanced 0/1 loss, a bound on the rank-
ing error can be expressed as a special case of (9) with
p = 1/2:

Lrank(c) ≤ 2Lb(c), (10)
where Lb(c) is the expected balanced loss produced
by the classifier c. This follows immediately from
Lemma 3.1 by omitting the last term in (8).

Note that many learning methods are able to handle
weighted training examples as input, and hence can
be used for minimizing the balanced loss without a
need for major modifications. Practically, a classifier
does of course not have access to the class priors in
the training phase. However, given their estimates
P̂ (y = 1) and P̂ (y = −1), one can use a plug-in esti-
mate ŵ(y) = (2P̂ (y))−1 instead of the true w(y). The
error thus produced in the risk will be proportional to
P (y)|w(y) − ŵ(y)| = |w(y) − ŵ(y)|/w(y). This quan-
tity exceeds � only if |P̂ (y) − P (y)| ≥ �

1−�P (y). If
P̂ is a frequency-based estimator, the Chernoff bound
implies that the error decrease exponentially with the
sample size:

P

�
|w(y)− ŵ(y)|

w(y)
≥ �

�
≤ 2 exp

�
−2P (y)n�

1− �

�

4. Margin-based Loss Functions

Let us now proceed to the analysis of general loss func-
tions of the form �(y, z) = �(yz), called margin losses

in the literature. For now, we assume that � is nonneg-
ative, strictly monotonically decreasing (better classi-
fication incurs less loss) and normalized by �(0) = 1.
Since this means that � upper-bounds the 0/1 loss,
Theorem 3.1 implies

Lrank(c) ≤ 2L�(c) (11)

in the case of equal priors P (y = 1) = P (y = −1) =
1/2. For unequal priors, we can use the balanced ver-
sion of margin loss, similarly as in the case of balanced

0/1 loss in Section 3.2, and obtain the same bound
(11).

4.1. Regret Bound

The risk bound, based solely on the fact that the mar-
gin loss upper-bounds 0/1 loss, does not suggest any
advantage of margin losses over 0/1 loss. On the other
hand, intuition suggests that a margin loss may indeed
help us decrease the value of rank loss: Since margin
loss is strictly monotonically decreasing, it is not only
sensitive to the sign of z, but also to the value of z
itself. In order to minimize expected loss, a classifier
should therefore assign scores c(x) in agreement with
the class probabilities P (y = 1 |x).

In the rest of this section, we will focus on two com-
monly used margin losses, namely exponential loss

�exp(z) = e−z and logistic loss �log(z) = log(1 + e−z).
The former is known for its use in the first and
most popular boosting algorithm, AdaBoost (Freund
& Schapire, 1997), whereas the latter derives from
maximum likelihood estimation. Interestingly, both
losses share (almost) the same Bayes classifier (Hastie
et al., 2003):

c∗exp(x) =
1
2

log
η(x)

1− η(x)
, c∗log(x) = log

η(x)
1− η(x)

.

Since both classifiers are monotonic functions of the
conditional probability η(x), the derivation of a bound
for the rank regret should be possible. Indeed, in the
remainder of this section, we shall prove such bounds,
establishing the consistency and the convergence rate
for the exponential and the logistic loss. In other
words, we show that a minimization of these losses
is a consistent procedure for minimizing the rank risk:
If the classification regret for the respective loss con-
verges to 0, then so does the rank regret, and the con-
vergence rate is at most quadratically slower.
Theorem 4.1. Let �(y, z) be the balanced margin

loss function, i.e., �(y, z) = w(y)�(yz) with w(y) =
1/2P (y). The following regret bounds hold for the

exponential loss �(yz) = e−yz and the logistic loss

�(yz) = log(1 + e−yz), respectively:

Regrank(c) ≤
3
√

2
2

�
Regexp(c), (12)

Regrank(c) ≤ 2
�

Reglog(c), (13)

where Regexp and Reglog are the classification regrets

for balanced exponential and logistic loss, respectively.

Proof. (sketch) Due to space limitations, we only pro-
vide a sketch of the proof. We will use a theorem



Bipartite Ranking through Minimization of Univariate Loss

from (Bartlett et al., 2006) which, for every classi-
fier c, allows for bounding the 0/1 classification regret
Reg0/1(c) by the margin loss � regret Reg�(c):

Reg0/1(c) ≤ f(Reg�(c)) (14)

If � is the exponential loss, we have f(x) =�
x(2− x) ≤

√
2x assuming Reg�(c) ≤ 1. For logistic

loss, one also can show that f(x) ≤
√

2x.

