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Abstract

A number of combinatorial optimization
problems in machine learning can be de-
scribed as the problem of minimizing a sub-
modular function. It is known that the un-
constrained submodular minimization prob-
lem can be solved in strongly polynomial
time. However, additional constraints make
the problem intractable in many settings. In
this paper, we discuss the submodular min-
imization under a size constraint, which is
NP-hard, and generalizes the densest sub-
graph problem and the uniform graph par-
titioning problem. Because of NP-hardness,
it is difficult to compute an optimal solution
even for a prescribed size constraint. In our
approach, we do not give approximation al-
gorithms. Instead, the proposed algorithm
computes optimal solutions for some of pos-
sible size constraints in polynomial time. Our
algorithm utilizes the basic polyhedral theory
associated with submodular functions. Addi-
tionally, we evaluate the performance of the
proposed algorithm through computational
experiments.

1. Introduction

In the areas of discrete optimization, machine learn-
ing, and other various fields, submodular functions
are recognized as fundamental tools and interesting
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subjects of research. They appear in the systems of
networks in a variety of ways and, at the same time,
they naturally model economies of scale. Besides, a
submodular function is known to be a discrete coun-
terpart of a convex function (Lovász, 1983). The (un-
constrained) submodular minimization is a fundamen-
tal unifying problem, and many combinatorial prob-
lems arising in machine learning, including cluster-
ing (Narasimhan et al., 2005; Nagano et al., 2010) and
image segmentation (Stobbe & Krause, 2010), can be
reduced to this problem. Fortunately, similarly to
convexity, submodularity enables us to efficiently find
an optimal solution to the unconstrained submodular
minimization.

Suppose that we are given a finite set V of n ele-
ments, and a real-valued function f : 2V → R with
f(∅) = 0, where 2V denotes the set of all subsets of V .
Throughout of this paper, we suppose that f is sub-
modular, that is, f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T )
for all S, T ⊆ V . The unconstrained submodular min-
imization (USM) problem asks for a subset S ⊆ V
that minimizes f(S). The first strongly polynomial
algorithm for USM was described in (Grötschel et al.,
1988), which relies on the ellipsoid method. The
first combinatorial strongly polynomial algorithms for
USM were developed by Iwata, Fleischer, and Fu-
jishige (2001) and by Schrijver (2000). More recently,
Orlin (2009) developed a faster strongly polynomial
algorithm for USM, which runs in O(n5EO+n6) time,
where EO is the time for function evaluation. On
the other hand, the Fujishige-Wolfe algorithm (refer
to §7.1 of Fujishige’s book (2005)) for USM is usu-
ally much faster in practice (Fujishige et al., 2006), al-
though it does not have worst-time complexity bounds.
The Fujishige-Wolfe algorithm is based on the problem
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of finding the minimum norm base.

Constrained submodular function minimization prob-
lems have also been investigated in various contexts.
Unfortunately, however, even a simple additional con-
straint can make the submodular minimization very
difficult in many settings (Svitkina & Fleischer, 2008;
Iwata & Nagano, 2009; Goel et al., 2009). In this pa-
per, we discuss the following size-constrained submod-
ular minimization (SSM): given a nonnegative integer
k ≤ n, the SSM problem asks for a subset S ⊆ V with
|S| = k that minimizes f(S). This problem is NP-
hard, and generalizes the densest k-subgraph problem
(Feige et al., 2001) and the uniform graph partitioning
problem (Garey & Johnson, 1979), both of which are
also NP-hard. Svitkina and Fleischer (2008) devel-
oped a sampling-based approximation algorithm for
SSM, and they gave an information theoretic proof
that there is no constant factor polynomial-time ap-
proximation algorithm for SSM. In our approach, we
do not give approximation algorithms for SSM. In-
stead, our method finds a portion of optimal solu-
tions. To be precise, we describe an algorithm that
gives K ⊆ {0, 1, . . . , n} and solves the SSM prob-
lems for all k ∈ K exactly. Furthermore, the proposed
algorithm runs in polynomial time. This result con-
trasts sharply with the NP-hardness of the problem.
We cannot know or specify the set K in advance, but
the instance determines K. The practical performance
of the proposed algorithm will be discussed in the sec-
tion of computational experiments.

