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Abstract

Fitting probabilistic models to data is of-
ten difficult, due to the general intractabil-
ity of the partition function and its deriva-
tives. Here we propose a new parameter esti-
mation technique that does not require com-
puting an intractable normalization factor or
sampling from the equilibrium distribution of
the model. This is achieved by establishing
dynamics that would transform the observed
data distribution into the model distribution,
and then setting as the objective the mini-
mization of the KL divergence between the
data distribution and the distribution pro-
duced by running the dynamics for an in-
finitesimal time. Score matching, minimum
velocity learning, and certain forms of con-
trastive divergence are shown to be special
cases of this learning technique. We demon-
strate parameter estimation in Ising mod-
els, deep belief networks and an independent
component analysis model of natural scenes.
In the Ising model case, current state of the
art techniques are outperformed by at least
an order of magnitude in learning time, with
lower error in recovered coupling parameters.

1. Introduction

Estimating parameters for probabilistic models is a
fundamental problem in many scientific and engi-
neering disciplines. Unfortunately, most probabilistic
learning techniques require calculating the normaliza-
tion factor, or partition function, of the probabilistic
model in question, or at least calculating its gradi-
ent. For the overwhelming majority of models there
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are no known analytic solutions. Thus, development
of powerful new techniques for parameter estimation
promises to greatly expand the variety of models that
can be fit to complex data sets.

Many approaches exist for approximate learning, in-
cluding mean field theory and its expansions, varia-
tional Bayes techniques and a variety of sampling or
numerical integration based methods (Tanaka, 1998;
Kappen & Rodriguez, 1997; Jaakkola & Jordan, 1997;
Haykin, 2008). Of particular interest are contrastive
divergence (CD), developed by Hinton, Welling and
Carreira-Perpifidn (Welling & Hinton, 2002; Carreira-
Perpindn & Hinton, 2004), Hyvérinen’s score match-
ing (SM) (Hyvérinen, 2005), Besag’s pseudolikeli-
hood (PL) (Besag, 1975), and the minimum velocity
learning framework proposed by Movellan (Movellan,
2008a;b; Movellan & McClelland, 1993).

Contrastive divergence (Welling & Hinton, 2002;
Carreira-Perpinan & Hinton, 2004) is a variation on
steepest gradient descent of the maximum (log) likeli-
hood (ML) objective function. Rather than integrat-
ing over the full model distribution, CD approximates
the partition function term in the gradient by averag-
ing over the distribution obtained after taking a few,
or only one, Markov chain Monte Carlo (MCMC) steps
away from the data distribution (Equation 17). Qual-
itatively, one can imagine that the data distribution
is contrasted against a distribution that has evolved
only a small distance towards the model distribution,
whereas it would be contrasted against the true model
distribution in traditional MCMC approaches. Al-
though CD is not guaranteed to converge to the right
answer, or even to a fixed point, it has proven to be
an effective and fast heuristic for parameter estimation
(MacKay, 2001; Yuille, 2005).

Score matching (Hyvérinen, 2005) is a method that
learns parameters in a probabilistic model using only
derivatives of the energy function evaluated over the
data distribution (see Equation (19)). This sidesteps
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Figure 1. An illustration of parameter estimation using
minimum probability flow (MPF). In each panel, the axes
represent the space of all probability distributions. The
three successive panels illustrate the sequence of parame-
ter updates that occur during learning. The dashed red
curves indicate the family of model distributions p(°(6)
parametrized by 6. The black curves indicate deterministic
dynamics that transform the data distribution p® into the
model distribution p(®(#). Under maximum likelihood
learning, model parameters 6 are chosen so as to minimize
the Kullback—Leibler (KL) divergence between the data
distribution p(® and the model distribution p‘>(g). Un-
der MPF, however, the KL divergence between p® and
p'? is minimized instead, where p'® is the distribution
obtained by initializing the dynamics at the data distribu-
tion p'* and then evolving them for an infinitesimal time e.
Here we represent graphically how parameter updates that
pull pt® towards p® also tend to pull p(°°)(0) towards

p©.

the need to explicitly sample or integrate over the
model distribution. In score matching one minimizes
the expected square distance of the score function with
respect to spatial coordinates given by the data distri-
bution from the similar score function given by the
model distribution. A number of connections have
been made between score matching and other learn-
ing techniques (Hyvérinen, 2007; Sohl-Dickstein & O1-
shausen, 2009; Movellan, 2008a; Lyu, 2009).

