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Abstract

One of the most successful semi-supervised
learning approaches is co-training for multi-
view data. In co-training, one trains two clas-
sifiers, one for each view, and uses the most
confident predictions of the unlabeled data
for the two classifiers to “teach each other”.
In this paper, we extend co-training to learn-
ing scenarios without an explicit multi-view
representation. Inspired by a theoretical
analysis of Balcan et al. (2004), we intro-
duce a novel algorithm that splits the feature
space during learning, explicitly to encour-
age co-training to be successful. We demon-
strate the efficacy of our proposed method
in a weakly-supervised setting on the chal-
lenging Caltech-256 object recognition task,
where we improve significantly over previous
results by (Bergamo & Torresani, 2010) in al-
most all training-set size settings.

1. Introduction

Co-training (Blum & Mitchell, 1998) is an approach to
semi-supervised learning (Zhu, 2006) which assumes
that the available data is represented with two views.
In its original formulation, these two views must sat-
isfy two conditions: 1. each one is sufficient to train a
low-error classifier and 2. both are class-conditionally
independent. A classifier is trained for each represen-
tation and applied to the unlabeled data. Co-training
then utilizes unlabeled data by adding the most confi-
dent predictions of each classifier to the training set of
the other classifier – effectively letting the classifiers
“teach each other”. Blum and Mitchell show dras-
tic improvements on data sets where the multi-view
assumptions naturally hold. Co-training and its vari-
ants have been applied to many applications across
computer science and beyond (Collins & Singer, 1999;
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Ghani, 2001; Nigam & Ghani, 2000; Levin et al., 2003;
Brefeld & Scheffer, 2004; Chan et al., 2004).

In many learning scenarios, the available data might
not originate from two explicitly different sources. In-
stead, one might be faced with assorted features that
were obtained through various means. For example,
in the medical domain features might correspond to
different examinations which might or might not be
class-conditionally independent and sufficiently infor-
mative about the patient’s condition.

In this paper we extend co-training to this more com-
mon single-view setting. We utilize recent advances in
learning theory that have significantly weakened the
strong assumptions of co-training. Most notably, Bal-
can et al. (2004) prove that the class-conditional inde-
pendence assumption is unnecessarily strong and that
a weaker expanding property on the underlying distri-
bution of the multi-view data is sufficient for iterative
co-training to succeed. We propose a novel feature
decomposition algorithm, which automatically divides
the features of a single-view data set into two mutually
exclusive subsets – thereby creating a pseudo-multi-
view representation for co-training. This feature divi-
sion is learned explicitly to satisfy the necessary con-
ditions to enable successful co-training. In this paper
we derive a single optimization problem, which divides
the feature space, trains both classifiers and enforces
an approximation of Balcan’s ε-expanding property
through hard constraints. We refer to our algorithm
as Pseudo Multi-view Co-training (PMC).

Our broadening of the scope of co-training is partic-
ularly useful for weakly supervised learning scenarios.
Through the success of web-search, it is now possible
to obtain large quantities of data for almost any topic
or class description (e.g. through automated image
search or wikipedia lookups). Often, however, only a
small fraction of the retrieved search results are truly
relevant to someone’s learning task. As co-training ex-
plicitly cherry-picks data instances with similar char-
acteristics as the labeled training data, it is natu-
rally suited for learning with such noisy (weak) labels.
We demonstrate this capability by effectively utiliz-
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ing weakly labeled image-search results to improve the
classification accuracy on the Caltech 256 object recog-
nition data set – surpassing previously published re-
sults on the same task by Bergamo & Torresani (2010).

2. Notation and Setting

Let X ⊆ Rd be the instance space with dimension d
and X = {x1, . . . ,xm} ⊂ X . Assume w.l.o.g. that the
first n� m instances are accompanied by correspond-
ing labels {y1, . . . , yn} ∈ Y, where labels and instances
are drawn from some joint distribution D. The labels
of the remaining instances are unknown. For conve-
nience, we denote the set of labeled instances by L
and the unlabeled ones by U . For now, until section 4,
we focus on binary problems and set Y = {+1,−1}.

