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Abstract
We present a novel approach to learn a kernel-
based regression function. It is based on the use
of conical combinations of data-based parameter-
ized kernels and on a new stochastic convex op-
timization procedure of which we establish con-
vergence guarantees. The overall learning pro-
cedure has the nice properties that a) the learned
conical combination is automatically designed to
perform the regression task at hand and b) the
updates implicated by the optimization proce-
dure are quite inexpensive. In order to shed light
on the appositeness of our learning strategy, we
present empirical results from experiments con-
ducted on various benchmark datasets.

1. Introduction
Our goal is to learn a kernel-based regression function,
tackling at once two problems that commonly arise with
kernel methods: working with a kernel tailored to the
task at hand and efficiently handling problems whose size
prevents the Gram matrix from being stored in memory.
Though the present work focuses on regression, the mate-
rial presented here might as well apply to classification.

Compared with similar methods, we introduce two nov-
elties. Firstly, we build conical combinations of rank-1
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Nyström approximations, whose weights are chosen so as
to serve the regression task – this makes our approach dif-
ferent from (Kumar et al., 2009) and (Suykens et al., 2002),
which focus on approximating the full Gram matrix with no
concern for any specific learning task. Secondly, to solve
the convex optimization problem entailed by our model-
ing choice, we provide an original stochastic optimization
procedure based on (Nesterov, 2010). It has the follow-
ing characteristics: i) the computations of the updates are
inexpensive (thanks to the designing choice of using rank-
1 approximations) and ii) the convergence is guaranteed.
To assess the practicality and effectiveness of our learning
procedure, we conduct a few experiments on benchmark
datasets, which allow us to draw positive conclusions on
the relevance of our approach.

The paper is organized as follows. Section 2 introduces
some notation and our learning setting; in particular the
optimization problem we are interested in and the rank-
1 parametrization of the kernel our approach builds upon.
Section 3 describes our new stochastic optimization proce-
dure, establishes guarantees of convergence and details the
computations to be implemented. Section 4 discusses the
hyperparameters inherent to our modeling as well as the
complexity of the proposed algorithm. Section 5 reports
results from numerical simulations on benchmark datasets.

2. Proposed Model
Notation X is the input space, k : X×X → R denotes the
(positive) kernel function we have at hand and φ : X → H
refers to the mapping φ(x) := k(x, ·) from X to the repro-
ducing kernel Hilbert space H associated with k. Hence,
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k(x,x′)=〈φ(x), φ(x′)〉, with 〈·, ·〉 the inner product ofH.

The training set is L := {(xi, yi)}ni=1 ∈ (X × R)n,
where yi is the target value associated to xi. K =
(k(xi,xj))1≤i,j≤n ∈ Rn×n is the Gram matrix of k with
respect to L. For m = 1, . . . , n, cm ∈ Rn is defined as:

cm :=
1√

k(xm,xm)
[k(x1,xm), . . . , k(xn,xm)]>.

2.1. Data-parameterized Kernels

For m = 1, . . . , n, φ̃m : X → H̃m is the mapping:

φ̃m(x) :=
〈φ(x), φ(xm)〉
k(xm,xm)

φ(xm). (1)

It directly follows that k̃m defined as, ∀x,x′ ∈ X ,

k̃m(x,x′) := 〈φ̃m(x), φ̃m(x′)〉 =
k(x,xm)k(x′,xm)

k(xm,xm)
,

is indeed a positive kernel. Therefore, these parameterized
kernels k̃m give rise to a family (K̃m)1≤m≤n of Gram ma-
trices of the following form:

K̃m = (k̃m(xi,xj))1≤i,j≤n = cmc
T
m, (2)

which can be seen as rank-1 Nyström approximations of the
full Gram matrix K (Drineas & Mahoney, 2005; Williams
& Seeger, 2001).

