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Abstract

We study the problem of selecting a subset of
k random variables from a large set, in order to
obtain the best linear prediction of another vari-
able of interest. This problem can be viewed in
the context of both feature selection and sparse
approximation. We analyze the performance
of widely used greedy heuristics, using insights
from the maximization of submodular functions
and spectral analysis. We introduce gubmod-
ularity ratio as a key quantity to help understand
why greedy algorithms perform well even when
the variables are highly correlated. Using our
techniques, we obtain the strongest known ap-
proximation guarantees for this problem, both in
terms of the submodularity ratio and the small-
est k-sparse eigenvalue of the covariance ma-
trix. We also analyze greedy algorithms for the
dictionary selection problem, and significantly
improve the previously known guarantees. Our
theoretical analysis is complemented by experi-
ments on real-world and synthetic data sets; the
experiments show that the submodularity ratio is
a stronger predictor of the performance of greedy
algorithms than other spectral parameters.

1. Introduction

We analyze algorithms for the following importaBtibset
Selectionproblem: select a subset &fvariables from a
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in signal processing. From a machine learning perspective,
the variables could be features or observable attributas of
phenomenon, and we wish to predict the phenomenon us-
ing only a small subset from the high-dimensional feature
space. In signal processing, the variables could correspon
to a collection of dictionary vectors, and the goal is to par-
simoniously represent another (output) vector. For many
practitioners, the prediction model of choice is linear re-
gression, and the goal is to obtain a linear model using a
small subset of variables, to minimize the mean square pre-
diction error or, equivalently, maximize the squared multi

ple correlationk?? (Johnson & Wicheiri, 2002).

Thus, we formulate the Subset Selection problem for re-
gression as follows: Given the (normalized) covariances
betweenn variables X; (which can in principle be ob-
served) and a variablg (which is to be predicted), select a
subset o < n of the variablesX; and a linear prediction
function of Z from the selected(; that maximizes the&z?

fit. (A formal definition is given in Sectiofl 2.) The covari-
ances are usually obtained empirically from detailed past
observations of the variable values.

The above formulation is knowh_(Das & Kempe, 2008) to

be equivalent to the problem sparse approximatioover
dictionary vectors: the input consists of a dictionary of
n feature vectors; € R™, along with a target vector

z € R™, and the goal is to select at mdstectors whose
linear combination best approximatesThe pairwise co-
variances of the previous formulation are then exactly the
inner products of the dictionary vectdts.

Our problem formulation appears somewhat similar to

given set of observation variables which, taken togetherhe problem of sparse recovery (Zhharg, 2008; 2009;
“pbest” predict another variable of interest. This problemizhao & Yii,12006| Candés etldl., 2005); however, note that
has a wide range of applications ranging from feature sein sparse recovery, it is generally assumed that the predic-
lection, sparse learning and dictionary selection in maehi tion vector is truly (almostk-sparse, and the aim is to re-
learning, to sparse approximation and compressed sensin@ver the exact coefficients of this truly sparse solutiar. F
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1 For this reason, the dimensian of the feature vectors only
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covariance matrix.
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many situations, the actual solution might indeed be denséarity” which we termsubmodularity ratio We prove that
the reason for running subset selection is then to reducehenever the submodularity ratio is bounded away from 0,
cost and model complexity. the R? objective is “reasonably close” to submodular, and

. . . Forward Regression gives a constant-factor approximation
T_h|s problem ISNP-hard mmaf S0 no effi- This significantly generalizes our previous resm008),
cient algorithms are known to solve it optimally. Two

L here we had identified a strong condition termed “absence
approaches are frequently used for approximating suc

oroblems: greedy algorithmb (Mill 02 Tre 004; pf cpno_litional suppressors” which ensures that fteob-
Gilbert et al.,| 2003[ Zhahd. 2008) and convex relaxation®CtVe 1S actually submodular.

schemes [(Tibshirdnl,_1996; Candés éthl, Pd05; Troppan analysis based on the submodularity ratio does relate
M). For our formulation, a disadvantage of convex rewith traditional spectral bounds, in that this ratio is ajwa
laxation techniques is that they do not provide explicit-con lower-bounded by the smallektsparse eigenvalue of the
trol over the target sparsity levél of the solution; addi- covariance matrix (though it can be much larger when the
tional effort is needed to tune the regularization paramete predictor variable is not badly aligned with the eigenspace