2.1. Co-Training

Co-training assumes that the data set X consists of
two views X = X 1 × X 2 with their respective feature
partitions X1, X2. The two views must satisfy two
conditions: 1. Both have to be sufficient within the
given hypothesis classH – i.e. there exist two hypothe-
sis h1, h2 ∈ H having low error on X1, X2 respectively.
2. They need to be class-conditionally independent, i.e.
for a given x = (x1,x2) ∈ X 1 × X 2 with label y ∈ Y,
p(x1|y)p(x2|y) = p(x1,x2|y).

The fundamental idea behind co-training is what Blum
and Mitchell describe as “rote-learning” (Blum &
Mitchell, 1998) on the unlabeled data set. Two clas-
sifiers h1, h2 are trained on the labeled set L, both
on their respective views. The two classifiers are then
evaluated on the unlabeled set U . For each classifier,
the examples on which it is most confident are removed
from U and added to L for the next iteration. Both
classifiers are now re-trained on the expanded labeled
data set and the procedure is repeated until some stop-
ping criteria is met. By carrying out this “rote learn-
ing” algorithm, co-training can bootstrap from a small
labeled “seed” set and iteratively improve its perfor-
mance with the help of unlabeled data.

2.2. ε-Expandability

The assumption that the two views are class condition-
ally independent is very strong and, as Nigam & Ghani
(2000) show, can easily be violated in practice. Recent
work by Balcan et al. (2004) weakens this requirement
significantly. Intuitively, for the two classifiers to be
able to teach each other, they must make confident
predictions on different subsets of the unlabeled data.
Balcan et al. (2004) formalize this condition as a con-
cept of ε-expandability.

Let h1, h2 be the two classifiers, trained on the two
views. Let us denote the subsets of X1, X2 on which
these two classifiers are confident as C1, C2 respec-
tively. For S ⊆ X, let Si denote the event that an
input x = (x1,x2) ∈ S satisfies xi ∈ Ci. We express
the probability of an instance in S to be classified con-
fidently by both classifiers as Pr(S1 ∧ S2), by exactly
one of the two classifiers as Pr(S1 ⊕ S2) and by none
as Pr(S1 ∧ S2).

Definition 1. D is ε-expanding with respect to the
hypothesis class H if for any S ⊆ X and any two clas-
sifiers h1, h2 ∈ H, the following statement holds

Pr(S1 ⊕ S2) ≥ εmin[Pr(S1 ∧ S2),Pr(S1 ∧ S2)].

Intuitively, the condition ensures that with high proba-
bility there are data instances in the unlabeled set for
which exactly one of the two classifiers is confident.
These instances can then be added to the labeled set
to teach the classifier which wasn’t so sure about them.
Balcan et al. (2004) show that if the distribution D is
ε-expanding, and the two classifiers are never “con-
fident but wrong”, co-training will succeed.

3. Method

In this section, we extend co-training to the scenario
where the two views X 1,X 2 are not known. We de-
scribe how to learn two classifiers on a single view X
that satisfy three conditions: (1) both of them per-
form well on the labeled data; (2) both are trained on
strictly different features; (3) together they are likely
to satisfy Balcan’s condition of ε-expandability. We
tackle all three conditions in this order.

3.1. Loss function

In this paper we only consider linear classifiers,
hu(x) = sign(u>x + b) with weight vector u. To sim-
plify notation we drop the bias b and assume that a
constant 1 is attached as an additional dimension to
each input xi ∈ X, which is not split between the two
classifiers. A classifier hu is trained by minimizing the
log-loss over the data set L:

`(u;L) =
∑

(x,y)∈L

log
(

1 + e−u
Txy
)
. (1)

Our framework is agnostic to the specific choice of loss-
function, however we choose logistic regression (Ng &
Jordan, 2002) as it explicitly models the probability of
labels y conditioned on the input x, which provides a
natural measure of classifier-confidence.