We remark that the proposed algorithm is quite simple
and based on the polyhedral theory associated with
submodular functions. This paper implies that once
we obtain the minimum norm base, the SSM prob-
lems can be solved immediately in some sense. The
minimum norm base can be computed within the same
running time as the USM problem (Fleischer & Iwata,
2003; Nagano, 2007). Alternatively, the Fujishige-
Wolfe algorithm (Fujishige, 2005) finds the minimum
norm base much faster in practice.

This paper is organized as follows. In Section 2, we will
see about the size-constrained submodular minimiza-
tion and related problems. In Section 3, we provide the
basic polyhedral theory, and introduce a parametrized
fractional programming problem which is closely re-
lated to SSM. After that, we describe the algorithm
that computes a portion optimal solutions to the SSM
problems. Section 4 shows the validity of the algo-
rithm proposed in Section 3. Finally, we evaluate the
performance of the proposed algorithm through com-
putational experiments in Section 5, and give conclud-
ing remarks in Section 6.

2. Size-constrained submodular
minimization

Let V = {1, . . . , n} be a given set of n elements, and
let f : 2V → R be a real-valued function defined on
all the subset of V . Throughout of this paper, we
suppose that f(∅) = 0 and f is submodular, that is,
f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) for all S, T ⊆ V .
In addition, we suppose that the function f is given
by a value oracle.

For k ∈ {0, 1 . . . , n}, we consider a size-constrained
submodular minimization (SSM) problem

min
S

{f(S) : S ⊆ V, |S| = k}. (1)

We say that S ⊆ V is a k-subset if |S| = k. The
problem (1) generalizes the following fundamental NP-
hard problems.

Problem 2.1. (Densest k-subgraph problem)
Let G = (V, E) be a graph with vertex set V =
{1, . . . , n} and edge set E. Given nonnegative edge
weights we (e ∈ E) and an integer k, the densest k-
subgraph problem asks for finding a k-subset S ⊆ V
that maximizes I(S), where I(S) is the sum of weights
of edges in the subgraph induced by S. The set func-
tion I : 2V → R is supermodular, that is, −I is sub-
modular. This problem is NP-hard, and the approxi-
mation algorithm given in (Feige et al., 2001) achieves
the best known approximation ratio of O(na), where
a < 1/3.

Problem 2.2 (Size-constrained minimum cut
problem) Let G = (V, E) be a graph, and let we

be a nonnegative weight for each edge e ∈ E. A cut
function C : 2V → R defined by C(S) =

∑
{we : e ∈

E has one endpoint in S and one in V − S} (S ⊆ V )
is submodular. For an integer k, let us consider the
problem of finding a k-subset S ⊆ V that minimizes
C(S). When n is even, k = n/2, and the weights
are uniform, the problem is known as the uniform
graph partitioning problem (or, the minimum graph
bisection problem), which is known to be NP-hard
(Garey & Johnson, 1979). The algorithm developed
by Krauthgamer & Feige (2006) achieves the approxi-
mation guarantee of O(log1.5 n) for the uniform graph
partitioning problem.

For the problems 2.1 and 2.2, constant factor approx-
imation algorithms are unknown. Clearly the size-
constrained submodular minimization problem (1) is
NP-hard because it generalizes NP hard problems. For
the problem (1), Svitkina and Fleischer (2008) gives an
o(
√
n/ lnn) lower bound for the approximability.

In Section 3, we describe an algorithm that gives
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Figure 1. Finding dense subgraphs

K ⊆ {0, 1, . . . , n} and solves the size-constrained sub-
modular minimization problems for all k ∈ K exactly.
Furthermore, the proposed algorithm runs in polyno-
mial time. For example, let us consider the densest
k-subgraph problems with respect to the graph with
nonnegative edge weights in Figure 1 (a). Then the
algorithm described in Section 3 finds the densest k-
subgraphs for k ∈ {0, 3, 4, 6} (see Figure 1 (b)). The
proposed algorithm requires the help of the polyhedral
theory associated with submodular functions.