We first prove the theorem for equal priors, i.e., P (y =
1) = P (y = −1) = 1/2. In this case, we can skip
the balancing and prove the theorem for ordinary ex-
ponential and logistic losses. We start by reducing
the ranking problem to a classification problem in a
typical way (Cohen et al., 1999; Balcan et al., 2008;
Ailon & Mohri, 2008; Herbrich et al., 1999). This is
done by constructing objects (x̃, ỹ) in the new prob-
lem from i.i.d. pairs of objects (x, y) and (x�, y�) in the
original problem, namely by setting x̃ = (x, x�) and
ỹ = y−y�

2 . Then, objects with ỹ = 0 are removed. It
can be shown that the new distribution is given by
P̃ (x̃, ỹ) = P (x|y=ỹ)P (x�|y�=−ỹ)

2 . Moreover, if we define
the classifier in the new problem c̃ : X × X → R as
c̃(x, x�) = c(x) − c(x�), then L0/1(c̃) = Lrank(c), i.e.,
the 0/1 loss of c̃ in the new problem and the rank
loss of c in the original problem P coincide. Also, the
Bayes classifier c̃∗ in the new problem is the Bayes
ranker r∗ in the original problem. Thus, we obtain
Reg0/1(c̃) = Regrank(c).

The longest and most involved part of the proof con-
sists of relating Reg�(c̃) with Reg�(c), where � is either
the exponential loss or the logistic loss. For exponen-
tial loss, one can show that

Lexp(c̃) ≤ L2
exp(c), Lexp(c̃∗) = L2

exp(c∗),

which implies

Regexp(c̃) ≤ L2
exp(c)− L2

exp(c∗)

= (Regexp(c) + 2Lexp(c∗))Regexp(c)

≤ 9
4
Regexp(c).

The last inequality holds because, for every distri-
bution, Lexp(c∗) ≤ 1, and because we can assume
Regexp(c) ≤ 1

4 (if Regexp(c) > 1
4 , then (12) is triv-

ially satisfied because Regrank(c) ≤ 1 for all c and for
all distributions). We can now use the bound (14) to
derive

Regrank(c) = Reg0/1(c̃) ≤ f(Regexp(c̃))

≤
�

2Regexp(c̃) ≤ 3
√

2
2

�
Regexp(c).

For logistic loss, one cannot separately bound Llog(c̃)
by Llog(c) and Llog(c∗) by Llog(c̃∗). However, with the
help of a more involved analysis, one can show that

Reglog(c̃) ≤ 2Reglog(c),

which implies

Regrank(c) = Reg0/1(c̃) ≤ f(Reglog(c̃))

≤
�

2Reglog(c̃) ≤ 2
�

Reglog(c).

Thus, we proved theorem for equal priors. To prove
it for arbitrary priors, let us introduce the distribu-
tion P �(x, y), such that P �(y) := 1/2 and P �(x|y) :=
P (x|y). Note, that when we change P to P �, the dis-
tribution on pairs P (x̃, ỹ) will not change, as it only
depends on P (x|y). Therefore, the rank regret and the
margin loss regret for c̃ will not change as well.

On the other hand, the expected balanced loss �b ac-
cording to P is equal to the expected ordinary loss �
according to P �:

Lb(c) =
�

w(y)�(yc(x))dP (x|y)dP (y)

=
�

�(yc(x))dP �(x|y)dP �(y) = L�
b(c),

so we can apply what we proved so far for P � and get
the bound in terms of the balanced loss for original
distribution P .

4.2. Balancing

In Section 3.2, we have seen that, in the case of 0/1
loss, balancing the positive and negative class is likely
to have a positive influence on ranking performance.
An obvious question, therefore, is whether a similar
effect can be expected in the case of a margin loss.

Interestingly, the answer appears to be negative, at
least on a population level. Since the expected loss
produced by a prediction c = c(x) is given by

η(x) · �(c) + (1− η(x)) · �(−c),

where η(x) = P (y = 1 |x), the risk minimizing predic-
tion c∗ is implicitly determined by the equation

R =
η(x)

1− η(x)
= −∂�/∂c(−c)

∂�/∂c(c)
,

where ∂�/∂c denotes the derivative of � with respect
to c. Now, in the case of balancing, the only change
concerns the probability ratio R on the left-hand side,
which is replaced by αR with α = w(1)/w(−1). Con-
sequently, if a risk minimizer can be written in the
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form c = c(x) = log(R), as it is the case for the expo-
nential and the logistic loss, then the risk minimizer
for the balanced loss is of the form

cb(x) = log(αR) = log(R) + log(a) = c(x) + c0.

In other words, the two classifiers only differ by a con-
stant c0, which is of no practical relevance as long as
the underlying model class is closed under addition of
a constant term (a property exhibited by essentially
all learning methods minimizing a margin loss).