For co-training we require two classifiers, whose weight
vectors we denote by u and v. We train these two
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jointly, and to make sure that both suffer low loss we
minimize the maximum of the two,

min
u,v

max [`(u;L), `(v;L)] . (2)

As eq. (2) is non-differentiable we introduce a slight
relaxation and replace the max term with a more man-
ageable softmax. The optimization then becomes

min
u,v

log
(
e`(u;L) + e`(v;L)

)
. (3)

3.2. Feature Decomposition

A crucial aspect of co-training is that the two clas-
sifiers are trained on different views of the data set.
Unconstrained, the minimization problem in (3) would
result in two identical weight vectors u = v. Instead,
we want the two classifiers to divide up the feature
space so that each feature can only be used by one of
the two. More precisely, for each feature i, at least one
of the two classifiers must have a zero weight in the ith

dimension. We can write this constraint as

∀i, 1 ≤ i ≤ d, uivi = 0. (4)

Although correct, this formulation is unnecessarily
hard to optimize and can result in numerical insta-
bilities. Instead, we square both sides and sum over
all features to obtain the following constraint:

d∑
i=1

u2
iv

2
i = 0. (5)

It is important to point out that any solution to (5)
strictly implies (4).

3.3. ε-Expandability

The final condition is that the two classifiers must
make confident predictions on different subsets of
the unlabeled data. We follow the intuition be-
hind the ε-expandability of Balcan et al. (2004), as
described in section 2.2. For the classifier hu, let
ŷ = sign(u>x) ∈ {±1} denote the class prediction and

p(ŷ|x; u) = (1 + e−u
>xŷ)−1 its confidence. We define

a binary confidence indicator function1 as

cu(x) =

{
1 if p(ŷ|x; u) > τ
0 otherwise.

(6)

Let us define the subsets of the inputs on which one
classifier is confident as Cu = {x ∈ X | cu(x) = 1},

1In our implementation, the 0-1 indicator was replaced
by a very steep differentiable sigmoid function, and τ was
set to 0.8 across different experiments.

and Cv respectively. For any S ⊆ X, let Su denote the
event that an input x in S belongs to the confident set
of hu, that is, x ∈ S ∩ Cu. Sv is defined analogously.

The ε-expanding condition from section 2.2 becomes

Pr(Su ⊕ Sv) ≥ εmin[Pr(Su ∧ Sv),Pr(Su ∧ Sv)]. (7)

As pointed out by Balcan et al. (2004), the definition
of ε-expanding might still be unnecessarily strict in
practice. For our optimization, we relax it and only
require that the expanding condition holds on average
for the solution hu, hv ∈ H. More explicitly we add
the following hard constraint to our optimization:∑

x∈U
[cu(x)c̄v(x) + c̄u(x)cv(x)]

≥ εmin

[∑
x∈U

cu(x)cv(x),
∑
x∈U

c̄u(x)c̄v(x)

]
(8)

Here, cu(x) = 1 − cu(x) indicates that classifier hu is
not confident about input x. Intuitively, the constraint
in eq. (8) ensures that the total number of inputs in
U that can be used for rote-learning because exactly
one classifier is confident (LHS), is larger than the set
of inputs which can not because both classifiers are
already confident or both are not confident (RHS).

3.4. Optimization Problem

In summary, we want to learn two logistic
regression classifiers, both with small loss on
the labeled data set, while satisfying two con-
straints to ensure feature decomposition and ε-
expandability. We combine eqs (3-8) as the follow-
ing optimization problem, which we will later re-
fer to as Pseudo Multi-view Decomposition (PMD) :

min
u,v

log
(
e`(u;L) + e`(v;L)

)
subject to:

(1)

d∑
i=1

u2
iv

2
i = 0

(2)
∑
x∈U

[cu(x)c̄v(x) + c̄u(x)cv(x)]

≥ εmin

[∑
x∈U

cu(x)cv(x),
∑
x∈U

c̄u(x)c̄v(x)

]
We optimize this constrained optimization problem
with an augmented Lagrangian method (Bertsekas
et al., 1999).