As studied in (Kumar et al., 2009), it is sensible to con-
sider convex combinations of the K̃m if they are of very
low rank. Building on this idea, we will investigate the use
of a parameterized Gram matrix of the form:

K̃(µ) =
∑
m∈S

µmK̃m with µm ≥ 0, (3)

where S is a set of indices corresponding to the specific
rank-one approximations used. Note that since we con-
sider conical combinations of the K̃m, which are all posi-
tive semi-definite, K̃(µ) is positive semi-definite as well.

Using (1), one can show that the kernel k̃µ, associated to
our parametrized Gram matrix K̃(µ), is such that:

k̃µ(x,x′) = 〈φ(x), φ(x′)〉A = φ(x)>Aφ(x), (4)

with A : =
∑
m∈S

µm
φ(xm)φ(xm)>

k(xm,xm)
. (5)

In other words, our parametrization induces a modified
metric in the feature space H associated to k. On a side
note, remark that when S = {1 . . . , n} (i.e. all the columns
are picked) and we have uniform weights µ, then K̃(µ) =
KK>, which is a matrix encountered when working with
the so-called empirical kernel map (Schölkopf et al., 1999).

From now on, M denotes the size of S and m0 refers to
the number of non-zero components of µ (i.e. it is the 0-
pseudo-norm of µ).

2.2. Kernel Ridge Regression

Kernel Ridge regression (KRR) is the kernelized version
of the popular ridge regression (Hoerl & Kennard, 1970)
method. The associated optimization problem reads:

min
w

{
λ‖w‖2 +

n∑
i=1

(yi − 〈w, φ(xi)〉)2

}
, (6)

where λ > 0 is a regularization parameter.

Using I for the identity matrix, the following dual formu-
lation may be considered:

max
α∈Rn

{
FKRR(α) := yTα− 1

4λ
αT (λI +K)α

}
. (7)

The solutionα∗ of the concave problem (7) and the optimal
solution w∗ of (6) are connected through the equality

w∗ =
1

2λ

n∑
i=1

α∗i φ(xi),

and α∗ can be found by setting the gradient of FKRR to
zero, to give

α∗ = 2(I + 1
λK)−1y. (8)

The value of the objective function at α∗ is then:

FKRR(α∗) = yT (I + 1
λK)−1y, (9)

and the resulting regression function is given by:

f(x) =
1

2λ

n∑
i=1

α∗i k(xi,x). (10)

2.3. A Convex Optimization Problem

KRR may be solved by solving the linear system (I +
K
λ )α = 2y, at a cost of O(n3) operations. This might
be prohibitive for large n, even more so if the matrix I+ K

λ
does not fit into memory. To cope with this possible prob-
lem, we work with K̃(µ) (3) instead of the Gram matrix
K. As we shall see, this not only makes it possible to avoid
memory issues but it also allows us to set up a learning
problem where both µ and a regression function are sought
for at once. This is very similar to the Multiple Kernel
Learning paradigm (Rakotomamonjy et al., 2008) where
one learns an optimal kernel along with the target function.

To set up the optimization problem we are interested in, we
proceed in a way similar to (Rakotomamonjy et al., 2008).
For m = 1, . . . , n, define the Hilbert space H̃′m as:

H̃′m :=

{
f ∈ H̃m

∣∣∣∣‖f‖H̃mµm
<∞

}
. (11)
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One can prove (Aronszajn, 1950) that H̃ =
⊕
H̃′m is the

RKHS associated to k̃ =
∑
µmk̃m. Mimicking the rea-

soning of (Rakotomamonjy et al., 2008), our primal opti-
mization problem reads:

min
{fm},µ

{
λ
∑
m∈S

1

µm
‖fm‖2H̃′m +

n∑
i=1

(yi −
∑
m∈S

fm(xi))
2

}
,

s.t.
∑
m∈S

µm ≤ n1 , µm ≥ 0, (12)

where n1 is a parameter controlling the 1-norm of µ. As
this problem is also convex in µ, using the earlier results
on the KRR problem, (12) is equivalent to:

min
µ≥0

{
max
α

yTα− 1

4λ
αT (λI + K̃(µ))α

}
= min
µ≥0

{
yT (I + 1

λK̃(µ))−1y
}

s.t.
∑
m∈S

µm ≤ n1. (13)