A simpler and more intuitive approach, widely used in of small eigenvalues). In particular, we also obtain multi-

ractice for subset selection problems (for example, it iéalicative approximation guarantees for Forward Regressio
P P p'e, and Orthogonal Matching Pursuit, whenever the smallest

use greedy algorithms, which iteratively add or removg/; t-rsepnartsheeﬁli?]env;slltjﬁr:zvl\)/r(')]lz)r;%en?j:vg?{rfg?:mgrr}gﬁggé
variables based on simple measures of fit withTwo of 9 ap P '

the most well-known and widely used greedy aI;orithmsAn added benefit of our framework is that we obtain tighter

are the subject of our analysis: Forward Regres illertheoretical performance bounds for greedy algorithms for

M) and Orthogonal Matching Pursuit (OM pp, dictionary selectionMﬂ 10). In the-
). (These algorithms are defined in Sedfion 2). tionary selection problenfwhich is formally defined in

Previous theoretical bounds on such greedy algorithmsS ectior(P), we are given target ve_ctors, and a candidate
. ; SetV of feature vectors. The goal is to select aBett V
have been unable to explain why they perform well in prac-

. . : f at mostd feature vectors, which will serve asdictio-
tice for most subset selection problem instances. Mos : .

. . : nary in the following sense. For each of the target vectors,
previous results for greedy subset selection algorithm

Gil . [2003[ Trobr. 2004 Das & Kenl 08)?he bestk < d vectors fromD will be selected and used

: : to achieve a goodk? fit; the goal is to maximize the av-
have been based on coherence of the input data, i.e., the 2 £ . )

i ) . : erageRR” fit for all of these vectors. This problem of find-
maximum correlationu between any pair of variables.

Small coherence is an extremely strong condition, and the'd & dictionary of basis functions for sparse represamai

bounds (which usually provela— O(uk) approximation) of signals has several applications in machine learning and
break down when the coherence.él /k). On the other signal processing. Krause and Cevl@OlO) showed that

. greedy algorithms for dictionary selection perform well in
hand, most bounds for greedy and convex relaxation algo® " . S
: many instances, and proved additive approximation bounds
rithms for sparse recovery are based on a weaker sparsg.

Candes et AlL. 20D5). However, these results apply to (6)10 d%?_nultiplicative guarantees without much extra effort.

ferent objective: minimizing the difference between the ac Our theoretical analysis is complemented by experiments
tual and estimated coefficients of a sparse vector. Simplgomparing the performance of the greedy algorithms and
extending these results to the subset selection problem add baseline convex-relaxation algorithm for subset salacti

a dependence on the largéssparse eigenvalue and only on two real-world data sets and a synthetic data set. More
leads to weak additive bounds. importantly, we evaluate the submodularity ratio of these
data sets and compare it with other spectral parameters:
while the input covariance matrices are close to singular,
the submodularity ratio actually turns out to be signifitant
larger. Thus, our theoretical results can begin to explain

More importantly, all the above results rely on spectralcon
ditions that fail to explain an observation of many exper-
iments (including ours in Sectidd 5): greedy algorithms

often perform very well, even for near-singular input ma- why, in many instances, greedy algorithms perform well in

trlce_s. Our results begin to explain these observaﬂqns b)‘épite of the fact that the data may have high correlations.
proving that the performance of many greedy algorithms

. . Our main contributions can be summarized as follows:
does not really depend on how singular the covariance ma-
trix is, but rather on how far th&? measure deviates from
submodularity on the given input. We formalize this in-

tuition by defining a measure of “approximate submodu-

1. We introduce the notion of submodularity ratio, as a
much more accurate predictor of the performance of
greedy algorithms than previously used parameters.
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2. We obtain the strongest known theoretical perfor-The dictionary selection problem generalizes subset selec
mance guarantees for greedy algorithms for subset sdion by considerings predictor variables?, Z,, ..., Z,.
lection. In particular, we show (in Sectigh 3) that the The goal is to select a dictionafy of d observation vari-
Forward Regression and OMP algorithms are within aables, to optimize the averagde® fit for the Z; using at
1 — e~ factor andl — e~ (7A=i») factor of optimal, mostk vectors fromD for each. Formally, the Dictionary
respectively (where the and\ terms are appropriate Selection problem is defined as follows:
submodularity and sparse-eigenvalue parameters).

3. We obtain the strongest known theoretical guaranteeBefinition 2.2 (Dictionary Selection) Given all pairwise
for algorithms for dictionary selection, improving on covariances among th&; and X;, and parameterd and
the results ofl(Krause & Cevhér, 2010). In particular, &, find a setD of at mostd variables from{X;,..., X,,}
we show (in Sectiofll4) that tH&DSy4 algorithm is ~ maximizingF' (D) = 37°_ maxs,cp,|s,|=k R7, s, -
within a factors2—(1 — 1) of optimal.