3. The algorithm through minimum
norm base

Instead of dealing with the size-constrained submod-
ular minimization problem (1) directly, we give a
parametrized fractional optimization problem, which
is closely related to the problem (1). In §3.3, we will
give an algorithm (Algorithm SSM), which solves the
fractional optimization problem exactly and computes
optimal solutions to problem (1) for some of possible
size constraints. To give an efficient algorithm, the
polyhedral theory of submodular functions plays an
important role.

3.1. Base polyhedron and submodular
minimization

Let us begin with the definitions of polyhedra associ-
ated with the submodular function f . The submod-
ular polyhedron P(f) ⊆ Rn and the base polyhedron
B(f) ⊆ Rn associated with the submodular function f
are given by

P(f) = {x ∈ Rn : x(S) ≤ f(S) (∀S ⊆ V )},
B(f) = {x ∈ Rn : x ∈ P(f), x(V ) = f(V )},

where x(S) =
∑

i∈S xi for all S ⊆ V . Figure 2 il-
lustrates these polyhedra. A point in P(f) is called a
subbase, a point in B(f) a base, and an extreme point
of B(f) an extreme base. For any base x ∈ B(f) and
any i ∈ V we have f(V ) − f(V \ {i}) ≤ xi ≤ f({i}).
Therefore, B(f) is bounded.

For any subbase x, we say S ⊆ V is x-tight if x(S) =
f(S). Let T (x) denote the collection of all x-tight
subsets. The submodularity of f implies that T (x) is

x2

P( f )

B( f )

0 x1
x2

B( f )x3

x1
P( f )

0

n = 2 n = 3

Figure 2. Polyhedra associated with submodular functions

closed under union and intersection. In other words,
if S and T are x-tight, then S ∪ T and S ∩ T are also
x-tight. Thus, T (x) has a unique maximal (minimal)
element.

Let x∗ ∈ B(f) be the minimum norm base. That is,
x∗ is the optimal solution to

min{
n∑

i=1

x2
i : x ∈ B(f)}.

The minimum norm base and the unconstrained
submodular minimization are closely related. Let
Argminf denote the collection of all minimizers of
f . The submodularity of f implies that Argminf is
closed under union and intersection. Thus there ex-
ists a unique minimal minimizer as well as a unique
maximal minimizer. Define

A− = {i ∈ V : x∗
i < 0}, A0 = {i ∈ V : x∗

i ≤ 0}.

Then A− is the unique minimal minimizer of f and
A0 is the unique maximal minimizer of f (see Lemma
7.4 of Fujishige’s book (2005)). Based on this fact, the
Fujishige-Wolfe algorithm (Fujishige, 2005) for the un-
constrained submodular minimization is constructed.

The Fujishige-Wolfe algorithm for submodular mini-
mization just utilizes a partial information about the
minimum norm base. On the contrary the proposed
algorithm described in §3.3 will utilize the full infor-
mation about the minimum norm base.

3.2. Fractional optimization problem

Without loss of generality, we can assume that f is
nonnegative by resetting f(S) := f(S)+α|S| (S ⊆ V )
using an appropriate α. For example, consider any
fixed linear ordering L = (i1, i2, . . . , in) on V , set

α := max{f(L(ij)− {ij})− f(L(ij)) : j = 1, . . . , n},

where L(ij) = {i1, . . . , ij} for each j = 1, . . . , n, and
reset f(S) := f(S)+α|S| for all S ⊆ V . Then, the new
function f is submodular and nonnegative1. In addi-

1Submodularity is obvious. By the validity of the
greedy algorithm of Edmonds (1970), −α1n is a subbase,
where 1n is an n-dimensional all-one vector. Thus, the new
function f nonnegative.
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tion, this replacement does not change the structure
of optimal solutions to the problem (1).

Now we introduce a parametrized fractional optimiza-
tion problem. For a real parameter θ ∈ [0, n) = {θ′ ∈
R : 0 ≤ θ′ < n}, let us consider the following problem:

λ(θ) := min
S

{
f(S)
|S|−θ : S ⊆ V, |S| > θ

}
. (2)

For all θ ∈ [0, n), let S(θ) ⊆ V be an optimal solution
to (2). The following lemma provides a connection
between the problems (1) and (2).