Finally, using the equivalence between Tikhonov and
Ivanov regularization methods (Vasin, 1970), we obtain the
convex and smooth optimization problem we focus on:

min
µ≥0

{
F (µ) := yT (I+ 1

λK̃(µ))−1y + ν
∑
m

µm

}
. (14)

The regression function f̃ is derived using (1), a minimizer
µ∗ of the latter problem and the accompanying weight vec-
tor α∗ such that

α∗ = 2
(
I + 1

λK̃(µ∗)
)−1

y, (15)

(obtained adapting (8) to the case K = K(µ∗)). We have:

f̃(x) =
1

2λ

n∑
i=1

α∗i k̃(xi,x) =
1

2λ

∑
m∈S

µ∗m

n∑
i=1

α∗i k̃m(xi,x)

=
1

2λ

∑
m∈S

α̃∗mk(xm,x), (16)

where α̃∗m := µ∗m
c>mα

∗√
k(xm,xm)

. (17)

3. Solving the problem
We now introduce a new stochastic optimization procedure
to solve (14). It implements a coordinate descent strategy
with step sizes that use second-order information.

3.1. A Second-Order Stochastic Coordinate Descent

Problem (14) is a constrained minimization based on the
differentiable and convex objective function F . Usual con-
vex optimization methods (such as projected gradient de-
scent, proximal methods) may be employed to solve this

problem, but they may be too computationally expensive
if n is very large, which is essentially due to a suboptimal
exploitation of the parametrization of the problem. Instead,
the optimization strategy we propose is specifically tailored
to take advantage of the parametrization of K̃(µ).

Algorithm 1 depicts our stochastic descent method, in-
spired by (Nesterov, 2010). At each iteration, a randomly
chosen coordinate of µ is updated via a Newton step. This
method has two essential features: i) using coordinate-wise
updates of µ involves only partial derivatives which can be
easily computed and ii) the stochastic approach ensures a
reduced memory cost while still guaranteeing convergence.

Algorithm 1 Stochastic Coordinate Newton Descent
Input: µ0 random.
repeat

Choose coordinate mk uniformly at random in S.
Update : µk+1

m = µkm if m 6= mk and

µk+1
mk

=argmin
v≥0

∂F (µk)
∂µmk

(v−µkmk)+ 1
2
∂2F (µk)
∂µ2

mk

(v−µkmk)2,

(18)
until F (µk)− F (µk−M ) < εF (µk−M )

Notice that the Stochastic Coordinate Newton Descent
(SCND) is similar to the algorithm proposed in (Nesterov,
2010), except that we replace the Lipschitz constants by the
second-order partial derivatives ∂2F (µk)

∂µ2
mk

. Thus, we replace
a constant step-size gradient descent by a the Newton-step
in (18), which allows us to make larger steps.

We show that for the function F in (14), SCND does prov-
ably converge to a minimizer of Problem (14). First, we
rewrite (18) as a Newton step and compute the partial
derivatives:
Proposition 1. Eq. (18) is equivalent to

µk+1
mk

=

{ (
µkmk −

∂F (µk)
∂µmk

/∂
2F (µk)
∂µ2

mk

)
+

if ∂
2F (µk)
∂µ2

mk

6=0

0 otherwise.
(19)

Proof. (19) gives the optimality conditions for (18).

Proposition 2. The partial derivatives ∂pF (µ)
∂µpm

are:

∂F (µ)
∂µm

= −λ(y>K̃−1
λ,µcm)2 + ν, (20)

∂pF (µ)
∂µpm

= (−1)pp!λ(y>K̃−1
λ,µcm)2(c>mK̃

−1
λ,µcm)p−1,

with p ≥ 2 and K̃−1
λ,µ := (λI + K̃(µ))−1. (21)

Proof. Easy but tedious calculations give the results.

Theorem 1 (Convergence). For any sequence {mk}k, the
sequence {F (µk)}k verifies:
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(a) ∀k, F (µk+1) ≤ F (µk).

(b) limk→∞ F (µk) = minµ≥0 F (µ).