Many of our results are phrased in terms of eigenvalues
2 Preliminaries of the covariance matriC' and its submatrices. Since
: covariance matrices are positive semidefinite, their eigen

The goal in subset selection is to estimafgedictor vari-  values are real and non-negative (Johnson & Wichern,
able Z using linear regression on a small subset from thé2002). For any positive semidefinite x n matrix A,

set of observation variables/ = {X;,...,X,}. We We denote its eigenvalues bynin(4) = M(4) <
useVar(X;) andCov(X;, X;) to denote the variance and A2(4) < ... < Ay(4) = Amax(4). We use
covariance of the random variables. By appropriate nordmin(C, k) = ming;|sj— Amin(Cs) to refer to the small-
malization, we can assume that all the random variable§st eigenvalue of any x k submatrix ofC' (i.e., the
have mean 0 and variance 1. The matrix of covariancesmallest:-sparse eigenvalue), and similaty,..(C, k) =

between theX; and X; is denoted byC, with entries ~ MaXs;|sj—k Amax(Cs)- We also usex(C, k) to de-
ci; = Cov(X;, X;). Similarly, we useb to denote the note the largest condition number (the ratio of the largest

covariances betwee# and the X;, with entriesh; =  and smallest eigenvalue) of ay>x k submatrix ofC.
Cov(Z, X;). Formally, theSubset Selectioproblem can ~ This quantity is stron\gly related to the Restricted Isome-
now be stated as follows: try Property in|(Candes etlal., 2005). We also ug€') =

max;; |¢; ;| to denote thecoherencei.e., the maximum
Definition 2.1 (Subset Selection)Given pairwise covari- absolute pairwise correlation between figvariables. We
ances among all variables, as well as a paramétdind a denoteResg Z,S) = Z =), i X; as theresidual(see
setS c V of at mostk variablesX; and a linear predictor ) )) of Z, i.e., the part of the variahfethat
Z' =Y ,cqiX; of Z, maximizing thesquared multiple is not correlated with the(; for all i € S.

. o . Var(2)-E[(z-Z2')?] .
Ic]olrrelatlong R} TZﬁ SI '_I [ |:2)\.]ar(Z) (Dieknoft [ 2002 2.1. Submodularity Ratio
We introduce the notion of submodularity ratio for a gen-
R?is awidely used measure for the goodness of a statisticadral set function, which captures “how close” to submodu-
fit; it captures the fraction of the variance@fexplained by  |ar the function is. We first define it for arbitrary set func-

variables inS. Because we assumetto be normalizedto  tions, and then show the specialization for fifeobjective.
have variance 1, it simplifies 8% ¢ = 1—-E [(Z — Z)?].

Definition 2.3 (Submodularity Ratio) Let f be a non-

For a setS, we useC's to denote the submatrix @f with . . : X .
o negative set function. Theubmodularity raticof f with

row and column sef, andbg to denote the vector with .

only entriesb; for ¢ € S. For notational convenience, respect to a set/ and g parzr?f{tf}i;?ul) IS 7U7k(_f) -

we frequently do not distinguish between the index$et MinLcu,s:|s|<k,snL=0 =*Fros—fz) - 1hUS, itcap-
and the variable§ X; | i € S}. Given the subse§ of  tures how much mor¢ can increase by adding any sub-
variables used for prediction, the optimal regression-coefsetS of sizek to L, compared to the combined benefits of
ficients are well known to bes = (a;)ies = C5' - bg  addingits individual elements tb.

(see, e.g./(Johnson & Wicheln, 2002)), and hefige, =
bLCg'bs. Thus, the subset selection problem can b
phrased as follows: Give@', b, andk, select a seb of )
at mostk variables to maximizaRQZ,S = bg(Cs_l)bSE YUk = MINLCy,S:(S|<k,SNL=0

If f is specifically the R? objective defined on the
Sariables X;, then we omit f and simply write
Zi€S(R2Z,Lu{Xi}_R2Z,L) o

z 2
Rz sur =Rz

2\We assume throughout théls is non-singular. For some of 3Computing\min (C, k) is NP-hard. In the full version of this
our results, an extension to singular matrices is possitifgithe  paper[2011), we describe how to efficiently approximatevtiie
Moore-Penrose pseudoinverse. ues for some scenarios.
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minLgU,S:\S\Sk,SﬁL:@%’ where C* Lemma3.3m2?:l R%,Xi < RQZ,{Xl,...,Xn} <
and b’ are the normalized covariance matrix 5, 2oic1 f7x, < 3oy oict Bz,

and covariance vector corresponding to the set

{Res(X1, L), Res(X3, L), . .., Res(Xy, L)} Proof. Let the eigenvalues of’~! be X, < )\, <