Lemma 1. For θ ∈ [0, n), a subset S(θ) ⊆ V is an op-
timal solution to the size-constrained submodular min-
imization problem (1) with respect to k = |S(θ)|.

Proof. By definition, we have k > θ and f(S(θ))/(k −
θ) ≤ f(S)/(k − θ) for any subset S with |S| = k.

For the parametric fractional problem (2), we con-
struct a polynomial time algorithm, or a simple al-
gorithm which is much faster in practice. Therefore,
in view of Lemma 1, we obtain an algorithm that gives
K ⊆ {0, 1, . . . , n} and solves the size-constrained sub-
modular minimization problems for all k ∈ K exactly.
Although the problem (1) is NP-hard, it is interesting
that we can partially solve the size-constrained sub-
modular minimization problems. This is similar to the
result in (Nagano et al., 2010) for submodular cluster-
ing problems.

Let us examine the structure of the optimal solutions
to the fractional problem (2). For any θ ∈ [0, n), the
optimal value λ(θ) of (2) is represented as

λ(θ) = max{λ ∈ R≥0 : λ ≤ f(S)
|S|−θ , ∀S with |S| > θ}

= max{λ ∈ R≥0 : −θλ ≤ f(S)− |S|λ,
∀S with |S| > θ}

= max{λ ∈ R≥0 : −θλ ≤ f(S)− |S|λ, ∀S},

where the last equality follow from the nonnegativity
of f . Define a function h : R → R as

h(λ) = min
S

{f(S)− |S|λ : S ⊆ V } (λ ∈ R). (3)

Then, we have

λ(θ) = max{λ ∈ R : −θλ ≤ h(λ)}. (4)

For each subset S ⊆ V , define a linear function hS :
R → R as hS(λ) = f(S)−|S|λ. Since h is the minimum
of these linear functions, h is a piecewise-linear concave
function. The function h is illustrated in Figure 3 (a)
by the thick curve. In view of (4), the value λ(θ) can
be obtained by solving the equation −θλ = h(λ) (see
also Figure 3 (a)). Moreover, an optimal solution to
the problem (2) can be characterized as follows.

h(λ)

λ
0

−θ λ

λ(θ)

hS(λ) = f (S) − |S| λ

(a)

h(λ)

λ
0

(b)

λ1 λ2 λ3

S1
S2

S3

S0

Figure 3. The structure of the function h

Lemma 2. Given a parameter θ ∈ [0, n), let S ⊆ V
be a subset such that |S| > θ and S determines h at
λ(θ). Then S is a minimizer of the problem (2).

Proof. Since −θλ(θ) = h(λ(θ)) = f(S) − |S|λ(θ), we
have λ(θ) = f(S)/(|S| − θ). For any subset T ⊆ V
with |T | > θ, we have −θλ(θ) ≤ f(T ) − |T |λ(θ), and
thus λ(θ) ≤ f(T )/(|T | − θ).

Suppose that the slopes of h take values −s0 > −s1 >
−s2 > · · · > −sd. Clearly, we have s0 = 0, sd = n
and d ≤ n. Then R is split into d + 1 subintervals
R0 = [−∞, λ1), R1 = [λ1, λ2), . . . , Rd = [λd, +∞)
such that, for each j = 0, . . . , d, the function h is
linear and its slope is −sj on Rj . Let S0, . . . , Sd be
subsets of V such that, for each j = 0, 1, . . . , d, the
subset Sj determines h at all λ ∈ Rj . Figure 3 (b)
illustrates the structure of the function h.

By Lemma 2, for any θ ∈ [0, n), if λ(θ) ∈ Rj then Sj

is an optimal solution to (2). Therefore, if we can find
S0, . . . , Sd then the parametrized fractional problem
(2) will be completely solved.

3.3. Algorithm

Let us see that the values λ1, . . . , λd and the sub-
sets S0, . . . , Sd defined in §3.2 can be found using the
minimum norm base. That is, the problem (2) can be
solved with the aid of the minimum norm base.