Moreover, if there exists a minimizer µ∗ of F such that the
Hessian∇2F (µ∗) is positive definite then:

(c) µ∗ is the unique minimizer of F . The sequence {µk}
converges to µ∗: ||µk−µ∗||→0.

Sketch of proof. (a) Using that ∂
3F (µ)
∂µ3

m
≤ 0 (see (20)), one

shows that the Taylor series truncated to the second or-
der: v → F (µ) + ∂F (µ)

∂µm
(vm−µm) + 1

2
∂2F (µ)
∂µ2

m
(vm−

µm)2, is a quadratic upper-bound of F that matches F
and∇F at point µ (for any fixed m and µ). From this,
the update formula (18) yields F (µk+1) ≤ F (µk).

(b) First note that ||µk|| ≤ F (µ0) and extract a con-
verging subsequence {µφ(k)}. Denote the limit by
µ̂. Separating the cases where ∂2F (µ̂)

∂µ2
m

is zero or not,
one shows that µ̂ satisfies the optimality conditions:
〈∇F (µ̂),v − µ̂〉 ≥ 0, ∀v ≥ 0. Thus µ̂ is a mini-
mizer of F and we have limF (µk) = limF (µφ(k)) =
F (µ̂) = minµ≥0 F (µ).

(c) is standard in convex optimization.

3.2. Iterative Updates

One may notice that the computations of the deriva-
tives (20), as well as the computation of α∗, depend on
K̃−1
λ,µ. Moreover, the dependency in µ, for all those quan-

tities, only lies in K̃−1
λ,µ. Thus, a special care need be taken

on how K̃−1
λ,µ is stored and updated throughout.

Let S+
µ = {m ∈ S|µm > 0} and m0 = ‖µ‖0 = |S+

µ |. Let
C = [ci1 · · · cim0

] be the concatenation of the cij ’s, for
ij ∈ S+

µ andD the diagonal matrix with diagonal elements
µij , for ij ∈ S+

µ . Remark that throughout the iterations the
sizes of C and D may vary. Given (21) and using Wood-
bury formula (Theorem 2, Appendix), we have:

K̃−1
λ,µ =

(
λI + CDC>

)−1
=

1

λ
I − 1

λ2
CGC> (22)

with G :=
(
D−1 +

1

λ
C>C

)−1

. (23)

Note that G is a square matrix of order m0 and that an
update on µ will require an update on G. Even though
updating G−1, i.e. D−1 + 1

λC
>C, is trivial, it is more

efficient to directly store and update G. This is what we
describe now.

At each iteration, only one coordinate of µ is updated. Let
p be the index of the updated coordinate, µold, Cold, Dold

and Gold, the vectors and matrices before the update and
µnew, Cnew, Dnew and Gnew the updated matrices/vectors.
Let also ep bethe vector whose pth coordinate is 1 while
other coordinates are 0. We encounter four different cases.

Case 1: µold
p = 0 and µnew

p = 0. No update needed:

Gnew = Gold. (24)

Case 2: µold
p 6= 0 and µnew

p 6= 0. Here, Cold = Cnew and

D−1
new = D−1

old + ∆pepe
>
p , where ∆p :=

1

µnew
p

− 1

µold
p

.

Then, using Woodbury formula, we have:

Gnew =
(
G−1

old + ∆pepe
>
p

)−1

= Gold−
∆p

1 + ∆pgpp
gpg

>
p ,

(25)
with gpp the (p, p)th entry of Gold and gp its pth column.

Case 3: µold
p 6= 0 and µnew

p = 0. Here, S+
µnew

=

S+
µold
\ {p}. It follows that we have to remove cp from

Cold to have Cnew. To get Gnew, we may consider the
previous update formula when µnew

p → 0 (that is, when
∆p → +∞). Note that we can use the previous formula
because µp 7→ K̃−1

λ,µ is well-defined and continuous at 0.

Thus, as limµnew
p →0

∆p

1+∆pgpp
= 1

gpp
, we have:

Gnew =

(
Gold −

1

gpp
gpg

>
p

)
\{p}

, (26)

where A\{p} denotes the matrix A from which the pth col-
umn and pth row have been removed.

