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Abstract

In this paper, we study the effect of adding
a value function approximation component
(critic) to rollout classification-based policy
iteration (RCPI) algorithms. The idea is to
use a critic to approximate the return after
we truncate the rollout trajectories. This al-
lows us to control the bias and variance of
the rollout estimates of the action-value func-
tion. Therefore, the introduction of a critic
can improve the accuracy of the rollout esti-
mates, and as a result, enhance the perfor-
mance of the RCPI algorithm. We present a
new RCPI algorithm, called direct policy it-
eration with critic (DPI-Critic), and provide
its finite-sample analysis when the critic is
based on the LSTD method. We empirically
evaluate the performance of DPI-Critic and
compare it with DPI and LSPI in two bench-
mark reinforcement learning problems.

1. Introduction

Policy iteration is a method of computing an opti-
mal policy for any given Markov deci- sion process
(MDP). It is an iterative procedure that discovers
a deterministic optimal policy by generating a se-
quence of monotonically improving policies. Each it-
eration k of this algorithm consists of two phases:
policy evaluation in which the action-value function
Qπk of the current policy πk is computed, and pol-
icy improvement in which the new (improved) pol-
icy πk+1 is generated as the greedy policy w.r.t. Qπk ,
i.e., πk+1(x) = argmaxa∈A Qπk(x, a). Unfortunately,
in MDPs with large (or continuous) state and/or ac-
tion spaces, the policy evaluation problem cannot be
solved exactly and approximation techniques are re-
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quired. There have been two main approaches to deal
with this issue in the literature. The most common ap-
proach is to find a good approximation of the action-
value function of πk in a real-valued function space
(see e.g., Lagoudakis & Parr 2003a). The second ap-
proach 1) replaces the policy evaluation step (approxi-
mating the action-value function over the entire state-
action space) with computing rollout estimates of Qπ

over a finite number of states D = {xi}Ni=1, called
the rollout set, and the entire action space, and 2)
casts the policy improvement step as a classification
problem to find a policy in a given hypothesis space
that best predicts the greedy action at every state
(see e.g., Lagoudakis & Parr 2003b; Fern et al. 2004;
Lazaric et al. 2010a). Although whether selecting a
suitable policy space is any easier than a value func-
tion space is highly debatable, it may be argued that
classification-based API methods can be advantageous
in problems where good policies are easier to represent
and learn than their value functions.

As it is suggested by both theoretical and empirical
analysis, the performance of the classification-based
API algorithms is closely related to the accuracy in es-
timating the greedy action at each state of the rollout
set, which itself depends on the accuracy of the rollout
estimates of the action-values. Thus, it is quite im-
portant to balance the bias and variance of the rollout
estimates, Q̂π’s, that both depend on the length H of
the rollout trajectories. While the bias in Q̂π, i.e., the
difference between Q̂π and the actual Qπ, decreases as
H becomes larger, its variance (due to stochastic MDP
transitions and rewards) increases with the value ofH .

Although the bias and variance of Q̂π estimates may be
optimized by the value of H , when the budget, i.e., the
number of calls to the generative model, is limited, it
may not be possible to find an H that guarantees an
accurate enough training set.

A possible approach to address this problem is to in-
troduce a critic that provides an approximation of the
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value function. In this approach, we define each Q̂π

estimate as the average of the values returned by H-
horizon rollouts plus the critic’s prediction of the re-
turn from the time step H on. This allows us to use
small values of H , thus having a small estimation vari-
ance, and at the same time, to rely on the value func-
tion approximation provided by the critic to control
the bias. The idea is similar to actor-critic meth-
ods (Barto et al., 1983) in which the variance of the
gradient estimates in the actor is reduced using the
critic’s prediction of the value function.

In this paper, we introduce a new classification-
based API algorithm, called DPI-Critic, obtained
by adding a critic to the direct policy itera-
tion (DPI) algorithm (Lazaric et al., 2010a). We
provide finite-sample analysis for DPI-Critic when
the critic approximates the value function us-
ing least-squares temporal-difference (LSTD) learn-
ing (Bradtke & Barto, 1996).1 We empirically eval-
uate the performance of DPI-Critic and compare it
with DPI and LSPI (Lagoudakis & Parr, 2003a) on
two benchmark reinforcement learning (RL) problems:
mountain car and inverted pendulum. The results in-
dicate that DPI-Critic can take advantage of both its
components and improve over DPI and LSPI.