Consider the algorithm SSM described below:

Algorithm SSM(f)

Input : A submodular function f .
Output : Subsets T0, T1, . . . , Td ⊆ V . (d is not

determined in advance.)

1: Compute the minimum norm base x∗ ∈ B(f).
2: Let ξ1 < ξ2 < · · · < ξd be distinct values of

x∗. Return T0 := ∅, and return Tj := {i ∈ V :
x∗
i ≤ ξj} for all j = 1, . . . , d.
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Surprisingly, we have the following equalities.

Lemma 3. Regarding the subsets S0, . . . , Sd defined
in §3.2 and the subsets T0, . . . , Td returned by SSM,
we have Sj = Tj for each j = 0, . . . , d.

The proof of Lemma 3 will be given in §4.1. By Lem-
mas 1, 2, and 3, we immediately have the main theo-
rem.

Theorem 4. Let T0, T1, . . . , Td ⊆ V be the sub-
sets returned by the algorithm SSM. For each j ∈
{0, 1, . . . , d}, Tj is an optimal solution to the size-
constrained submodular function problem (1) with re-
spect to k = |Tj |.

We now analyze the running time of the algorithm
SSM. The main task is the computation of the min-
imum norm base x∗. The minimum norm base x∗

can be computed within the same running time as
the unconstrained submodular minimization problem
(Fleischer & Iwata, 2003; Nagano, 2007). Alterna-
tively, the Fujishige-Wolfe algorithm (Fujishige, 2005)
finds the minimum norm base much faster in practice.
As a whole, the running time of SSM is almost the
same as the unconstrained submodular minimization.

4. Analysis of the algorithm

In §4.1, we give a proof of the key lemma (Lemma
3) for the validity of the algorithm SSM. (Note that
Lemma 3 can be derived from Theorem 9.5 and Corol-
lary 9.6 in Fujishige’s book (2005). In this paper, we
will give a simple and direct proof of the lemma.) In
§4.2, let us see some directions for use of the algorithm
SSM.

4.1. Validity of the proposed algorithm

The classical result of Fujishige (1980) enables us to
show Lemma 3. We describe the monotone algorithm
of Fujishige (1980) (see also §9.2 of (Fujishige, 2005)),
which finds the minimum norm base x∗ ∈ B(f). For
all S ⊆ V , let IS ∈ {0, 1}n denote the characteristic
vector of S.2

The monotone algorithm starts with an interior point
of P(f) in the form of x(0) = δ0IV ∈ P(f) and subsets
V0 := V , U0 := ∅. At the beginning of the j-th iter-
ation, the algorithm holds a subbase x(j−1) ∈ P(f),
the maximal x(j−1)-tight subset Uj−1 and the sub-
set Vj−1 = V − Uj−1. The algorithm computes
δj := max{δ ∈ R : x(j−1) + δIVj−1

∈ P(f)}, and sets

x(j) := x(j−1) + δjIVj−1
. If x(j) is a base, then the al-

2For example in case of |V | = 6, the characteristic vec-
tor of S = {1, 3, 6} becomes IS = (1, 0, 1, 0, 0, 1).

I{1}

0

x(0)
x2

B( f )

x(2)x3

x1

x(3)= x*

I{1,3}

I{1,2,3}
x(1)

P( f )

n = 2

n = 3

B( f )

P( f )

I{1}

x(0)

x2

x1

x(2)= x*x(1)

I{1,2}

Figure 4. Algorithm MA

gorithm returns x∗ := x(j). Otherwise, the algorithm
goes to the next iteration.

The monotone algorithm (Fujishige, 1980) is described
more precisely as follows.

Algorithm MA(f) (Fujishige, 1980)

Input : A submodular function f .
Output : x∗ ∈ B(f).

0: Choose δ0 ∈ R such that δ0IV is an interior
point of P(f). Set x(0) := δ0IV . Set V0 := V ,
U0 := ∅, and j := 1.

1: Compute δj := max{δ ∈ R : x(j−1) + δIVj−1
∈

P(f)}. Set x(j) := x(j−1) + δjIVj−1
. Let

Uj ⊆ V be the unique maximal x(j)-tight sub-
set. Set Vj := V − Uj .