Case 4: µold
p = 0 and µnew

p 6= 0. We have Cnew =

[Cold cp
]
. Using (23), it follows that

Gnew =

(
D−1

old + 1
λC
>
oldCold

1
λC
>
oldcp

1
λc
>
p Cold

1
µnew
p

+ 1
λc
>
p cp

)−1

=

(
G−1

old
1
λC
>
oldcp

1
λc
>
p Cold

1
µnew
p

+ 1
λc
>
p cp

)−1

=

(
A v
v> s

)
,

where, using the block-matrix inversion formula of Theo-
rem 3 (Appendix), we have:

s =

(
1

µnew
p

+
1

λ
c>p cp −

1

λ2
c>p ColdGoldC

>
oldcp

)−1

v = − s
λ
GoldC

>
oldcp (27)

A = Gold +
1

s
vv>.
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Algorithm 2 SLKL: Stochastic Low-Rank Kernel Learning
inputs: L := {(xi, yi)}ni=1, ν > 0, M > 0, ε > 0.
outputs: µ, G and C (yield (λI +K(µ))−1 from (22)).

initialization: µ(0) = 0.
repeat

Choose coordinate mk uniformly at random in S .
Update µ(k) according to (19), by changing only the
mk-th coordinate µkmk of µ(k):

• compute the second order derivative

h = λ(y>K̃−1
λ,µcmk)2(c>mkK̃

−1
λ,µcmk) ;

• if h > 0 then

µ(k+1)
mk = max

(
0, µ(k)

mk +
λ(y>K̃−1

λ,µcmk )
2 − ν

h

)
;

else µ
(k+1)
mk = 0.

Update G(k) and C(k) according to (24)-(27).
until F (µk)− F (µk−M ) < εF (µk−M )

Complete learning algorithm. Algorithm 2 depicts
the full Stochastic Low-Rank Kernel Learning algorithm
(SLKL), which recollects all the pieces just described.

4. Analysis
Here, we discuss the relation between λ and ν and we argue
that there is no need to keep both hyperparameters. In addi-
tion, we provide a short analysis on the runtime complexity
of our learning procedure.

4.1. Pivotal Hyperparameter λν

First recall that we are interested in the minimizer µ∗λ,ν of
constrained optimization problem (14), i.e.:

µ∗λ,ν = argmin
µ≥0

Fλ,ν(µ), (28)

where, for the sake of clarity, we purposely show the de-
pendence on λ and ν of the objective function Fλ,ν

Fλ,ν(µ) = y>
(
I + K̃

(
µ
λ

))−1

y + λν
∑
m

µm
λ , (29)

We may name α∗λ,ν , α̃∗λ,ν the weight vectors associated
with µ∗λ,ν (see (15) and (17)). We have the following:
Proposition 3. Let λ, ν, λ′, ν′ be strictly positive real num-
bers. If λν = λ′ν′ then

µ∗λ′,ν′ = λ′

λ µ
∗
λ,ν , and f̃λ,ν = f̃λ′,ν′ .

As a direct consequence:

∀λ, ν ≥ 0, f̃λ,ν = f̃1,λν .

Proof. Suppose that we know µ∗λ,ν . Given the defini-
tion (29) of Fλ,ν and using λν = λ′ν′, we have

Fλ,ν(µ) = Fλ′,ν′
(
λ′

λ µ
)

Since the only constraint of problem (28) is the nonneg-
ativity of the components of µ, it directly follows that
λ′µ∗λ,ν/λ is a minimizer of Fλ′,ν′ (under these constraints),
hence µ∗λ′,ν′ = λ′µ∗λ,ν/λ.

To show f̃λ,ν = f̃λ′,ν′ , it suffices to observe that, according
to the way α∗λ,ν is defined (cf. (15)),

α∗λ′,ν′ = 2
(
I +K

(
µ∗
λ′,ν′

λ′

))−1

y

= 2
(
I +K

(
λ′

λ

µ∗λ,ν
λ′

))−1

y = α∗λ,ν ,

and, thus, α̃∗λ′,ν′ = λ′α̃∗λ,ν/λ. The definition (16) of f̃λ,ν
then gives f̃λ,ν = f̃λ′,ν′ , which entails f̃λ,ν = f̃1,λν .