. . . ... < X, with corresponding orthonormal eigenvectors
It can be easily shown that is submodular if and only e e_2 " e We writ%b in t%e basis{e1, e2 g en)
y 5o €n. 5 5+ +3CSn

if Yok 2 _1,_for_a||_[_] andk. For the purpose of su_bset asb — 3 fhey. Them B2, 1 — biC-1b =

selection, it is significant that the submodularity ratio ca 2y Bl o < f,{ 1” n} o )

be bounded in terms of the smallest sparse eigenvalue, i 57 A Because\; — orTa L we ge2 12067 <
,and) ;37 = b'b = >, R7  , because

shown by the following non-trivial lemma. (the proof is Z,ixl,---,Xng the veciob is independent of the basis it is

. . : . m the length o
available in the full version of this pap 11). written in. Also, by definition of the submodularity ratio,

B g _
Lemma 2.4 vy, > Amin(Cy k + [U]) > Amin(C). Ry (xixny < va— Finally, because = ﬁ(c)

S . and using LemmEZ.TZ, we obtain the result. [ ]
For all our analysis in this paper, we will ugé| = k, and

> Ami - . .
hgnceym = Amin(C, 2K). Thus, _the smallestk _spars_e. The next lemma relates the optim&f value usingk ele-
eigenvalue is a lower bound on this submodularity ratio; as

i 2 usinak’
we show later, it is often a weak lower bound. ments to the optimak= usingk’ <  elements.

_ _ Lemma 3.4 For eachk, let S; € argmax g <;, R ¢ be
3. Algorithms Analysis an optimal subset of at moktvariables.

We now present theoretical performance bounds for ForThen, for anyk’ = O(k) such thatk%(ck) < kK <
ward Regression and Orthogonal Matching Pursuit. We, have thati2 SR 6"(“(",6_/)’1/%“(07,6))
also analyze the Oblivious algorithm, which is one of the” we have 250 = THASE k ’
simplest greedy algorithms for subset selection. ThroughfOr large enoughk. In particular, RQZ,SZ/2 z R%,s; :
out this section, we use OPF maxg;|s|— RQZ7S to de- @((%)UAN(CJC)), for large enougtk.

note the optimuniz? value achievable by any set of size

All pI’OOfS that are omitted due to space constraints can beJS”]g the above |emmasi we now prove the main theorem.
found in the full version of this paper on arx@n).

) Proof of Theorem[3:2. We begin by proving the first in-
3.1. Forward Regression equality. LetS; be the variables in the optimum solution.
We first provide approximation bounds for Forward Re- L€t S{’ be the set of variables chosen by Forward Regres-

gression, which is the standard algorithm used by mangion in the firsti iterations, andb; = Sj '\ S{*. By mono-

researchers in medical, social and economic domains. ~ tonicity of B* and the fact thas; U S 2 S, we have that
RQZ S,USE > OPT.

Definition 3.1 (Forward Regression) The Forward Re- B _

gressior{also calledForward Selectiopalgorithm for sub- ~ FOF €achX; € S;, let X = Res(X;, Sf7) be the residual

set selection selects a sétof sizek iteratively as fol-  of X; conditioned oS, and writeS; = {X} | X; € S}.

lows: 1) Initialize Sy = 0. 2) In egch iterationi + 1, \we will show that at least one of th&! is a good candi-
select the variableX,,, maximizingRy g, ,(x,,;» @nd Set  gate in iterationi + 1 of Forward Regression. First, the

Sit1 = 5; U{X;,}. 3) OutputS. joint contribution of S; must be fairly large: R o, =
2 2 i niti
Our main result is the following theorem. (The first in- RZvRCS(ShS?) > OPT - RZS?' Using Definition[ZB,

equality of our theorem can be shown to hold even if wed_ x/cs; RQZ,XJ/_ > yse s, Ry 51 = vsmy, - R g0, since
replaceR?%, ¢ with an arbitrary monotone set function.) S¢ C SFRand|S,| < k. Let! maximize R, .., i.e.
9 i —_ s [’ 1

y— argmax(j:X],‘eS{) RQZ,X]’.' Then we get thaRQZXé >

VsFR & . 2 VsFR i . 2
Tsi Rzs 2 TR Rzsp

Theorem 3.2 The setSFR selected by Forward Regression
has the following approximation guaranteeﬁ?Z’SFR