2: If Uj = V (x(j) is a base), then return x∗ :=
x(j), and stop. Otherwise, set j := j + 1 and
go to Step 1.

Figure 4 illustrates the process of the algorithm MA.

Theorem 5 (Fujishige(1980)). The vector x∗ re-
turned by the algorithm MA(f) is the minimum norm
base in B(f).

It is easy to observe the following properties:
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(MA-1) ∅ = U0 � · · · � Ud = V , V = V0 � · · · �
Vd = ∅, and Vj = V − Uj for each j;

(MA-2) δj > 0 for each j = 1, . . . , d;

(MA-3) U0, U1, . . . , Ud are x∗-tight.

Now we can give a proof of Lemma 3.

Proof of Lemma 3. In the first step, we will see that
Tj = Uj for each j, where each Tj is returned by the
algorithm SSM. In view of the algorithm MA, the
minimum norm base x∗ can be represented as

x∗ = δ0IV +
d∑

j=1

δjIVj−1
. (5)

Let us remember the definitions of the subsets
T1, . . . , Td and the values ξ1, . . . , ξd in the algorithm
SSM. By (5), (MA-1) and (MA-2), we have

Tj = Uj for each j = 0, . . . , d, (6)

ξj =
∑j

j′=0 δj′ for each j = 1, . . . , d.

In the next step, we will see that Sj = Uj for each j,
where each Sj is defined in §3.2. For all ξ ∈ R, define
a set function gξ : 2V → R as

gξ(S) =
∑

i∈S(x
∗
i − ξ) = x∗(S)− |S|ξ (S ⊆ V ).

The values ξ1 < ξ2 < · · · < ξd are distinct values of x∗.
For convenience, we set ξ0 = −∞ and ξd+1 = +∞. Fix
any j ∈ {0, . . . , d}, and fix any ξ with ξj < ξ < ξj+1.
Clearly, Uj is the unique minimizer of gξ. Since Uj is
x∗-tight, we have

gξ(Uj) = x∗(Uj)− |Uj |ξ = f(Uj)− |Uj |ξ.

For any S ⊆ V with S �= Uj , we have

gξ(Uj) < gξ(S) = x∗(S)− |S|ξ ≤ f(S)− |S|ξ.

Thus, for any S ⊆ V with S �= Uj , we have

f(Uj)− |Uj |ξ < f(S)− |S|ξ.

Therefore, Uj determines the function value of h at ξ.
As a result, we obtain

Sj = Uj for each j = 0, . . . , d, (7)

ξj = λj for each j = 1, . . . , d.

By (6) and (7), we have Tj = Sj for each j = 0, . . . , d,
which completes the proof of Lemma 3. �

4.2. Directions for use of the algorithm

The algorithm SSM can be applied to the densest k-
subgraph problem (Problem 2.1) directly because we

can expect that the minimum norm base x∗ has a
somewhat complicated structure (see also Figure 1 and
computational experiments in Section 5). However, in
the case of the size-constrained minimum cut prob-
lem (Problem 2.2), the algorithm SSM is not effective.
That is why the minimum norm base x∗ is always the
all-zero vector. In order to overcome this shortcoming,
let us consider the following alternative variant of the
size-constrained minimum cut problem.

Problem 4.1 (Size-constrained minimum s-t cut
problem) Let G = (V, E) be a graph with nonneg-
ative weights. Let s and t are distinct nodes in V For
an integer k, let us consider the problem of minimiz-
ing the cut function value C(S) among k-subset S ⊆ V
which includes s and excludes t.

We can apply the algorithm SSM to the size-
constrained minimum s-t cut problem. Furthermore,
by choosing a number of (s, t) pairs, it could be possi-
ble to obtain a good approximate solution to the size-
constrained minimum cut problem.

5. Experimental results

We empirically investigated the property of the pro-
posed algorithm using synthetic datasets in Sec-
tion 5.1, and then apply the algorithm to the real-
world application of bioinformatics in Section 5.2.