Pseudolikelihood (Besag, 1975) approximates the joint
probability distribution of a collection of random vari-
ables with a computationally tractable product of con-
ditional distributions, where each factor is the distri-
bution of a single random variable conditioned on the
others. This approach often leads to surprisingly good
parameter estimates, despite the extreme nature of the
approximation.

Minimum velocity learning is an approach recently
proposed by Movellan (Movellan, 2008a) that recasts
a number of the ideas behind CD, treating the min-
imization of the initial dynamics away from the data
distribution as the goal itself rather than a surrogate
for it. Rather than directly minimize the difference be-
tween the data and the model, Movellan’s proposal is
to introduce system dynamics that have the model as
their equilibrium distribution, and minimize the initial

flow of probability away from the data under those dy-
namics. If the model looks exactly like the data there
will be no flow of probability, and if model and data are
similar the flow of probability will tend to be minimal.
Movellan applies this intuition to the specific case of
distributions over continuous state spaces evolving via
diffusion dynamics, and recovers the score matching
objective function.

Two additional recent techniques deserve mention.
Minimum KL contraction (Lyu, 2011) involves apply-
ing a contraction mapping to both data and model
distributions, and minimizing the amount by which
this contraction mapping shrinks the KL divergence
between data and model distributions. Like minimum
probability flow, it appears to be a generalization of a
number of existing parameter estimation techniques
based on “local” information about the model dis-
tribution. Noise contrastive estimation (Gutmann &
Hyvérinen, 2010) estimates model parameters and the
partition function by training a classifier to distinguish
between the data distribution and a noise distribution
carefully chosen to resemble the data distribution.

Here we propose a consistent parameter estimation
framework called minimum probability flow learning
(MPF), applicable to any parametric model without
latent variables. Minimum velocity learning, SM and
certain forms of CD are all special cases of MPF, which
is in many situations more powerful than any of these
other algorithms. We demonstrate that learning un-
der this framework is effective and fast in a number of
cases: Ising models (Brush, 1967; Ackley et al., 1985),
deep belief networks (Hinton et al., 2006), and inde-
pendent component analysis (Bell AJ; 1995).

2. Minimum Probability Flow

Our goal is to find the parameters that cause a proba-
bilistic model to best agree with a list D of (assumed
iid) observations of the state of a system. We will do
this by introducing deterministic dynamics that guar-
antee the transformation of the data distribution into
the model distribution, and then minimizing the KL
divergence between the data distribution and the dis-
tribution that results from running those dynamics for
a short time € (see Figure 1).

2.1. Distributions

The data distribution is represented by a vector p(®,
with pl(o) the fraction of the observations D in state
1. The superscript (0) represents time ¢ = 0 under
the system dynamics (which will be described in more
detail in Section 2.2). For example, in a two variable
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Figure 2. Dynamics of minimum probability flow learn-
ing. Model dynamics represented by the probability flow
matrix I' (middle) determine how probability flows from
the empirical histogram of the sample data points (left)
to the equilibrium distribution of the model (right) after
a sufficiently long time. In this example there are only
four possible states for the system, which consists of a pair
of binary variables, and the particular model parameters
favor state 10 whereas the data falls on other states.

binary system, p(®) would have four entries represent-
ing the fraction of the data in states 00, 01, 10 and 11
(Figure 2).

Our goal is to find the parameters 6 that cause a model
distribution p(°® (#) to best match the data distribu-
tion p(®). The superscript (c0) on the model distribu-
tion indicates that this is the equilibrium distribution
reached after running the dynamics for infinite time.
Without loss of generality, we assume the model dis-
tribution is of the form

exp (—FEi (0))

(00) —
o 0= T (1)

3

where E (0) is referred to as the energy function, and
the normalizing factor Z () is the partition function,

2(0) = exp(~E: (6)) @

(this can be thought of as a Boltzmann distribution of
a physical system with kgT set to 1).

2.2. Dynamics

Most Monte-Carlo algorithms rely on two core con-
cepts from statistical physics, the first being conserva-
tion of probability as enforced by the master equation
for the time evolution of a distribution p® (Pathria,
1972):

i = ryO) =Y TaO)p”.  3)

J#i J#i

where pgt) is the time derivative of pgt). Transition

rates I';; (), for i # j, give the rate at which probabil-
ity flows from a state j into a state ¢. The first term
of Equation (3) captures the flow of probability out of
other states j into the state ¢, and the second captures
flow out of ¢ into other states j. The dependence on 6
results from the requirement that the chosen dynam-
ics cause p® to flow to the equilibrium distribution
p(>) (). For readability, explicit dependence on 6 will
be dropped except where necessary. If we choose to set

the diagonal elements of T" to obey I';; = — Z#i Ljs,
then we can write the dynamics as
p!) =Tp® 4)

(see Figure 2). The unique solution for p® is given
by!

p) = exp (Tt) p©, (5)

where exp (T't) is a matrix exponential.