(1 _ e_’YSFRJC) . OPT > (1 _ e—)\min(C,Qk)) . OPT 2

(1 _ e_)\min(cak)) . 6((%)1/>\mln(c7k})) . OPT'

V

Define A(i) = R, oo — RQZ i1 0 be the gain obtained
from the variable chosen byGForward Regression in itera-
Before proving the theorem, we first begin with a generationi. ThenR?, g = S A(4). Since theX above was
lemma that bounds the amount by which fR&value of a  a candidate to be chosen in iteration 1, and Forward Re-

set and the sum d&? values of its elements can differ. gression chose a variable,, such thatRQZRes( Xn,56) 2
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R% Res(X,59) forall X ¢ S¢, we obtain that Definition 3.8 (Oblivious) The Oblivious algorithm for
7 . o YR 9 YoFR ) subset selection is as follows: Select theariables X;
A(i+1) = =+ Ry g > ‘sk +(OPT— R, 50) with the largesb, values.
> IREOPT- Y35, AG)).

Lemma[3ZB immediately implies the following simple

Since the above inequality holds for each iteratior= ~ bound for the Oblivious algorithm.
1,2,...,k, a simple inductive proof establishes the bound

OBL /i
OPT_ ZleA(i) < OPT.(1 - ’YszR,k)k. Hence, Theorem 3.9 The setS selected by the Oblivious

algorithm has the following approximation guarantees:
= XE,AG) 2 OPT-OPT( - B28)F R o > x20krs -OPT > J22(CH . OPT.

> OPT:- (1 —e 7s™wx).

_ _ , 4. Dictionary Selection Bounds

The second inequality follows directly from Lemrhal2.4,
and the fact thatS™| = k. To demonstrate the wider applicability of the approximate

. . . . submodularity framework, we next obtain a tighter analy-
By applying the above result aftiy2 iterations, we obtain sis for two greedy algorithms for the dictionary selection

2 o Ami(CR)Y . P2 ;
RZSE’}g z(1—e ) RZvSZ/z' Now, using Lemma problem, introduced in_(Krause & Cevher, 2010).

d tonicity ofz?, tR2 .o > R? > . . -
E.4 and monotonicity oft”, we ge RZaSS - Rszﬁ/z - The SDS\a algorithm generalizes the Oblivious greedy

(1 — e Amin(CR)) L @((1)1/ Amin(CiR)Y . R} s, provingthe  algorithm to the problem of dictionary selection. It re-
third inequality. B places theR} ¢ term in Definition[ZP with its mod-
ular approximationf(Z;,S;) = 3 ,cq R, x,- Thus,

it greedily tries to maximize the functiod(D) =
The second greedy subset selection algorithm that we anx_;—, maxs;cp,|s;=k f(Z;j,S;), over setsD of size at
alyze is Orthogonal Matching Pursuit (OMP), frequently mostd; the inner maximum can be computed efficiently
used in signal processing domains. using the Oblivious algorithm.

3.2. Orthogonal Matching Pursuit

Definition 3.5 (Orthogonal Matching Pursuit (OMP)) Definition 4.1 (SDSyma) TheSDSya algorithm selects a
TheOMP algorithm selects a séf of sizek iteratively as  dictionary D of sized iteratively as follows: 1) Initialize
follows: 1) InitializeS, = (). 2) In each iterationi + 1,se- Dy = (). 2) In each iteration + 1, select the variable,,,
lect the variableX,, maximizing|/Cov(Res(Z, S;), X,)|, ~ maximizing F(D; U{X,,}), and setD, 1 = D; U{X,,}.
and setS; 1 = S; U {X,,}. 3) OutputSy. 3) OutputD,.

By applying similar techniques as in the previous sectionUsing Lemmd_313, we can obtain the following multiplica-
we can also obtain approximation bounds for OMP. tive approximation guarantee f6DSya:

Theorem 3.6 The set SOVF selected by Orthogonal Theorem 4.2 Let DV be the dictionary selected by the
Matching Pursuit has the following approximation guar- spgs,;, algorithm, andD* the optimum dictionary of size
antees: R}, gou > (1 — ¢~ 00 tminl@20)) COPT > | b1 < 4 with respect to the objectivE(D) from Defini-
(1 _ e_>‘min(ca2k)2) - OPT > (1 — e_)‘miﬂ(cak)2) . tion[ﬂ. ThenF(DMA) > ’mik(l — %) . F(D*) >

1\1/Amin (C,k) N (CF)
O((3)!/ X+ - OPT. QnlOH (1 1) F(D).