2. Preliminaries

In this section we set the notation used throughout the
paper. For a measurable space with domain X , we let
S(X ) and B(X ;L) denote the set of probability mea-
sures over X , and the space of bounded measurable
functions with domain X and bound 0 < L < ∞, re-
spectively. For a measure ρ ∈ S(X ) and a measurable
function f : X → R, we define the ℓp(ρ)-norm of f as
||f ||pp,ρ =

∫
|f(x)|pρ(dx). We consider the standard RL

framework (Sutton & Barto, 1998) in which a learning
agent interacts with a stochastic environment and this
interaction is modeled as a discrete-time MDP. A dis-
counted MDP is a tuple M = 〈X ,A, r, p, γ〉, where the
state space X is a subset of a Euclidean space Rd, the
set of actions A is finite (|A| < ∞), the reward func-
tion r : X ×A → R is uniformly bounded by Rmax, the
transition model p(·|x, a) is a distribution over X , and
γ ∈ (0, 1) is a discount factor. We define determin-
istic policies as the mapping π : X → A. The value
function of a policy π, V π , is the unique fixed-point of
the Bellman operator T π : B(X ;Vmax) → B(X ;Vmax)
defined by

(T πV )(x) = r
(
x, π(x)

)
+ γ

∫

X

p
(
dy|x, π(x)

)
V (y) ,

while the action-value function Qπ is defined as

1The finite-sample analysis of DPI-Critic with Bellman
residual minimization is available at Gabillon et al. (2011).

Input: policy space Π, state distribution ρ
Initialize: Let π0 ∈ Π be an arbitrary policy
for k = 0, 1, 2, . . . do

Construct the rollout set Dk = {xi}Ni=1, xi
iid∼ ρ

• Critic:

Construct the set Sk of n samples (e.g., by following
a trajectory or by using the generative model)

V̂ πk ← VF-APPROX(Sk) (critic)
• Rollout:

for all states xi ∈ Dk and actions a ∈ A do
for j = 1 to M do

Perform a rollout and return Rj(xi, a)
end for
Q̂πk(xi, a) =

1
M

∑M
j=1 Rj(xi, a)

end for
πk+1 = argminπ∈Π L̂πk

(ρ̂;π) (classifier)
end for

Figure 1. The pseudo-code of the DPI-Critic algorithm.

Qπ(x, a) = r(x, a) + γ

∫

X

p(dy|x, a)V π(y) .

Since the rewards are bounded by Rmax, all values and
action-values are bounded by q = Rmax

1−γ . A policy π

is greedy w.r.t. an action-value function Q, if π(x) ∈
argmaxa∈A Q(x, a), ∀x ∈ X .

To approximate value functions, we use a linear ap-
proximation architecture with parameters α ∈ R

d and
basis functions ϕj ∈ B(X ;L), j = 1, . . . , d. We denote

by φ : X → R
d, φ(·) =

(
ϕ1(·), . . . , ϕd(·)

)⊤
the feature

vector, and by F the linear function space spanned by
the features ϕj , i.e., F = {fα(·) = φ(·)⊤α : α ∈ R

d}.
Finally, we define the Gram matrix G ∈ R

d×d w.r.t. a
distribution ρ ∈ S(X ) as

Gij =

∫
ϕi(x)ϕj(x)ρ(dx), i, j = 1, . . . , d .

3. The DPI-Critic Algorithm

In this section, we outline the algorithm we propose in
this paper, called Direct Policy Iteration with Critic
(DPI-Critic), which is an extension of the DPI algo-
rithm (Lazaric et al., 2010a) by adding a critic. As
illustrated in Fig. 1, DPI-Critic starts with an arbi-
trary initial policy π0 ∈ Π. At each iteration k, we
build a set of n samples Sk, called the critic training
set. The critic uses Sk in order to compute V̂ πk , an ap-
proximation of the value function of the current policy
πk. Then, a new policy πk+1 is computed from πk, as
the best approximation of the greedy policy w.r.t. Qπk ,
by solving a cost-sensitive classification problem. Sim-
ilar to DPI, DPI-Critic is based on the following loss
function and expected error :

ℓπk
(x;π) = max

a∈A
Qπk(x, a)−Qπk

(
x, π(x)

)
, ∀x ∈ X ,

Lπk
(ρ;π) =

∫

X

[
max
a∈A

Qπk(x, a)−Qπk
(
x, π(x)

)]
ρ(dx) .
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In order to minimize this loss, a rollout set Dk is built
by sampling N states i.i.d. from a distribution ρ. For
each state xi ∈ Dk and each action a ∈ A, M indepen-
dent estimates {Rπk

j (xi, a)}Mj=1 are computed, where

Rπk
j (xi, a) = Rπk,H

j (xi, a) + γH V̂ πk(xH
i,j) , (1)

in which Rπk,H
j (xi, a) is the outcome of an H-horizon

rollout, i.e.,

Rπk,H
j (xi, a) = r(xi, a) +

H−1∑

t=1

γtr(xt
i,j , πk(x

t
i,j)) , (2)

and V̂ πk(xH
i,j) is the critic’s estimate of the value func-

tion at state xH
i,j . In Eq. 2, (xi, x

1
i,j , x

2
i,j , . . . , x

H
i,j) is the

trajectory induced by taking action a at state xi and
following the policy πk afterwards, i.e., x1

i,j ∼ p(·|xi, a)

and xt
i,j ∼ p

(
· |xt−1

i,j , πk(x
t−1
i,j )