For the exponential loss, it can furthermore be shown
that weighing does not have any practical effect even
on the level of empirical risk minimization, as long
as the family of classifier C over which we optimize,
has the following closure property: if c ∈ C, then also
c+c0 ∈ C, where c0 is a constant. Indeed, fix c ∈ C and
let Lw(c0) =

�n
i=1 w(yi)e−yi(c(xi)+c0) be the empirical

risk of c + c0. We minimize over c0 by setting the
derivative to zero:

∂Lw(c0)
∂c0

= −
n�

i=1

w(yi)yie
−yi(c(xi)+c0) = 0

⇐⇒ e2c0 =
w(1)

�
yi=1 e−c(xi)

w(−1)
�

yi=0 ec(xi)

By plugging the optimal value for c0 into the expres-
sion for Lw(c0), we eliminate c0 from the optimization
problem, and instead minimize the “profiled” loss

Lw = 2
�

w(−1)w(1)

�
�

yi=1

e−c(xi)

� �
�

yi=0

ec(xi)

�
.

Obviously, the optimal solution minimizing this objec-
tive does not depend on the weights, which only ap-
pear as a constant multiplier. In summary, this means
that the theoretical guarantees given for the balanced
version of the loss remain valid, even when minimizing
the unbalanced exponential loss. We conjecture that
this phenomenon approximately holds for logistic loss,
too (i.e., shifting the classifier effectively changes the
class weights).

5. Computational Experiments

In this section, we verify our theoretical results by
means of computational experiment on both artificial
and real datasets. More specifically, our goal is to ver-
ify the main claim of the paper, namely that minimiza-
tion of pointwise losses is sufficient to achieve low rank
loss. To this end, we compare the performance of a lin-
ear classifier trained by minimizing the following three
objectives: (1) exponential loss, (2) logistic loss, and
(3) pairwise hinge loss. The reason we chose (1) and

(2) is clear, while the choice of (3) is due to the fact
that pairwise hinge loss is the tightest convex upper
bound on the rank loss, and it is the objective used by
one of the most popular algorithms for rank loss mini-
mization, SV Mperf for ordinal regression (SVM-OR)
(Joachims, 2006).

We did not compare to the other popular ranking al-
gorithm, RankBoost (Freund et al., 2003), as for the
bipartite ranking it becomes equivalent to exponen-
tial loss minimization while trained until convergence
(Rudin et al., 2005). We trained all the methods using
L2 regularization. We ran the experiments with reg-
ularization constant λ ∈ {0.01, 0.1, 1, 10, 100, 1000}1

and chose the best result for each method.

5.1. Artificial Data

We consider two different models for generating the
data, a linear and a nonlinear one. In both cases,
a 50-feature input vector x = (x1, . . . , x50) ∈ [0, 1]50
is first drawn from a uniform distribution on a cube.
From a prediction point of view, the most important
characteristic of the data is the underlying “target”
function, generating an output from the inputs. In our
case, we assume the output y is generated by thresh-
olding a function f(x), i.e., y = 21[f(x) ≥ 0] − 1.
For the linear model, f is a linear function of the in-
puts, namely f(x) = a0 +

�50
i=1 aixi ≥ 0. For the

nonlinear model, f(x) = a0 +
�50

i=1 airi(x) is a lin-
ear combination of “decision rules” ri(x), defined as
ri(x) =

�mi

j=1 θ(xkj − bj), where θ(z) = 1[z ≥ 0] or
θ(z) = 1[z ≤ 0], kj ∈ {1, . . . , 50} and bj ∈ [0, 1].
In other words, decision rules are conjunctions of
single-feature threshold functions, and are axis-parallel
hyper-rectangles in the feature space. All the coeffi-
cients ai, i > 0, are drawn from a Gaussian N(0, 1),
mi are drawn from a geometric distribution with rate
1/2, and the features and thresholds in the rules are
drawn uniformly at random. Then, the noise is in-
troduced by randomly relabeling the objects with a
fixed probability κ, which is tuned to obtain the risk
of the Bayes ranker equal to 0.1. The threshold a0

is chosen to obtain the desired class priors (p, 1 − p).
Since we investigate the case of equal priors (p = 0.5)
and imbalanced data (p = 0.9), we end up with four
combinations of the models (linear/nonlinear and bal-
anced/imbalanced).