For analyzing OMP, we first obtain the following lemma . o ) .

that lower-bounds the variance of the residual of a variable”T00f- - Let D be a dictionary of size maximizing (D).
This lemma, along with an analysis similar to the proof of B€Causef is monotone and modula#’ is a monotone,
Theoren3R, is then used to prove Theole 3.6. submodular function. Hence, using the submodularity re-

sults of (Nemhauser etlal, 1978) and the optimality of
Lemma 3.7 Let A be the(n+1) x (n+1) covariancema- D for F', F(DM) > F(D)(1 - 1) > F([D*)(1 -
trix of the normalized variable&, X1, X»,..., X,,. Then 1). Now, by applying Lemm4_33 for eacl;, it is

Var(Res(Z, {X1,...,Xn})) = Amin(A) easy to show thaf’(D*) > ~g, - F(D*), and simi-
N _ larly F(DMA) < Apax(C, k) - F(DMA). Thus we get

3.3. Oblivious Algorithm F(DM) > 310 (1 — 5)F (D).

As a baseline, we also consider a greedy algorithm whichrhe second part now follows from Lemfaal.4. ™

completely ignores”' and simply selects th& variables
individually most correlated witky . Note that these bounds significantly improve the previous
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additive approximation guarantee fromherﬁram matrix in sparse approximation) between all observa-
): F(DMA) > (1 — 1)F(D*) — (2= 1)k - u(C). In  tion variables and the predictor variable; we then nornealiz
particular, whenu(C') > ©(1/k), i.e., even just one pair itto obtainC andb. We evaluate the performance of all al-
of variables has moderate correlation, the approximatiomorithms in terms of theiR? fit; thus, we implicitly treat
guarantee in(Krause & Cevher, 2010) becomes trivial.  C andb as the ground truth, and also do not separate the

We also obtain a multiplicative approximation guaranteeOlata sets into training and test cases.

for the greedysDSonp algorithm, which improves on the Our data sets are tHgoston Housing Dataa data set of
additive bound obtained by Krause and Cevher. HoweveMorld Bank Development Indicatorand a synthetic data
due to space constraints, the analysis is relegated tolthe fuiset generated from a distribution similar to the one used by

version of this papeml). Zhang m). Th@&oston Housing Datdavailable from
the UCI Machine Learning Repository) is a small data set
5. Experiments frequently used to evaluate ML algorithms. It comprises

n = 15 features (such as crime rate, property tax rates, etc.)
In this section, we evaluate Forward Regression (FR) andndm = 516 observations. Our goal is to predict housing
OMP empirically, on two real-world and one synthetic prices from these features. TWorld Bank Datgavailable
data set. We plot the performance of the two algorithmdromht t p: / / dat abank. wor | dbank. or g) contains
against an optimal solution (OPT) computed using exhausan extensive list of socio-economic and health indicators
tive search, the Oblivious greedy algorithm (OBL), andof development, for many countries and over several years.
the L1-regularization/Lasso (L1) algorithm (using the im- We choose a subset af= 29 indicators for the years 2005
plementation of [(Koh et &l 8)). Along with the ob- and 2006, such that the values for all of the= 65 coun-
served performance, we also plot the theoretical perfortries are known for each indicator. (The data set does not
mance bound for Forward Regression using the submodicontain all indicators for each country.) We choose to pre-
larity ratio (FR,), and that using the smallest sparse eigendict the average life expectancy for those countries.

value (FR,), which we had derived in Theordm B.2. Addi- We also generate a synthetic dataset from a known distri-

. . ea
tionally, we also compute and plot the various spectral pa; @ﬁdﬂb&' There ane— 29 fea-

rameters from which lower bounds can be derived. S ecif-bUtion similar to
- op tures, andn = 100 data points are generated from a joint
Gaussian distribution with moderately high correlatiohs o

ically, these are (1) the submodularity rattgse= 5, where

FR ;
57" Is the subset selected by Forward Regression, (2) th8.6. The target vector is obtained by generating coefficients
uniformly from 0 to 10 along each dimension, and adding

smallest sparse eigenvalugs;,(C, k) and A, (C, 2k).
noise with variance? = 0.1. Notice that the target vector

(In some cases, computing,, (C, 2k) was not feasible.)
is not truly sparse. The plots we show are the averatje

(3) the sparse inverse condition numie¢€, k)1, and (4)
the smallest eigenvaluknin(C') = Amin(C, n) of the en- values for 20 independent runs of the experiment.

tire covariance matrix.