3.5. Pseudo Multi-View Co-Training

Finally, we use our feature decomposition method to
apply iterative co-training on single-view data. We re-
fer to the resulting algorithm as Pseudo Multi-view
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Co-training (PMC). A detailed pseudo-code imple-
mentation is presented in Algorithm 1. Please note
that there is an interesting difference between PMC
and traditional co-training. Not only is there no pre-
defined split of the features but the automatically
found split can vary between iterations.

Algorithm 1 PMC in pseudo-code.

1: Inputs: L and U .
2: Initialize u, v and l.
3: repeat
4: Find u∗,v∗ by optimizing PMD on L and U .
5: Apply hu∗ and hv∗ on all elements of U .
6: Move up-to l confident inputs from U to L.
7: until No more predictions are confident
8: Train final classifier h on L with all features X .
9: Return h

4. Extension to Multiclass Settings

One way to extend PMC to multiclass settings is by
training multiple binary classifiers, one for each class,
using the one-versus-the-rest scheme. However, such
an approach cannot capture the correlations between
different classes. A more natural and efficient way is
to construct a hypothesis, considering all the classes
at once.

Let us denote the label space as Y = {1, 2, · · · ,K}.
Let U= [u1, . . . ,uK ] ∈ Rd×K and V = [v1, . . . ,vK ] ∈
Rd×K denote the parameters of the two classifiers.
Then the log-loss of a classifier hU over the data set L
is defined as:

`(U;L) = −
∑

(x,y)∈L

log
ex
>uy∑

k e
x>uk . (9)

The confidence indictor function cU(x), cV(x) are de-
fined as in (6) with the class prediction computed as

ŷ = max
k

(x>uk). (10)

We can also decompose the instance space by con-
straining that eq. (5) holds for all classes, i.e.

K∑
k=1

d∑
i=1

(uk
i )2(vk

i )2 = 0. (11)

However, without additional regularization, eq. (11)
would result in K different decompositions, one for
each class. For the classifiers to be compatible, we
need to ensure a consistent partition of the instance
space X = X 1 × X 2 across different classes. More

precisely, for each feature i, at least one of the two
classifiers must have zero weights across all classes.

A similar problem arises in the context of feature selec-
tion in multi-task settings (Argyriou et al.; Obozinski
et al., 2006), when similar parameter sparsity patterns
across different tasks needs to be imposed. An effec-
tive regularization is the group lasso, defined over a
matrix U as

‖U‖2,1 =

d∑
i=1

√√√√ K∑
k=1

(Uik)2. (12)

Intuitively, eq. (12) enforces the l1 norm on the l2-
norms of all rows in U, enforcing sparsity on a per-
row level – effectively forcing hU to pick a feature for
all classes or none. We encourage readers to refer to
(Obozinski et al., 2006) for an intuitive geometric in-
terpretation of the regularization in (12).

We then combine the other two constraints with the
regularized objective into the following optimization
problem:

min
U,V

log
(
e`(U;L) + e`(V;L)

)
+ λ(‖U‖2,1 + ‖V‖2,1)

subject to:

(1)

K∑
k=1

d∑
i=1

(uk
i )2(vk

i )2 = 0

(2)
∑
x∈U

[cU(x)c̄V(x) + c̄U(x)cV(x)]

≥ εmin

[∑
x∈U

cU(x)cV(x),
∑
x∈U

c̄U(x)c̄V(x)

]

5. Results

In this section we evaluate PMC empirically on artifi-
cial and real-world data sets.