2.3. Detailed Balance

The second core concept is detailed balance,
Ty p™ (0) = Ty 2™ (9), (6)

which states that at equilibrium the probability flow
from state ¢ into state j equals the probability flow
from j into <. When satisfied, detailed balance guar-
antees that the distribution p(>) (6) is a fixed point of
the dynamics. Sampling in most Monte Carlo meth-
ods is performed by choosing I' consistent with Equa-
tion 6 (and the added requirement of ergodicity), then
stochastically running the dynamics of Equation 3.
Note that there is no need to restrict the dynamics de-
fined by I" to those of any real physical process, such
as diffusion.

Equation 6 can be written in terms of the model’s en-
ergy function E () by substituting in Equation 1 for

p> (6):
Ljiexp (—E; (0)) = I'yjexp (—E; (0)) - (7)

T is underconstrained by the above equation. Intro-
ducing the additional constraint that I' be invariant
to the addition of a constant to the energy function
(as the model distribution p(® (6) is), we choose the
following form for the non-diagonal entries in T

Ty = gy exp | = (E; (0) (i47). ()

5 — E; (0))

! The form chosen for T' in Equation (4), coupled with

the satisfaction of detailed balance and ergodicity intro-
duced in section 2.3, guarantees that there is a unique
eigenvector p(>) of T' with eigenvalue zero, and that all
other eigenvalues of I' have negative real parts.
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unconnected states

where the connectivity function
connected states (i #J)

0
gij = 9ji = 1
(9)

determines which states are allowed to directly ex-
change probability with each other?. gi; can be set
such that T is extremely sparse (see Section 2.5). The-
oretically, to guarantee convergence to the model dis-
tribution, the non-zero elements of I' must be chosen
such that, given sufficient time, probability can flow
between any pair of states (ergodicity).

2.4. Objective Function

Maximum likelihood parameter estimation involves
maximizing the likelihood of some observations D un-
der a model, or equivalently minimizing the KL diver-
gence between the data distribution p(®’ and model
distribution p(*),

Onr, = argénin Dkr (p(0)||p(°°) (9)) (10)

Rather than running the dynamics for infinite time, we
propose to minimize the KL divergence after running
the dynamics for an infinitesimal time e,

[/ —— argmin K (6) (11)
0
K(©0) = Dis (POlP@ ). (12)

For small €, D, (p(®||p'® (6)) can be approximated
by a first order Taylor expansion,

K (0)~ D (P@Ip" 0)) |

oD @ |Ip® (g
e KL(path ())

. (18
t=0 (13)
Further algebra (see Appendix A) reduces K (6) to a
measure of the flow of probability, at time ¢ = 0 under
the dynamics, out of data states j € D into non-data
states i ¢ D,

K (6) = @ Y 3Ty (14)

i¢D jED

= ﬁ Z Zgij exp [; (E; (6) — E; (9))
jED igD
(15)

2The non-zero T’ may also be sampled from a proposal
distribution rather than set via a deterministic scheme, in
which case g;; takes on the role of proposal distribution -
see Appendix D.

with gradient

OK (6) ¢ OE, (9) OE: ()
a0 _mj;%{ 20 90 }
s 550 - 5:0)] . (0

where |D| is the number of observed data points. Note
that Equations (14) and (16) do not depend on the
partition function Z (6) or its derivatives.

K () is uniquely zero when p(® and p(>) () are
equal. This implies consistency, in that if the data
comes from the model class, in the limit of infinite
data K (f) will be minimized by exactly the right 6.
In addition, K (6) is convex for all models p(>) (6) in
the exponential family - that is, models whose energy
functions E () are linear in their parameters 6 (Macke
& Gerwinn, 2009) (see Appendix B).

2.5. Tractability

The dimensionality of the vector p(?) is typically huge,
as is that of T' (e.g., 2¢ and 27 x 29, respectively,
for a d-bit binary system). Naively, this would seem
to prohibit evaluation and minimization of the objec-
tive function. Fortunately, we need only visit those
columns of I';; corresponding to data states, j € D.
Additionally, g;; can be populated so as to connect
each state j to only a small fixed number of additional
states . The cost in both memory and time to evalu-
ate the objective function is thus O(|D]), and does not
depend on the number of system states, only on the
(much smaller) number of observed data points.