)
for t ≥ 2. An estimate

of the action-value function of the policy πk is then
obtained by averaging the M estimates as

Q̂πk (xi, a) =
1

M

M∑

j=1

Rπk
j (xi, a) . (3)

Given the action-value function estimates, the empir-
ical loss and empirical error are defined as

ℓ̂πk
(x;π) = max

a∈A
Q̂πk(x, a)− Q̂πk

(
x, π(x)

)
, ∀x ∈ X ,

L̂πk
(ρ̂; π) =

1

N

N∑

i=1

[
max
a∈A

Q̂πk(xi, a)−Q̂πk(xi, π(xi))
]
. (4)

Finally, DPI-Critic makes use of a classifier which
solves a multi-class cost-sensitive classification prob-
lem and returns a policy that minimizes the empirical
error L̂πk

(ρ̂;π) over the policy space Π.

As it can be seen from Eq. 1, the main difference be-
tween DPI-Critic and DPI is that after H steps DPI
rollouts are truncated and the return thereafter is im-
plicitly set to 0, while in DPI-Critic an approximation
of the value function learned by the critic is used to
predict this return. Hence, with a fixed horizon H ,
even if the critic is a rough approximation of the value
function, whenever its accuracy is higher than the im-
plicit prediction of 0 in DPI, the rollouts in DPI-Critic
are expected to be more accurate than those in DPI.
Similarly, we expect DPI-Critic to obtain the same ac-
curacy as DPI with a shorter horizon, and as a result,
a smaller number of interactions with the generative
model. In fact, while in DPI decreasing H leads to a
smaller variance and a larger bias, in DPI-Critic the
increase in the bias is controlled by the critic. Finally,
it is worth noting that DPI-Critic still benefits from
the advantages of the classification-based approach to
policy iteration compared to value-function-based API
algorithms such as LSPI. This is due to the fact that
DPI-Critic still relies on approximating the policy im-
provement step, and thus similar to DPI, whenever

approximating good policies is easier than their value
functions, DPI-Critic is expected to perform better
than its value-function-based counterparts. Further-
more, while DPI-Critic only needs a rough approxi-
mation of the value function at certain states, value-
function-based API methods, like LSPI, need an accu-
rate approximation of the action-value function over
the entire state-action space, and thus they usually
require more samples than the critic in DPI-Critic.

4. Theoretical analysis

In this section, we provide a finite-sample analysis
of the error incurred at each iteration of DPI-Critic.
The full analysis of the propagation is reported in
Gabillon et al. (2011).

In order to use the existing finite-sample bounds for
pathwise-LSTD (Lazaric et al., 2010b), we introduce
the following assumptions.

Assumption 1. At each iteration k of DPI-Critic,
the critic uses a linear function space F spanned by
d bounded basis functions (see Section 2). A data-set
Sk = {(Xi, Ri)}ni=1 is built, where Xi’s are obtained by
following a single trajectory generated by a stationary
β-mixing process with parameters β̂, b, κ, and a sta-
tionary distribution σk equal to the stationary distri-
bution of the Markov chain induced by policy πk, and
Ri = r

(
Xi, πk(Xi)

)
.

Assumption 2. The rollout set sampling distribution
ρ is such that for any policy π ∈ Π and any action
a ∈ A, µ = ρP a(P π)H−1 ≤ Cσ, where C < ∞ is a
constant and σ is the stationary distribution of π. The
distribution µ is the distribution induced by starting
at a state sampled from ρ, taking action a, and then
following policy π for H − 1 steps.

Before stating the main results of this section,
Lemma 1 and Theorem 1, we report the performance
bound for pathwise-LSTD as in Lazaric et al. (2010b).
Since all the following statements are true for any it-
eration k, in order to simplify the notation, we drop
the dependency of all the variables on k.