The aim of our experiments is twofold: First, we wish to 5.2, Results

evaluate which among the submodular and spectral param- ) ) )

eters are good predictors of the performance of greedy alVe run the various subset selection algorlth_mSQforvaIues of
gorithms in practice. Second, we wish to highlight how the® rom 2 throughs, and plot the corresponding” values.
theoretical bounds for subset selection algorithms regiect F19ures1B andlS show the results for the three data sets.
their actual performance. Our analytical results pretigtt The main insight is that on all data sets, greedy algo-
Forward Regression should outperform OMP, which in turnrithms perform exceedingly well compared to OPT. FR
outperforms Oblivious. For Lasso, it is not known whetherperforms optimally or near-optimally, and OMP is only
strong multiplicative bounds, like the ones we proved forsjightly worse in some cases. They are closely followed by

Forward Regression or OMP, can be obtained. Lasso, and then OBL. Interestingly, the order of observed
performance of the greedy algorithms matches that of the
5.1. Data Sets strength of the theoretical bounds we derived for them.

Because several of the spectral parameters (as well as theterms of the theoretical bounds for Forward Regression,
optimum solution) ar&NP-hard to compute, we restrict our in all cases, we see that our bound based on the submodu-
experiments to data sets with< 30 features, from which larity ratio (FR,) is much stronger than that based on spec-
k < 8 are to be selected. We stress that the greedy algdral parameters (FR, which highlights the strength of our
rithms themselves are very efficient. submodularity-based analysis. While there is still a sub-
stantial gap between ERand the observed performance of

Each data set containa > n samples., from which we FR, Sectioh 513 shows how this gap can be narrowed.
compute the empirical covariance matrix (analogous to the
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ratioyger 5, (as seen in the previous plots for PRwhich
takes on values above 0.2, and significantly larger in some

e e———y 06 —o Ay (CK) cases. While not entirely sufficient to explain the perfor-
0fl o 05 jﬁ(mg(kffk’ mance of the greedy algorithms, it shows that the near-
N o §os B_— - singularities ofC' do not align unfavorably with, and thus
G | ) §0-3\*mn‘@ /// do not provide an opportunity for strong supermodular be-
B "oz — havior that adversely affects greedy algorithms.
0ls— . . \ ]
o . 4 : 6 - ! T ! The synthetic data set we generated is somewhat further
k k from singular, with\,,;, (C') ~ 0.11. However, the same
Figure 1: Boston Hous-  Figure 2: Boston Hous- patterns persist: the simple eigenvalue based bounds whil
ing R* ing parameters somewhat larger for smakl, still do not fully predict the

performance of greedy algorithms, whereas the submodu-
larity ratio here is close to 1 for all values bf This shows

-
o
Y

\ —- A (CK) : . . o
08 09 \ R that the near-singularities do not at all provide the paksib
06 onL | - ry ng \ +Is'k(q ity of strongly supermodular benefits of sets of variables.
& o sl \ m— Indeed, the plot of?? values on the synthetic data is con-
0.4 g — _— T . . . .
N S 02 e cave, an indicator of submodular behavior of the function.
02f oo “
d Uif:e:e‘.,__g__ﬂ_ The above observations suggest that bounds based on the
2 AR 8 2 AR 8 submodularity ratio are better predictors of the perfor-
Figure 3: World Bank Figure 4. World Bank mance of greedy algorithms, followed by bounds based on
R? parameters the sparse eigenvalues, and finally those based on the con-

dition number or RIP property.

1 b
W 1 . .
os e 5.3. Narrowing the gap between theory and practice
0 — AR .

B B 2 0 ek Our theoretical bounds, though much stronger than pre-
Y o8L Ry §0.4 *stk(c) vious results, still do not fully predict the observed near-

ol OZ\Q\QLM optimal performance of Forward Regression and OMP on

o —e———— the real-world datasets. In particular, for Forward Re-

% 4 8 8 % I 8 gression, even though the submodularity ratio is less than
Figure 5: Synthetic Figure 6: Synthetic 0.4 for most cases, implying a theqretical_guara_ntee of
DataR? Data parameters roughly 1 — e=%* ~ 33%, the algorithm still achieves

near-optimal performance. While gaps between worst-case

Figure{ [} anfll6 show the different spectral quantities foPounds and practical performance are commonplace in al-
the data sets, for varying values bf Both of the real- gorithmic analysis, they also suggest that there is scape fo
world data sets are nearly singular, as evidenced by th&irther improving the analysis.