2.6. Continuous State Spaces

Although we have motivated this technique using sys-
tems with a large, but finite, number of states, it gen-
eralizes to continuous state spaces. I'j;, g;;, and pl(-t)
become continuous functions I' (x;,x;), ¢ (x;,X;), and
p® (x;). I' (x,x%;) can be populated stochastically
and extremely sparsely (see Appendix D), preserving
the O(|D|) cost. A specific scheme (similar to CD with
Hamiltonian Monte Carlo) for estimating parameters
in a continuous state space via MPF is described in
Appendix E.

2.7. Choosing the Connectivity Function g

Qualitatively, the most informative states to connect
data states to are those that are most probable under
the model. In discrete state spaces, nearest neighbor
connectivity schemes for g;; work extremely well (eg
Equation 21 below). This is because, as learning con-
verges, the states that are near data states become the
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states that are probable under the model.

In continuous state spaces, the estimated parameters
are much more sensitive to the choice of g (x;,%;). One
effective form for g (x;,x;) is described in Appendix
E, but theory supporting different choices of g (x;, x;)
remains an area of active exploration.

3. Connection to Other Learning
Techniques

3.1. Contrastive Divergence

The contrastive divergence update rule can be written
in the form

OE; (0) OE; ()
Mepx -3 3 |20 - 250 7, )
JED i¢D

where T;; is the probability of transitioning from state
j to state ¢ in a single Markov chain Monte Carlo
step (or k steps for CD-k). Equation 17 has obvi-
ous similarities to the MPF learning gradient in Equa-
tion 16. Thus, steepest gradient descent under MPF
resembles CD updates, but with the MCMC sam-
pling/rejection step T;; replaced by a weighting factor
gij exp [5 (B (0) — B; (9))].

Note that this difference in form provides MPF with
a well-defined objective function. One important con-
sequence of the existence of an objective function is
that MPF can readily utilize general purpose, off-the-
shelf optimization packages for gradient descent, which
would have to be tailored in some way to be applied
to CD. This is part of what accounts for the dramatic
difference in learning time between CD and MPF in
some cases (see Fig. 3).

3.2. Score Matching

For a continuous state space, MPF reduces to score
matching if the connectivity function g (x;,x;) is set
to connect all states within a small distance r of each
other,

Q(Xiyxj) = g(xjaxi) = , (18)

0 d(Xi,X]‘) >r
1 d(x;,x;) <r

where d(x;,x;) is the Euclidean distance between

states x; and x;. In the limit as r goes to 0 (within

an overall constant and scaling factor),

r—0
1
=y |:2VE(X) -VE(x) - V’E(x)|,
x€D

(19)

where Kgy (0) is the SM objective function (see Ap-
pendix C). Unlike SM, MPF is applicable to any para-
metric model, including discrete systems, and it does
not require evaluating a third order derivative, which
can result in unwieldy expressions.

4. Experimental Results

Matlab code implementing MPF for several cases is
available at https://github.com/Sohl-Dickstein/
Minimum-Probability-Flow-Learning.

All minimization was performed using minFunc

(Schmidt, 2005).

4.1. Ising Model

The Ising model has a long and storied history in
physics (Brush, 1967) and machine learning (Ackley
et al., 1985) and it has recently been found to be a sur-
prisingly useful model for networks of neurons in the
retina (Schneidman et al., 2006; Shlens et al., 2006).

We estimated parameters for an Ising model (some-
times referred to as a fully visible Boltzmann machine
or an Ising spin glass) of the form

P (x;J) =

7 exp [-x"JIx], (20)
where the coupling matrix J only had non-zero el-
ements corresponding to nearest-neighbor units in a
two-dimensional square lattice, and bias terms along
the diagonal. The training data D consisted of 20, 000
d-element iid binary samples x € {0,1}? generated via
Swendsen-Wang sampling (Swendsen & Wang, 1987)
from a spin glass with known coupling parameters. We
used a square 10 x 10 lattice, d = 102. The non-
diagonal nearest-neighbor elements of J were set us-
ing draws from a normal distribution with variance
02 = 10. The diagonal (bias) elements of J were set
in such a way that each column of J summed to 0, so
that the expected unit activations were 0.5. The tran-
sition matrix I' had 22 x 2¢ elements, but for learning
we populated it sparsely, setting

D states i, j differ by single bit flip
95 =977 0 otherwise

(21)