Proposition 1 (Thm. 5 in Lazaric et al. 2010b). Let
n be the number of samples collected as in Assumption
1 and V̂ π be the approximation of the value function of
policy π returned by pathwise-LSTD truncated in the
range [−q, q]. Then for any δ > 0, we have

||V π − V̂ π||2,σ ≤ ǫLSTD =
[

2√
1− γ2

(
2
√
2 inf

f∈F
||V π − f ||2,σ + E2

)

+
2

1− γ

(
γqL

√
8d

ω

(
√

8 log(32|A|d/δ)
n

+
1

n

))
+ E1

]
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with probability 1− δ (w.r.t. the samples in S), where

(1) E1 = 24q
√

2Λ1(n,d,δ/4)
n

max{Λ1(n,d,δ/4)
b

, 1}1/κ,
in which Λ1(n, d, δ) = 2(d + 1) log n + log e

δ
+

log+(max{18(6e)2(d+1), β̂}),
(2) E2 = 12(q + L||α∗||)

√
2Λ2(n,δ/4)

n
max{Λ2(n,δ/4)

b
, 1}1/κ,

in which Λ2(n, δ) = log e
δ

+ log(max{6, nβ̂}) and

α∗ = argminα∈Rd ||V πk − fα∗ ||2,σ ,
(3) ω > 0 is the smallest strictly positive eigenvalue of the

Gram matrix w.r.t. the distribution σ.

In the following lemma, we derive a bound for the
difference between the actual action-value function of
policy π and its estimate computed by DPI-Critic.

Lemma 1. Let Assumptions 1 and 2 hold and D =

{xi}Ni=1 be the rollout set with xi
iid∼ ρ. Let Qπ be

the true action-value function of policy π and Q̂π be
its estimate computed by DPI-Critic using M rollouts
with horizon H (Eqs. 1–3). Then for any δ > 0

max
a∈A

∣∣∣
1

N

N∑

i=1

[
Qπ(xi, a)− Q̂π(xi, a)

]∣∣∣ ≤ ǫ1 + ǫ2 + ǫ3 + ǫ4,

with probability 1− δ (w.r.t. the rollout estimates and
the samples in the critic training set S), where

ǫ1 = (1− γH)q

√
2 log(4|A|/δ)

MN
, ǫ2 = γHq

√
2 log(4|A|/δ)

MN
,

ǫ3 = 24γHq

√
2Λ(N, d, δ

4|A|M
)

N
, ǫ4 = 2γH

√
C ǫLSTD ,

with Λ(N, d, δ) = log
(
9e
δ (12Ne)2(d+1)

)
.

Proof. We prove the following series of inequalities:
∣∣∣
1

N

N∑

i=1

[
Qπ(xi, a)− Q̂π(xi, a)

]∣∣∣

(a)
=

∣∣∣
1

MN

N∑

i=1

M∑

j=1

[
Qπ(xi, a)−Rπ

j (xi, a)
]∣∣∣

(b)

≤
∣∣∣

1

MN

N∑

i=1

M∑

j=1

[
Qπ

H(xi, a)−Rπ,H
j (xi, a)

]∣∣∣

+
∣∣∣
γH

MN

N∑

i=1

M∑

j=1

[
V̂ π(xH

i,j)−Ex∼νi [V
π(x)]

]∣∣∣

(c)

≤ ǫ1 +
∣∣∣
γH

MN

N∑

i=1

M∑

j=1

[
V̂ π(xH

i,j)− V π(xH
i,j)

]∣∣∣

+
∣∣∣
γH

MN

N∑

i=1

M∑

j=1

[
V π(xH

i,j)−Ex∼νi [V
π(x)]

]∣∣∣ w.p. 1− δ′

(d)

≤ ǫ1 + ǫ2 +
γH

M

M∑

j=1

||V π − V̂ π||1,µ̂j
w.p. 1− 2δ′

(e)

≤ ǫ1 + ǫ2 +
γH

M

M∑

j=1

||V π − V̂ π ||2,µ̂j
w.p. 1− 2δ′

(f)

≤ ǫ1 + ǫ2 + ǫ3 + 2γH ||V π − V̂ π||2,µ w.p. 1− 3δ′

(g)

≤ ǫ1 + ǫ2 + ǫ3 + 2γH
√
C||V π − V̂ π||2,σ

(h)

≤ ǫ1 + ǫ2 + ǫ3 + 2γH
√
C ǫLSTD w.p. 1− 4δ′

The statement of the lemma is obtained by setting
δ′ = δ/4 and taking a union bound over actions.

(a) We use Eq. 3 to replace Q̂π(xi, a).
(b) We replace Rπ

j (xi, a) from Eq. 1 and use the fact

that Qπ(xi, a) = Qπ
H(xi, a) + γHEx∼νi [V

π(x)], where

Qπ
H(xi, a) = E

[
r(xi, a) +

∑H−1
t=1 γtr

(
xt
i, π(x

t
i)
)]

and
νi = δ(xi)P

a(P π)H−1 is the distribution over states
induced by starting at state xi, taking action a, and
then following the policy π for H − 1 steps. We split
the sum using the triangle inequality.
(c) Using the Chernoff-Hoeffding inequality, with
probability 1 − δ′ (w.r.t. the samples used to build
the rollout estimates), we have

∣∣∣
1

MN

N∑

i=1

M∑

j=1

[
Qπ

H(xi, a)−Rπ,H
j (xi, a)

]∣∣∣ ≤ ǫ1

= (1− γH)q

√
2 log(1/δ′)

MN
.