small Amin (C') values. In fact, the near singularities mani- |nqeed, a more careful analysis of the proof of Thedigm 3.2
fest themselves for small valuesfoflready; in particular,  anq our definition of the submodularity ratio reveals that

sinceAmin (€, 2) is already small, we observe that there areyye o not really need to calculate the submodularity ratio
pairs of highly correlated observations variables in thada gyer all setsS of size & while analyzing the greedy steps
sets. Thus, the bounds on approximation we would obtaig Forward Regression. We can ignore sétehose sub-

by considering merelfnin (C, k) or Amin (C', 2k) wouldbe  maqyarity ratio is low, but whose marginal contribution to
quite weak (as observed by the plots for,FiR the previ-  he current?? is only a small fraction (say, at most This

ous set of graphs). Notice, however, that these parametefs pecause the proof of Theor&ml3.2 shows that if a partic-

are still quite a bit stronger than the inverse condition AUM gy greedly iteration uses such a set for its analysis, then
ber(C, k)" this quantity — which is closely related to e cyrrent solution must already be within a faci of

the RIP property that is frequently used in sparse recovene optimal solution. By carefully pruning such sets (using
analysis — takes on much smaller values, and thus would _ 2y while calculating the submodularity ratio, we see
lead to an even weaker bound. that the resulting values ofge ;,, are much higher (more
The discrepancy between the small values of the eigenvalhan0.8), thus significantly reducing the gap between the
ues and the good performance of all a|gorithms shows thdheoretical boundS a.nd experimental reSUItS. Tﬁble 1 ShOWS
eigenvalue-based bounds can frequently be loose. Signithe values ofyse= ;. obtained using this method.

icantly better bounds are obtained from the submodularity
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The results suggest an interesting direction for futurekwor ~ coherence. IProc. ACM-SIAM Symposium on Discrete
namely, to characterize for which sets the submodular be- Algorithms 2003.

havior of R? really matters. ) ) o
Johnson, R. A. and Wichern, D. WApplied Multivariate

Table 1: Improved estimates for submodularity ratio Statistical AnalysisPrentice Hall, 2002.
DataSet k=2 k=3 k=4 k=5 k=6 k=7 k=38 . .
Boston 09 091 102 121 136 154 1.74 Koh, K., Kim, S., a”‘?‘ Boyd, S. lis: Simple Matlab
WorldBank 0.8 081 081 081 094 119 1.40 Solver for I1-regularized Least Squares Problems, 2008.
http://www.stanford.edu/ boyd/lis.

Krause, A. and Cevher, V. Submodular dictionary selection

6. Discussion and Concluding Remarks for sparse representation. Rroc. ICML, 2010.

In this paper, we analyze greedy algorithms using th .
notion of submodularity ratio, which captures how Closj_ozano, A. C‘.’ Swwszc_z, G., anpl Abe, N. G_rouped orthqg-
onal matching pursuit for variable selection and predic-

to submodular an objective function (in our case fre :

measure of statistical fit) is. Using submodular anal- tion. InProc. NIPS 2009.
ysis, coupled with spectral techniques, we prove theyjjler, A. Subset Selection in RegressioBhapman and
strongest known approximation guarantees for commonly Ha||, second edition, 2002.

used greedy algorithms for subset selection and dictionary

selection. Our bounds help explain why greedy algorithmdNatarajan, B. Sparse approximation solutions to linear sys
perform well in practice even in the presence of strongly tems.SIAM Journal on Computing@4:227-234, 1995.
correlated data, and are substantiated by experiments qn . .
real-world and synthetic datasets. The experiments Shoﬁyehmhauser, G Wols?y, L., a_nd_ F|sher,bM. dAnI analny|s of
that the submodaularity ratio is a much stronger predictor of : € ap&rotﬁlmautqnsl gr max'm'z.mg2926222;4“15;;8””0'
the performance of greedy algorithms than previously used lons. Mathematical Programmingl4: ’ '

spectral parameters. We believe that our techniques for arfipshirani, R. Regression shrinkage and selection via the

alyzing greedy algorithms using a notion of “approximate |3sso. Journal of Royal Statistical Societ§8:267—288,
submodularity” are not specific to subset selection and dic- 1996.

tionary selection, and could also be used to analyze other . -
problems in compressed sensing and sparse recovery.  Tropp, J. Greed is good: algorithmic results for sparse ap-
proximation.|EEE Trans. Information Theorp0:2231—
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