This proposition has two nice consequences. First, it says
that the pivotal hyperparameter is actually the product λν:
this is the quantity that parametrizes the learning problem
(not λ or ν, seen independently). Thus, the set of regression
functions, defined by the λ and ν hyperparameter space,
can be described by exploring the set of vectors (µ∗1,ν)ν>0,
which only depends on a single parameter. Second, con-
sidering (µ∗1,ν)ν>0 allows us to work with the family of
objective functions (F1,ν)ν>0, which are well-conditioned
numerically as the hyperparameter λ is set to 1.

4.2. Runtime Complexity and Memory Usage

For the present analysis, let us assume that we pre-compute
the M (randomly) selected columns c1, . . . , cM . If a is the
cost of computing a column cm, the pre-computation has a
cost of O(Ma) and has a memory usage of O(nM).

At each iteration, we have to compute the first and second-
order derivatives of the objective function, as well as its
value and the weight vector α. Using (22), (20), (14) and
(15), one can show that those operations have a complexity
of O(nm0) if m0 is the zero-norm of µ.

Besides, in addition to C, we need to store G for a mem-
ory cost of O(m2

0). Overall, if we denote the number
of iterations by k, the algorithm has a memory cost of
O(nM +m2

0) and a complexity of O(knm0 +Ma).

If memory is a critical issue, one may prefer to compute the
columns cm on-the-fly and m0 columns need to be stored
instead of M (this might be a substantial saving in terms
of memory as can be seen in the next section). This im-
provement in term of memory usage implies an additive
cost in the runtime complexity. In the worst case, we have
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to compute a new column c at each iteration. The result-
ing memory requirement scales as O(nm0 + m2

0) and the
runtime complexity varies as O(k(nm0 + a)).

5. Numerical Simulations
We now present results from various numerical experi-
ments, for which we describe the datasets and the protocol
used. We study the influence of the different parameters of
our learning approach on the results and compare the per-
formance of our algorithm to that of related methods.

5.1. Setup

First, we use a toy dataset (denoted by sinc) to better un-
derstand the role and influence of the parameters. It con-
sists in regressing the cardinal sine of the two-norm (i.e.
x 7→ sin(‖x‖)/‖x‖) of random two-dimensional points,
each drawn uniformly between−5 and +5. In order to have
a better idea on how the solutions may or may not over-fit
the training data, we add some white Gaussian noise on the
target variable of the randomly picked 1000 training points
(with a 10 dB signal-to-noise ratio). The test set is made of
1000 non-noisy independent instance/target pairs.

We then assess our method on two UCI datasets: Abalone
(abalone) and Boston Housing (boston), using the same
normalizations, Gaussian kernel parameters (σ denotes the
kernel width) and data partition as in (Smola & Schölkopf,
2000). The United States Postal Service (USPS) dataset
is used with the same setting as in (Williams & Seeger,
2001). Finally, the Modified National Institute of Standards
and Technology (MNIST) dataset is used with the same pre-
processing as in (Maji & Malik, 2009). Table 1 summarizes
the characteristics of all the datasets we used.

Table 1. Datasets used for the experiments.

dataset #features #train (n) #test σ2

sinc 2 1000 1000 1
abalone 10 3000 1177 2.5
boston 13 350 156 3.25
USPS 256 7291 2007 64

MNIST 2172 60000 10000 4

As displayed in Algorithm 1, at each iteration k > M , we
check if F (µk)−F (µk−M ) < εF (µk−M ) holds. If so, we
stop the optimization process. ε thus controls our stopping
criterion. In the experiments, we set ε = 10−4 unless oth-
erwise stated and we set λ to 1 for all the experiments and
we run simulations for various values of ν and M . In order
to assess the variability incurred by the stochastic nature of
our learning algorithm, we run each experiment 20 times.
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Figure 1. Evolution of the objective during the optimization pro-
cess for the sinc dataset with ν = 0.01, M = 1000 (for 20 runs).
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Figure 2. Zero-norm of the optimal µ∗ as a function of M for
different values of ν for the sinc dataset (averaged on 20 runs).