5.1. Paired Handwritten Digits

As a first test, we construct a data set with binary
class labels for which a class-conditional feature split
exists, but is unknown to the algorithm. Each instance
in the set is a pair of digits sampled from the USPS
handwritten digits set. If the class label is +1, the
left image is uniformly picked from the set of ones and
twos and the right image is picked from the set of fives
or sixes. For a label −1 the left digit is a three or four
and the right image a seven or eight. Given the class-
label, the identities of the two digits in the image are
conditionally independent. We construct m = 6000
such instances. By design, a natural decomposition is
to split the feature space into two views such that one
covers the left digit and the other the right digit.
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Figure 1. Upper row: The heatmap of two randomly ini-
tialized weight vectors u,v on the input space; Lower row:
The heatmap of u∗,v∗ learned with PMD.

Feature Decomposition. First we set |L| = 2000
and solve the PMD for u and v, starting with a random
initialization. Figure 1 shows the heat maps of u and
v before and after training. We also report the log-loss
on L. The bottom two images in the figure show that
once u,v are trained to minimize the loss function,
constraining on (5) and (8), their non-zero weights are
divided almost exactly into the two class-conditionally
independent feature sets. In particular, classifier hu
takes the pixels of the left digit as its features, while
classifier hv uses only the right digit.

Co-Training. As a second evaluation, we set |L| = 2
and run 12 sets of identical experiments with differ-
ent random initializations and different labeled images
(always one per class). In this setup we use the trans-
ductive setting, i.e. the test set coincides with the
unlabeled set.

Table 1. Comparison of co-training with automatic feature
split (PMC) to (1) baseline model with only labeled in-
stances; (2) co-training with random feature split (RFS);
(3) co-training with ICA and then random feature splitting
(ICA-RFS), on the paired handwritten digits set.

Test Err(%) Baseline RFS ICA-RFS PMC
Mean 18.64 13.78 12.22 3.99
STD 8.86 14.24 13.59 3.24

Table 1 summarizes the mean classification error and
standard deviation. We compare against three alter-
native methods: i) the baseline, which trains logistic
regression exclusively with the labeled instances; ii)
co-training on two views obtained by random feature
splitting (RFS); iii) co-training with random feature
splitting where the features are pre-processed with In-
dependent Component Analysis2 (Hyvárinen et al.)
(ICA-RFS ). For RFS and ICA-RFS, 10 different ran-

2We used the open-source implementation from http:
//cs.nyu.edu/~roweis/kica.html.
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Figure 2. Left: The heatmap of u,v in 20 PMC iterations
(1st iteration on top). Right: The progress made by the
two classifiers hu, hv during co-training.

dom feature decompositions are considered for each
run, and the average performance and the standard
deviation across 120 runs are reported. As shown in
Table 1, PMC achieves by far the lowest error with
very small standard deviation.

The left plot in Figure 2 shows the heat maps of the
two weight vectors u and v in different PMC itera-
tions. Confident predictions are moved from the unla-
beled set U to the labeled set L in each PMC iteration,
causing the loss function (3) and the constraint (8) to
change. As a result, the automatically discovered fea-
ture splits vary between iterations. As more confident
predictions were added to L, PMC gradually approxi-
mates the class-conditional feature split from Figure 1.

The right plot depicts the progress of the two classifiers
hu, hv in one run of the experiments. The magenta
line indicates the test error of the baseline. The blue
and green curves plot the errors of the two classifiers
between iterations. During the “rote-learning” proce-
dure, the two classifiers “learn” from each other, and
finally converge to a almost perfect predictor. Similar
trends were observed in the other 11 runs.

5.2. Caltech-256 with weakly labeled web
images

As a more challenging real-world data classification
task, we evaluate PMC on the Caltech-256 object cat-
egorization data (Griffin et al., 2007). The data set
consists of images of objects from a set of 256 ob-
ject categories. The task is to classify a new im-
age into its object category. A great amount of
human effort is required to label such data. To
address this problem, several researchers suggested
a weakly-supervised learning setting (Fergus et al.,
2005; Vijayanarasimhan & Grauman, 2008; Bergamo
& Torresani, 2010), in which additional images are re-
trieved from image search engines such as GoogleTMor
BingTMimage search using the category names as

http://cs.nyu.edu/~roweis/kica.html
http://cs.nyu.edu/~roweis/kica.html
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Figure 3. Refining image search ranking with Multi-class PMC. The left three columns show the original training images
from Caltech-256; the middle three columns show the images having lowest rank in BingTMsearch, but were picked by
PMC as confident examples; the right three columns show the images with highest ranks, but found to be irrelevant by
PMC. The numbers below images are the rankings of the corresponding image search result with BingTMimage search.
The experiment was run with 5 training images from Caltech-256, and 300 weakly-labeled web images for each class.