(d) Using the Chernoff-Hoeffding inequality, with
probability 1− δ′ (w.r.t. the last state reached by the
rollout trajectories), we have

∣∣∣
γH

MN

N∑

i=1

M∑

j=1

[
V π(xH

i,j)−Ex∼νi [V
π(x)]

]∣∣∣ ≤ ǫ2

= γHq

√
2 log(1/δ′)

MN
.

We also use the definition of empirical ℓ1-norm and re-
place the second term with ||V π− V̂ π||1,µ̂j

, where µ̂j is
the empirical distribution corresponding to the distri-
bution µ = ρP a(P π)H−1. In fact for any 1 ≤ j ≤ M ,
samples xH

i,j are i.i.d. from µ.
(e) We move from ℓ1-norm to ℓ2-norm using the
Cauchy-Schwarz inequality.
(f) Note that V̂ is a random variable independent from
the samples used to build the rollout estimates. Using
Corollary 12 in (Lazaric et al., 2010b), we have

||V π − V̂ π||2,µ̂j
≤ 2||V π − V̂ π||2,µ + ǫ3(δ

′′)

with probability 1 − δ′′ (w.r.t. the samples in µ̂j) for

any j, and ǫ3(δ
′′) = 24q

√
2Λ(N,d,δ′′)

N . By taking a

union bound over all j’s and setting δ′′ = δ′/M , we
obtain the definition of ǫ3 in the final statement.

(g) Using Assumption 2, we have ||V π − V̂ ||2,µ ≤√
C||V π − V̂ ||2,σ.

(h) We replace ||V π − V̂ ||2,σ using Proposition 1.
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Using the result of Lemma 1, we now prove a perfor-
mance bound for a single iteration of DPI-Critic.

Theorem 1. Let Π be a policy space with finite VC-
dimension h = V C(Π) < ∞ and ρ be a distribution
over the state space X . Let N be the number of states
in Dk drawn i.i.d. from ρ, H be the horizon of the
rollouts, M be the number of rollouts per state-action
pair, and V̂ πk be the estimation of the value function
returned by the critic. Let Assumptions 1 and 2 hold
and πk+1 = argminπ∈Π L̂πk

(ρ̂;π) be the policy com-
puted at the k’th iteration of DPI-Critic. Then, for
any δ > 0, we have

Lπk
(ρ;πk+1) ≤ inf

π∈Π
Lπk

(ρ;π)+2(ǫ0+ǫ1+ǫ2+ǫ3+ǫ4), (5)

with probability 1− δ, where

ǫ0 = 16q

√
2

N

(
h log

eN

h
+ log

32

δ

)
.

The proof follows similar steps as in Lazaric et al.
(2010a) and is reported in Gabillon et al. (2011).

Remark 1. The terms in the bound of Theorem 1 are
related to the performance at each iteration of DPI-
Critic. The first term, infπ∈ΠLπk

(ρ;π), is the approx-
imation error of the policy space Π, i.e., the best ap-
proximation of the greedy policy in Π. Since the clas-
sifier relies on a finite number of samples in its training
set, it is not able to recover the optimal approximation
and incurs an additional estimation error ǫ0 which de-
creases as O(N−1/2). Furthermore, the training set
of the classifier is built according to action-value es-
timates, whose accuracy is bounded by the remaining
terms. The term ǫ1 accounts for the variance of the
rollout estimates due to the limited number of rollouts
for each state in the rollout set. While it decreases as
M and N increase, it increases with H , because longer
rollouts have a larger variance due to the stochasticity
in the MDP dynamics. The terms ǫ2, ǫ3, and ǫ4 are
related to the bias induced by truncating the rollouts.
They all share a factor γH decaying exponentially with
H and are strictly related to the critic’s prediction of
the return fromH on. While ǫ3 depends on the specific
function approximation algorithm used by the critic
(LSTD in our analysis) just through the dimension d
of the function space F , ǫ4 is strictly related to LSTD’s
performance, which depends on the size n of its train-
ing set and the accuracy of its function space, i.e., the
approximation error inff∈F ||V π − f ||2,σ.
Remark 2. We now compare the result of Theorem 1
with the corresponding result for DPI in Lazaric et al.
(2010a), which bounds the performance as