For each combination, 30 random models (i.e. target
functions f) are generated in the way described above
to decrease variation w.r.t. random choice of model pa-
rameters. For each model, 30 training sets of size 1000

1For pairwise optimization, we rescaled the values prop-
erly to account for a larger range of empirical risk.
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Figure 1. Results of the experiment for different lin-
ear/nonlinear and balanced/imbalanced combination of
the data models.

and a test set of size 10000 are generated. Thus, each
algorithm is trained on 4 × 30 × 30 = 3600 datasets.
The performance of each algorithm (rank loss) for each
random model is averaged over the 30 training sets.
The results for different models are shown as boxplots
in Fig. 5.1. Thus, each box is made out of 30 observa-
tions, for 30 random models.

As we can see from the plots, there is no clear winner in
the experiment. SVM slightly outperforms the logistic
loss classifier for balanced data, while the logistic loss
classifier performs better for imbalanced data. The
exponential loss classifier always exhibits the worst
performance, however, the differences among the al-
gorithms are very small, at most around 0.01. Note
that highly imbalanced class priors do not harm the
results of the logistic loss classifier, despite the fact
that no loss balancing is introduced. Since we also no-
ticed worse performance of the exponential loss classi-
fier in terms of 0/1 loss, compared to the logistic loss
classifier, we believe that slightly worse results for ex-
ponential loss are due to its lack of robustness against
the noise (Hastie et al., 2003). Summarizing, there
seems to be no benefit from optimizing the pairwise
loss in terms of ranking performance.

Table 1. Results of the experiment on real datasets. For
first nine datasets, 10-fold cross-validation repeated 10
times is used. For covtype and kdd04, the error estimate is
computed over a single split into train and test data.

Dataset Exponential SVM-OR Logistic

Breast-w 0.0051 0.0049 0.0054
Breast-c 0.3077 0.2955 0.3005
Colic 0.1251 0.1352 0.1179
Diabetes 0.1724 0.1702 0.1804
Haberman 0.3684 0.3153 0.3820
Heart-h 0.0887 0.1005 0.0929
Hepatitis 0.1289 0.1321 0.1230
Ionosphere 0.0811 0.0773 0.0884
Vote 0.0098 0.0103 0.0096

Covtype 0.1635 0.1604 0.1623
KDD04 0.2114 0.2083 0.2143

5.2. Real Data

The second part of the experiment uses benchmark
datasets taken from the UCI repository (Asuncion &
Newman, 2007). We consider nine small-size and two
relatively large datasets. For small-size datasets, we
perform ten times 10-fold cross-validation. For the
large datasets, we use a single split into training and
testing examples. The first large problem is the pre-
diction of class 1 in the covertype dataset that con-
tains 54 features. There are 582 012 examples in total,
which we split, similarly as in (Joachims, 2006), into
522 911 training examples and 58 101 test examples.
The second large problem is the KDD04 Physics task
from the KDD-Cup 2004 (Caruana et al., 2004) with
78 features. We used the original training set that
contains 50 000 examples and split it by using 60% of
examples for training and the rest for testing.

In Table 1, we present the average rank loss for three
algorithms used in the experiment. We can observe a
similar performance of the algorithms. The difference
in performance on particular datasets is usually small,
with an exception of the haberman dataset, for which
we see the superiority of SVM-OR. In general, how-
ever, we cannot observe a consistent advantage of any
of the algorithms.

Again, the results indicate that univariate loss mini-
mization is competitive to algorithms that aim at di-
rectly minimizing the pairwise rank loss.

6. Conclusions

In this paper, we studied the problem of minimizing
the rank loss in bipartitie ranking and argued that
this problem can be solved effectively by minimizing
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a simple (univariate) loss function. Roughly speak-
ing, this means that bipartite ranking can effectively
be reduced to standard classification with conditional
probability estimation. Since classification algorithms
are computationally much more efficient than ranking
algorithms, a result of this kind is clearly of practical
relevance.

Our theoretical results, establishing loss and regret
bounds on the ranking performance of a classifier, con-
firm this conjecture, at least for margin-based loss
functions such as exponential and logistic loss. Fur-
ther evidence has been provided by experimental stud-
ies with real and synthetic data, which are in complete
agreement with our theoretical results.

In a sense, our results are not very surprising, espe-
cially since the strong ranking performance achieved
through margin loss (as opposed to 0/1 loss) mini-
mization has already been observed in several empir-
ical studies. Besides, since probability estimation es-
tablishes a close connection between rank loss mini-
mization (instances need to be ranked by probability)
and minimization of margin loss, the results are also
intuitively plausible. Still, we consider them as an im-
portant contribution, as they provide a sound theoret-
ical explanation of previous observations and arguably
help to gain further insights into the ranking problem.

Of course, the paper also leaves a number of open
questions. One of them concerns the existence of re-
gret bound for all margin-based losses estimating con-
ditional probabilities. A corresponding extension of
the study presented in this paper is planned as future
work.
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