search queries, and used to aid learning. These ad-
ditional images are referred to as weakly-labeled, be-
cause the quality of the retrieved images is far from
the original training data. Usually, a large fraction of
the retrieved images do not contain the correct object.
With this method, Bergamo & Torresani (2010) report
an improvement of 65% (27.1% compared to 16.7%)
over the previously best published result on the set
with 5 labeled training examples per class.

Though retrieving images from web search engines re-
quires very little human intervention, only a small
fraction of the retrieved images actually correspond
to the queried category. Further, even the relevant
images are of varying quality compared with typi-
cal images from the training set. Bergamo & Torre-
sani (2010) overcome this problem by carefully down-
weighing the web images and employing adequate reg-
ularization to suppress the noises introduced by irrel-
evant and low-quality images. As features, they use
classemes (Lorenzo et al., 2010), where each image is
represented by a 2625 dimensional vector of predic-
tions from various visual concept classifiers – including
predictions on topics as diverse as “wetlands”, “ballis-
tic missile” or “zoo”3.

3A detailed list of the categories is available
at http://www.cs.dartmouth.edu/~lorenzo/projects/
classemes/classeme_keywords.txt.

In this experiment, we apply PMC to the same dataset
from Bergamo & Torresani (2010), using images from
Caltech-256 as labeled data, and images retrieved from
Bing as “unlabeled” data. Different from classical
semi-supervised learning settings, in this case, we are
not fully blind about the labels of the unlabeled data.
Instead, for each class only the images obtained with
the matching search query are used as the “unlabeled”
set.

We argue that PMC is particularly well suited for this
task for two reasons: i) The “rote-learning” procedure
of co-training adds confident instances iteratively. As
a result, images that possess similar characteristics as
the original training images will be picked as the confi-
dent instances, naturally ruling out irrelevant and low-
quality images in the unlabeled set. ii) Classemes fea-
tures are a natural fit for PMC as they consist of the
predictions of many (2625) different visual concepts. It
is highly likely that there exists two mutually exclusive
subsets of visual concepts that satisfy the conditions
for co-training.

Figure 3 shows example images of the Caltech-256
training set (left column), positive examples that PMC
picks out from the “unlabeled” set to use as addi-
tional labeled images (middle) and negative examples
which PMC chooses to ignore (right column). The
number below the images indicates its rank of the
BingTMsearch engine (out of 300). For this figure, we

http://www.cs.dartmouth.edu/~lorenzo/projects/classemes/classeme_keywords.txt
http://www.cs.dartmouth.edu/~lorenzo/projects/classemes/classeme_keywords.txt
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Figure 4. Recognition accuracy with 300 web images and
a varying number of Caltech256 training images m.

selected the highest ranked negative and lowest ranked
positive images. The figure showcases how PMC effec-
tively identifies relevant images that are similar in style
to the training set for rote-learning. Also, it showcases
that PMC can potentially be used for image re-ranking
of search engines, which is particularly visible in the
middle row where it ignores completely irrelevant im-
ages to the category “Eiffel Tower”, which are ranked
second to fourth on BingTM.

Baselines. Figure 4 provides a quantitive analysis of
the performance of PMC. The graph shows the accu-
racy achieved by different algorithms under a varying
number of training examplesm and 300 weakly-labeled
BingTMimage-search results. The meta-parameters of
all algorithms were set by 5-fold cross-validation on the
small labeled set (except for the group-lasso trade-off
for PMC, which was set to λ = .1).