5.2. Influence of the parameters

5.2.1. EVOLUTION OF THE OBJECTIVE

We have established (Section 3) the convergence of our op-
timization procedure, under mild conditions. A question
that we have not tackled yet is to evaluate its convergence
rate. Figure 1 plots the evolution of the objective function
on the sinc dataset. We observe that the evolutions of the
objective function are impressively similar among the dif-
ferent runs. This empirically tends to assert that it is rele-
vant to look for theoretical results on the convergence rate.

A question left for future work is the impact of the random
selection of the set of columns S on the reached solution.

5.2.2. ZERO-NORM OF µ

As shown in Section 4.2, both memory usage and the com-
plexity of the algorithm depend on m0. Thus, it is inter-
esting to take a closer look at how this quantity evolves.
Figure 2 and 3 experimentally point out two things. On the
one hand, the number of active componentsm0 = ‖µ‖0 re-
mains significantly smaller thanM . In other words, as long
as the regularization parameter is well-chosen, we never
have to store all of the cm at the same time. On the other
hand, the solution µ∗ is sparse and ‖µ∗‖0 grows with M
and diminishes with ν. A theoretical study on the depen-
dence ofµ∗ andm0 inM and ν, left for future work, would
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Figure 3. Evolution of the zero-norm ofµ (m0) with the iterations
for the sinc dataset with ν = 0.01, M = 1000 (20 runs).

be all the more interesting since sparsity is the cornerstone
on which the scalability of our algorithm depends.

5.3. Comparison to other methods

This section aims at giving a hint on how our method per-
forms on regression tasks. To do so, we compare the Mean
Square Error (over the test set). In addition to our Stochas-
tic Low-Rank Kernel Learning method (SLKL), we solve
the problem with the standard Kernel Ridge Regression
method, using the n training data (KRRn) and using onlyM
training data (KRRM). We also evaluate the performance
of the KRR method, using the kernel obtained with uni-
form weights on the M rank-1 approximations selected for
SLKL (Unif ). The results are displayed in Table 2, where
the bold font indicates the best low-rank method (KRRM,
Unif or SLKL) for each experiment.

Table 2 confirms that optimizing the weight vector µ is de-
cisive as our results dramatically outperform those of Unif.
As long as M < n, our method also outperforms KRRM.
The explanation probably lies in the fact that our approx-
imations keep information about similarities between the
M selected points and the n − M others. Furthermore,
our method SLKL achieves comparable performances (or
even better on abalone) than KRRn, while finding sparse
solutions. Compared to the approach from (Smola &
Schölkopf, 2000), we seem to achieve lower test error on
the boston dataset even for M = 128. On the abalone
dataset, this method outperforms ours for every M we tried.

Finally, we also compare the results we obtain on the USPS
dataset with the ones obtained in (Williams & Seeger,
2001) (Nyst). As it consists in a classification task, we
actually perform a regression on the labels to adapt our
method, which is known to be equivalent to solving Fisher
Discriminant Analysis (Duda & Hart, 1973). The perfor-
mance achieved by Nyst outperforms ours. However, one
may argue that the performance have a same order of mag-
nitude and note that the Nyst approach focuses on the clas-
sification task, while ours was designed for regression.

Table 3. Number of errors and standard deviation on the test set
(2007 examples) of the USPS dataset.
M 64 256 1024

Nyst 101.3± 22.9 34.5± 3.0 35.9± 2.0

SLKL 76.3± 9.9 47.6± 3.1 41.5± 3.9
m0 61 210 515

5.4. Large-scale dataset

To assess the scalability of our method, we ran experiments
on the larger handwritten digits MNIST dataset, whose
training set is made of 60000 examples. We used a Gaus-
sian kernel computed over histograms of oriented gradients
as in (Maji & Malik, 2009), in a “one versus all” setting.
ForM=1000, we obtained classification error rates around
2% over the test set, which do not compete with state-of-
the-art results but achieve reasonable performance, consid-
ering that we use only a small part of the data (cf. the size
of M ) and that our method was designed for regression.