Lπk
(ρ;πk+1) ≤ inf

π∈Π
Lπk

(ρ;π) + 2(ǫ0 + ǫ1 + γHq). (6)

While the approximation error infπ∈Π Lπk
(ρ;π) and

the estimation errors ǫ0 and ǫ1 are the same in Eqs. 5

and 6, the difference in the way that these algorithms
handle the rollouts after H steps leads to the term
γHq in DPI and the terms ǫ2, ǫ3, and ǫ4 in DPI-Critic.
The terms ǫ2, ǫ3, and ǫ4 have the term γHq multiplied
by a factor which decreases with the number of roll-
out states N , the number of rollouts M , and the size
of the critic training set n. For large enough values
of N and n, this multiplicative factor is smaller than
1, thus making ǫ2 + ǫ3 + ǫ4 smaller than γHq in DPI.
Furthermore, since these ǫ values upper bound the dif-
ference between quantities bounded in [−q, q], their
values cannot exceed γHq. This comparison supports
the idea that introducing a critic improves the accu-
racy of the truncated rollout estimates by reducing the
bias with no increase in the variance.

Remark 3. Although Theorem 1 reveals the potential
advantage of DPI-Critic w.r.t. DPI, the comparison in
Remark 2 does not take into consideration that DPI-
Critic uses n samples more than DPI, thus making
the comparison potentially unfair. We now analyze
the case when the total budget (number of calls to the
generative model) of DPI-Critic is fixed to B. The
total budget is split in two parts: 1) BR = B(1 − p)
the budget available for the rollout estimates and 2)
BC=Bp=n the number of samples used by the critic,
where p ∈ (0, 1) is the critic ratio of the total budget.
By substituting BR and BC in the bound of Theo-
rem 1 and setting M = 1, we note that for a fixed H ,
while increasing p increases the estimation error terms
ǫ0, ǫ1, ǫ2, and ǫ3 (the rollout set becomes smaller), it
decreases the estimation error of LSTD ǫ4 (the critic’s
training set becomes larger). This trade-off (later re-
ferred to as the critic trade-off ) is optimized by a spe-
cific value p = p∗ which minimizes the expected error
of DPI-Critic. By comparing the bounds of DPI and
DPI-Critic, we first note that for any fixed p, DPI
benefits from a larger number of samples to build the
rollout estimates, thus has smaller estimation errors
ǫ0 and ǫ1 w.r.t. DPI-Critic. However, as pointed out
in Remark 2, the bias term γHq in the DPI bound
is always worse than the corresponding term in the
DPI-Critic bound. As a result, whenever the advan-
tage obtained by relying on the critic is larger than
the loss in having a smaller number of rollouts, we
expect DPI-Critic to outperform DPI. Whether this is
the case depends on a number of factors such as the di-
mensionality and the approximation error of the space
F , the horizon H , and the size N of the rollout set.

Remark 4. According to Assumption 1 the samples
in the critic’s training set are completely independent
from those used in building the rollout estimates. A
more data-efficient version of the algorithm can be de-
vised as follows: We first simulate all the trajectories
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used in the computation of the rollouts and use the
last few transitions of each to build the critic’s train-
ing set Sk. Then, after the critic (LSTD) computes
an estimate of the value function using the samples in
Sk, the action-values of the states in the rollout set
Dk are estimated as in Eqs. 1–3. This way the func-
tion approximation step does not change the total bud-
get. We call this version of the algorithm Combined
DPI-Critic (CDPI-Critic). From a theoretical point of
view, the main problem is that the samples in Sk are
no longer drawn from the stationary distribution σk of
the policy under evaluation πk. However, the samples
in Sk are collected at the end of the rollout trajectories
of length H obtained by following πk, and thus, they
are drawn from the distribution µ = ρP a(P πk)H−1

that approaches σk as H increases. Depending on the
mixing rate of the Markov chain induced by πk, the
difference between µ and σk could be relatively small,
thus supporting the conjecture that CDPI-Critic may
achieve a similar performance to DPI-Critic without
the overhead of n independent samples. While we
leave a detailed theoretical analysis of CDPI-Critic as
future work, we use it in the experiments of Section 5.

5. Experimental Results

In this section, we report the empirical evaluation of
DPI-Critic with LSTD and compare it to DPI (built
on truncated rollouts) and LSPI (built on value func-
tion approximation). In the experiments we show that
DPI-Critic, by combining truncated rollouts and func-
tion approximation, can improve over DPI and LSPI.