We train our algorithm with the multi-class loss and
compare it against three baselines and three previously
published results in the literature. The three baselines
are: i) multi-class logistic regression trained only on
the original labeled training examples from Caltech-
256 (LRt); ii) the same model trained with both the
original training images and web images (LRt∪s); iii)
co-training with random feature splits on the labeled
and weakly-labeled data (RFS ).

The three previously published algorithms are: i)
linear support vector machines trained on the la-
beled Caltech-256 images (SVM t) only; ii) the algo-
rithm proposed by Bergamo & Torresani (2010), which
weighs the loss over the weakly labeled data less than
over the original data (DWSVM ); iii) transductive-
SVM as introduced by Joachims (1999) (TSVM ). All
previously published results are taken from (Bergamo

& Torresani, 2010). All algorithms, including PMC,
are linear and make no particular assumptions on the
data.

General Trends. As a first observation, LRt∪s per-
forms drastically worse than the baseline trained on
the Caltech-256 data LRt only. This indicates that the
weakly-labeled images are noisy enough to be harmful
when they are not filtered or down-weighted. However,
if the weakly labeled images are incorporated with spe-
cialized algorithms, the performance improves as can
be seen by the clear gap between the purely supervised
(SVM t and LRt) and the adaptive semi-supervised al-
gorithms. The result of co-training with random split-
ting (RSF) is surprisingly good, which could poten-
tially be attributed to the highly diverse classemes fea-
tures. Finally PMC outperforms all other algorithms
by a visible margin across all training set sizes. PMC
achieved an accuracy of 29.2% when only 5 training
images per class from Caltech-256 are used, compar-
ing to 27.1% as reported in (Bergamo & Torresani,
2010). In terms of computational time, for a total
of around 80,000 labeled and unlabeled images, PMC
took around 12 hours to finish the entire training phase
(Testing time is in the order of milliseconds).

6. Related Work

Applicability of co-training has been largely depending
on the existence of two class-conditionally independent
views of the data (Blum & Mitchell, 1998). Nigram
and Ghani (Nigam & Ghani, 2000) perform extensive
empirical study on co-training and show that the class-
conditionally independence assumption can be easily
violated in real-world data sets. For datasets without
natural feature split, they create artificial split by ran-
domly breaking the feature set into two subsets. Chan
et al. (2004) also investigate the feasibility of random
feature splitting and apply co-training to email-spam
classification. However, during our study we found
that random feature splitting results in very fluctuant
performance. Brefeld & Scheffer (2004) effectively ex-
tend the multi-view co-training framework to support
vector machines.

Abney (2002) relaxes the class conditionally indepen-
dent assumption to weak rule dependence and pro-
posed a greedy agreement algorithm that iteratively
adds unit rules that agree on unlabeled data to build
two views for co-training. In contrast, PMC is not
greedy but incorporates an optimization problem over
all possible feature splits. Zhang & Zheng (2009) pro-
pose to decompose the feature space by first applying
PCA and then greedily dividing the orthogonal com-
ponents to minimize the energy diversity of the two



Automatic Feature Decomposition for Co-training

feature sets. In contrast, our method is supervised
and non-greedy.

7. Conclusion

In this paper, we introduced PMC, a framework for
co-training on single-view data. PMC automatically
decomposes the feature space and creates a pseudo-
multi-view representation explicitly designed for co-
training to succeed. It involves a single optimiza-
tion problem, which jointly divides the feature space,
trains two classifiers, and enforces an approximation of
Balcan’s ε−expanding property. We further extended
PMC to multi-class settings and demonstrated PMC’s
efficacy on the Caltech256 object recognition task us-
ing weakly labeled web images.

The ability of PMC to effectively select high quality in-
stances from large collections of weakly labeled search
results opens the door to future work on diverse sets of
web-specific applications across very diverse domains
– including web-spam classification, sentiment analysis
or information retrieval.
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