Although our method overcomes memory usage issues for
such large-scale problems, it still is computationally inten-
sive. In fact, a large number of iterations is spent picking
coordinates whose associated weight remains at 0. Though
those iterations do not induce any update, they do require
computing the associated Gram matrix column (which is
not stored as it does not weigh in the conic combination) as
well as the derivatives of the objective function. The main
focus of our future work is to avoid those computations, us-
ing e.g. techniques such as shrinkage (Hsieh et al., 2008).

6. Conclusion
We have presented an original kernel-based learning pro-
cedure for regression. The main features of our contri-
bution are the use of a conical combination of data-based
kernels and the derivation of a stochastic convex optimiza-
tion procedure, that acts coordinate-wise and makes use of
second-order information. We provide theoretical conver-
gence guarantees for this optimization procedure, we de-
pict the behavior of our learning procedure and illustrate its
effectiveness through a number of numerical experiments
carried out on several benchmark datasets.

The present work naturally raises several questions.
Among them, we may pinpoint that of being able to estab-
lish precise rate of convergence for the stochastic optimiza-
tion procedure and that of generalizing our approach to the
use of several kernels. Establishing data-dependent gener-
alization bounds taking advantage of either the one-norm
constraint on µ or the size M of the kernel combination is
of primary importance to us. The connection established
between the one-norm hyperparameter ν and the ridge pa-
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Table 2. Mean square error with standard deviation measured on three regression tasks.
sinc boston abalone

M 256 512 1000 128 256 350 512 1024 3000

KRRn 0.009± 09 10.17± 0 6.91± 0

KRRM 0.0146 0.0124 0.0099 33.27 16.89 10.17 6.14 5.51 5.25
±1e−3 ±7e−4 ±0 ±7.8 ±3.27 ±0 ±0.25 ±0.09 ±0

Unif 0.0124 0.0124 0.0124 149.7 147.84 147.72 10.04 9.96 9.99
±1e−4 ±3e−5 ±0 ±5.57 ±2.24 ±0 ±0.17 ±0.06 ±0

SLKL 0.0106 0.0103 0.0104 20.17 13.1 11.43 5.04 4.94 4.95
±4e−4 ±2e−4 ±1e−4 ±2.3 ±0.87 ±0.06 ±0.08 ±0.03 ±0.004

m0 83 108 139 108 161 184 159 191 253

rameter λ, in section 4, seems interesting and may be wit-
nessed in (Rakotomamonjy et al., 2008). Although not
been mentioned so far, there might be connections between
our modeling strategy and boosting/leveraging-based opti-
mization procedures. Finally, we plan on generalizing our
approach to other kernel methods, noting that rank-1 up-
date formulas as those proposed here can possibly be ex-
hibited even for problems with no closed-form solution.
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A. Matrix Inversion Formulas
Theorem 2. (Woodbury matrix inversion formula (Wood-
bury, 1950)) Let n and m be positive integers, A ∈ Rn×n
and C ∈ Rm×m be non-singular matrices and let U ∈
Rn×m and V ∈ Rm×n be two matrices. If C−1+V A−1U
is non-singular then so is A+UCV and:

(A+UCV )−1 = A−1−A−1U(C−1+V A−1U)−1V A−1.

Theorem 3. (Matrix inversion with added column) Given
m, integer and M ∈ R(n+1)×(n+1) partitioned as:

M =

(
A b

b> c

)
, where A ∈ Rn×n, b ∈ Rn and c ∈ R.

If A is non-singular and c− b>A−1b 6= 0, then M is non-
singular and the inverse of M is given by

M−1 =

(
A−1 + 1

kA
−1bb>A−1 − 1

kA
−1b

− 1
kb
>A−1 1

k

)
, (30)

where k = c− b>A−1b.
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