5.1. Setting

We consider two standard goal-based RL prob-
lems: mountain car (MC) and inverted pen-
dulum (IP). We use the formulation of MC
in Dimitrakakis & Lagoudakis (2008) with the action
noise bounded in [−1, 1] and γ = 0.99. The value func-
tion is approximated using a linear space spanned by a
set of radial basis functions (RBFs) evenly distributed
over the state space. The critic training set is built us-
ing one-step transitions from states drawn from a uni-
form distribution over the state space, while LSPI is
trained off-policy using samples from a random policy.
In IP, we use the same implementation, features, and
critic’s training set as in Lagoudakis & Parr (2003a)
with γ = 0.95. In both domains, the function space
to approximate the action-value function in LSPI is
obtained by replicating the state-features for each ac-
tion as suggested in Lagoudakis & Parr (2003a). Sim-
ilar to Dimitrakakis & Lagoudakis (2008), the policy
space Π (classifier) is defined by a multi-layer percep-
tron with 10 hidden units, and is trained using stochas-
tic gradient descent with a learning rate of 0.5 for 400
iterations. In the experiments, instead of directly solv-

ing the cost-sensitive multi-class classification step as
in Fig. 1, we minimize the classification error. In fact,
the classification error is an upper-bound on the em-
pirical error defined by Eq. 4. Finally, the rollout set
is sampled uniformly over the state space.

Each DPI-based algorithm is run with the same fixed
budget B per iteration. As discussed in Remark 3,
DPI-Critic splits the budget into a rollout budget
BR = B(1−p) and a critic budgetBC = Bp, where p ∈
(0, 1) is the critic ratio. The rollout budget is divided
into M rollouts of length H for each action in A and
each state in the rollout set D, i.e., BR = HMN |A|.
In CDPI-Critic the critic training set Sk is built us-
ing all transitions in the rollout trajectories except the
first one. LSPI is run off-policy (i.e., samples are col-
lected once and reused through the iterations) and in
order to have a fair comparison, its total number of
samples equal to B times the number of iterations (5
in the following experiments).

In Fig. 2 and 3, we report the performance of DPI,
DPI-Critic, CDPI-Critic, and LSPI. In MC, the per-
formance is evaluated as number of steps-to-go with a
maximum of 300. In IP, the performance is the num-
ber of balancing steps with a maximum of 3000 steps.
The performance of each run is computed as the best
performance over 5 iterations of policy iteration. The
results are averaged over 1000 runs. Although in the
graphs we report the performance of DPI and LSPI
at p = 0 and p = 1, respectively, DPI-Critic does not
necessarily tend to the same performance as DPI and
LSPI when p approaches 0 or 1. In fact, values of p
close to 0 correspond to building a critic with very few
samples (thus affecting the performance of the critic),
while values of p close to 1 correspond to a very small
rollout set (thus affecting the performance of the clas-
sifier). We tested the performance of DPI and DPI-
Critic on a wide range of parameters (H,M,N) but we
only report the performance of the best combination
for DPI, and show the performance of DPI-Critic for
the best choice of M (M = 1 was the best choice in
all the experiments) and different values of H .

5.2. Experiments

In both MC and IP, the reward function is constant
everywhere except at the terminal state. Thus, roll-
outs are informative only if their trajectories reach the
terminal state. Although this would suggest to have
large values for the horizon H , the size of the rollout
set would correspondingly decrease as N = O(B/H),
thus decreasing the accuracy of the classifier (see ǫ0 in
Thm. 1). This leads to a trade-off (referred to as the
rollout trade-off ) between long rollouts (which increase
the chance of observing informative rewards) and the
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Figure 2. Performance of the learned policies in mountain car with a 3× 3 RBF grid (left) and a 2× 2 RBF grid (right).
The total budget B is set to 200. The objective is to minimize the number of steps to the goal.

number of states in the rollout set. The solution to
this trade-off strictly depends on the accuracy of the
estimate of the return after a rollout is truncated. As
discussed in Sec. 3, while in DPI this return is im-
plicitly set to 0, in DPI-Critic it is set to the value
returned by the critic. In this case, a very accurate
critic would lead to solve the trade-off for small values
of H , because the lack of informative rollouts is com-
pensated by the critic. On the other hand, when the
critic is inaccurate, H should be selected in a way to
guarantee a sufficient number of informative rollouts,
and at the same time, a large enough rollout set.