5.1. Artificial data

Here, we investigate the property of the proposed al-
gorithm using synthetic datasets generated using the
GENRMF generator.3 The GENRMF generates a net-
work with b grid-like frames of size (a× a). The num-
ber of vertices is a2b and that of arcs 5a2b− 4ab− a2.
All vertices in each frame are connected to its grid
neighbors and each vertex is connected by an arc to
a vertex randomly chosen from the next frame. Arc
capacities within a frame are c2 × a× a and those be-
tween frames are randomly selected integers from the
range [c1, c2]. In this experiments, we set c1 = 1 and
c2 = 100. Also, we used two-types of datasets with
different ratio (a : b): Genrmf-long (a = 2x/4 and
b = 2x/2) and Genrmf-wide (a = 22x/5 and b = 2x/5).

Table 1 shows the number of subsets found by the al-
gorithm SSM, i.e., d, for several sizes of graphs n. The
result shown is with the dataset generated using the
software with SEED= 20 (note the tendency seems to

3The datasets used in the first DIMACS interna-
tional algorithm implementation challenge: The core exper-
iments, 1990. The code is available from ‘http://www.info
rmatik.uni-trier.de/∼naeher/Professur/research/generato
rs/maxflow/genrmf/index.html’.
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Table 1. Number of subsets found by the algorithm SSM
(i.e., d) for several sizes of graphs (upper: Genrmf-long
and lower: Genrmf-wide).

Genrmf-long
n cut s-t cut dense

63 2 4 50
126 2 3 101
256 2 4 213
525 2 4 466
1008 2 4 868

Genrmf-wide
n cut s-t cut dense

75 2 4 68
147 2 4 136
324 2 3 298
576 2 4 530
1024 2 3 975

be similar for other random-number sheets). As for s-t
cut, nodes s and t are set as s = 1 and t = n, respec-
tively. First, we confirmed that cut-function always
gives trivial two solutions, i.e., ∅ and V , as discussed
above. Although, for s-t cut and dense functions, the
algorithm provide non-trivial solutions, the obtained
numbers of solutions by s-t cut and dense functions
were very different, which would strongly on the struc-
ture of submodular polyhedral.

Next, Figure 5 depicts solution values versus k by the
proposed algorithm SSM and the backward greedy se-
lection, i.e., starting from V and dropping a subset
that gives the least solution value decrease at each it-
eration, for Genrmf-long (n = 1008). Remember that,
although the SSM can give solutions only for some
k, the solutions are exactly optimal for the NP-hard
problem (1). As can be seen in the figure, the opti-
mality of solutions by the greedy algorithm seems to
be quite low except for very large k. Like these exam-
ples, our method would be useful to see the solution
performance by other approximation algorithms.

5.2. Application to real data

As an experiment with real-world datasets, we show
the results using social network data cnr-2000.4 This
data consists of 325,557 nodes and 3,216,152 arcs.
Here, due to the computational limit, we applied the
proposed algorithm to the sub-network with the first
5,000 nodes in the original network, where 31,664 arcs
exist. The function used here is the intensity func-
tion I, and thus the goal of this application is to find
densest subgraphs in the network.

4See http://law.dsi.unimi.it/webdata/cnr-2000.

Intensity

k

s-t cut

k

Figure 5. Intensity (upper) and s-t cut (lower) vs. k by the
proposed algorithm and the backward greedy algorithm.

Our method could find exact optimal solutions for sev-
eral k. Figure 6 shows the intensity I(S) versus the
sizes of subsets k. After increasing almost linearly to a
certain k, the optimal intensity seems to be saturated.

6. Concluding remarks

The size-constrained submodular minimization is NP-
hard, and it does not even have a constant factor poly-
nomial time approximation algorithm. To this prob-
lem, we have proposed a new method that computes
a portion of exact optimal solutions. Computational
experiments show that our method could find several
exact optimal solutions. An interesting point is that
the proposed method utilizes the minimum norm base
effectively. The minimum norm base can be found in
polynomial time, and the Fujishige-Wolfe algorithm
finds that point much faster in practice.

The Fujishige-Wolfe algorithm does not have worst-
time complexity bounds, so its complexity analysis
should be given in future works.
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