Fig. 2 shows the learning results in MC with budget
B = 200. In the left panel, the function space for the
critic consists of 9 RBFs distributed over a uniform
grid. Such a space is rich enough for LSPI to learn
nearly-optimal policies (about 80 steps to reach the
goal). On the other hand, DPI achieves a poor perfor-
mance of about 150 steps, which is obtained by solving
the rollout trade-off at H = 12 and N = 5. We also re-
port the performance of DPI-Critic for different values
of H and p. We note that, as discussed in Remark 3,
for a fixed H , there exists an optimal value p∗ which
optimizes the critic trade-off. For very small values of
p, the critic has a very small training set and is likely
to return a very poor approximation of the return. In
this case, DPI-Critic performs similar to DPI and the
rollout trade-off is achieved by H = 12, which limits
the effect of potentially inaccurate predictions without
reducing too much the size of the rollout set. On the
other hand, as p increases the accuracy of the critic
improves as well, and the best choice for H rapidly
reduces to 1, which corresponds to rollouts built al-
most entirely on the basis of the values returned by
the critic. For H = 1 and p ≈ 0.8, DPI-Critic achieves
a slightly better performance than LSPI. Finally, the
horizontal line represents the performance of CDPI-
Critic (for the best choice of H) which improves over

DPI without matching the performance of LSPI.

Although this experiment shows that the introduction
of a critic in DPI compensates for the truncation of
the rollouts and improves their accuracy, most of this
advantage is due to the quality of F in approximating
value functions (LSPI itself is nearly-optimal). In this
case, the results would suggest the use of LSPI rather
than any DPI-based algorithm. In the next experi-
ment, we show that DPI-Critic is able to improve over
both DPI and LSPI even if F has a lower accuracy. We
define a new space F spanned by 4 RBFs distributed
over a uniform grid. The results are reported in the
right panel of Fig. 2. The performance of LSPI now
worsens to 180 steps. Since the quality of the critic
returned by LSTD in DPI-Critic is worse than in the
case of 9 RBFs, H = 1 is no longer the best choice for
the rollout trade-off. However, as soon as p > 0.1, the
accuracy of the critic is still higher than the 0 predic-
tion used in DPI, thus leading to the best horizon at
H = 6 (instead of 12 as in DPI), which guarantees a
large enough number of informative rollouts. At the
same time, other effects might influence the choice of
the best horizon H . As it can be noticed, for H = 6
and p ≈ 0.5, DPI-Critic successfully takes advantage
of the critic to improve over DPI, and at the same
time, it achieves a better performance than LSPI. Un-
like LSPI, DPI-Critic computes its action-value esti-
mates by combining informative rollouts and the critic
value function, thus obtaining estimates which cannot
be represented by the action-value function space used
by LSPI. Additionally, similar to DPI, DPI-Critic per-
forms a policy approximation step which could lead to
better policies w.r.t. those obtained by LSPI.

Finally, Fig. 3 displays the results of similar experi-
ments in IP with B = 1000. In this case, although
the function space is not accurate enough for LSPI to
learn good policies, it is helpful in improving the accu-
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Figure 3. Performance of the learned policies in inverted
pendulum. The budget is B = 1000. The goal is to keep
the pendulum balanced with a maximum of 3000 steps.

racy of the rollouts w.r.t. DPI. When p > 0.05, H = 1
is the horizon which optimizes the rollout trade-off. In
fact, since by following a random policy the pendulum
falls after very few steps, rollouts of length one still
allow to collect samples from the terminal state when-
ever the starting state is close enough to the horizontal
line. Hence, with H=1 action-values are estimated as
a mix of both informative rollouts and the critic’s pre-
diction, and at the same time, the classifier is trained
on a relatively large training set. Finally, it is interest-
ing to note that in this case CDPI-Critic obtains the
same nearly-optimal performance as DPI-Critic.

6. Conclusions

DPI-Critic adds value function approximation to the
classification-based approach to policy iteration. The
motivation behind DPI-Critic is two-fold. 1) In some
settings (e.g., those with delayed reward), DPI action-
value estimates suffer from either high variance or
high bias (depending on H). Introducing critic to
the computation of the rollouts may significantly re-
duce the bias, which in turn allows for shorter hori-
zon and thus lower variance. 2) In value-based ap-
proaches (e.g., LSPI), it is often difficult to design a
function space which accurately approximates action-
value functions. In this case, integrating rough approx-
imation of the value function returned by the critic
with the rollouts obtained by direct simulation of the
generative model may improve the accuracy of the
function approximation and lead to better policies.

In Sec. 4, we theoretically analyzed the performance of
DPI-Critic and showed that depending on several fac-
tors (notably the function approximation error), DPI-
Critic may achieve a better performance than DPI.
This analysis is also supported by the experimental
results of Sec. 5, which confirm the capability of DPI-
Critic to take advantage of both rollouts and critic, and
improve over both DPI and LSPI. Although further in-

vestigation of the performance of DPI-Critic in more
challenging domains is needed and in some settings
either DPI or LSPI might still be the better choice,
DPI-Critic seems to be a promising alternative that
introduces additional flexibility in the design of the al-
gorithm. Possible directions for future work include
complete theoretical analysis of CDPI-Critic, a more
detailed comparison of DPI-Critic and LSPI, and find-
ing optimal or good rollout allocation strategies.
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