Figure 3 shows the mean square error in the estimated
J and the mean square error in the corresponding pair-
wise correlations as a function of learning time for
MPF and four competing approaches: mean field the-
ory with TAP corrections (Tanaka, 1998), CD with
both one and ten sampling steps per iteration, and
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Figure 3. A demonstration of Minimum Probability Flow
(MPF) outperforming existing techniques for parameter re-
covery in an Ising model. (a) Time evolution of the mean
square error in the coupling strengths for 5 methods for the
first 60 seconds of learning. Note that mean field theory
with second order corrections (MFT+TAP) actually in-
creases the error above random parameter assignments in
this case. (b) Mean square error in the coupling strengths
for the first 800 seconds of learning. (¢) Mean square error
in coupling strengths for the entire learning period. (d)-—
(f) Mean square error in pairwise correlations for the first
60 seconds of learning, the first 800 seconds of learning,
and the entire learning period, respectively. In every com-
parison above MPF finds a better fit, and for all cases but
MFT+TAP does so in a shorter time (see Table 1).

pseudolikelihood. Using MPF, learning took approxi-
mately 60 seconds, compared to roughly 800 seconds
for pseudolikelihood and upwards of 20,000 seconds
for 1-step and 10-step CD. Note that given sufficient
training samples, MPF would converge exactly to the
right answer, as learning in the Ising model is con-
vex (see Appendix B), and has its global minimum
at the true solution. Table 1 shows the relative per-
formance at convergence in terms of mean square er-
ror in recovered weights, mean square error in the re-
sulting model’s correlation function, and convergence
time. MPF was dramatically faster to converge than
any of the other models tested, with the exception of
MFT+TAP, which failed to find reasonable parame-
ters. MPF fit the model to the data substantially bet-
ter than any of the other models.

Table 1. Mean square error in recovered coupling strengths
(es), mean square error in pairwise correlations (€corr) and
learning time for MPF versus mean field theory with TAP
correction (MFT+TAP), 1-step and 10-step contrastive di-
vergence (CD-1 and CD-10), and pseudolikelihood (PL).

TECHNIQUE €7 €corr TIME (S)
MPF 0.0172 0.0025 ~60
MFT+TAP 7.7704 0.0983 0.1
CD-1 0.3196 0.0127 ~20000
CD-10 0.3341 0.0123 ~20000
PL 0.0582 0.0036 ~800

4.2. Deep Belief Network

As a demonstration of learning on a more complex
discrete valued model, we trained a 4 layer deep belief
network (DBN) (Hinton et al., 2006) on MNIST hand-
written digits. A DBN consists of stacked restricted
Boltzmann machines (RBMs), such that the hidden
layer of one RBM forms the visible layer of the next.
Each RBM has the form

exp [xgl dWXViS]

P (Xvis, Xnia; W) = 72(W) , (22)
. ) _exp >, log (1 + exp [WiXyis])]
p( )(Xvisvw) - k Z(W) .
(23)

Sampling-free application of MPF requires analyti-
cally marginalizing over the hidden units. RBMs were
trained in sequence, starting at the bottom layer, on
10,000 samples from the MNIST postal hand written
digits data set. As in the Ising case, the transition ma-
trix I' was populated so as to connect every state to all
states that differed by only a single bit flip (Equation
21). Training was performed by both MPF and single
step CD (note that CD turns into full ML learning as
the number of steps is increased, and that many step
CD would have produced a superior, more computa-
tionally expensive, answer).

Confabulations were generated by Gibbs sampling
from the top layer RBM, then propagating each sam-
ple back down to the pixel layer by way of the condi-
tional distribution p(oo)(xvis|xhid; WF) for each of the
intermediary RBMs, where k indexes the layer in the
stack. 1,000 sampling steps were taken between each
confabulation. As shown in Figure 4, MPF learned a
good model of handwritten digits.

4.3. Independent Component Analysis

As a demonstration of parameter estimation in con-
tinuous state space probabilistic models, we trained
the receptive fields J € RE*K of a K dimensional in-
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Figure 4. A deep belief network trained using minimum
probability flow learning (MPF). (a) A four layer deep be-
lief network was trained on the MNIST postal hand written
digits dataset by MPF and single step contrastive diver-
gence (CD). (b) Confabulations after training via MPF. A
reasonable probabilistic model for handwritten digits has
been learned. (¢) Confabulations after training via CD.
The uneven distribution of digit occurrences suggests that
CD-1 has learned a less representative model than MPF.

(b)

Figure 5. A continuous state space model fit using min-
imum probability flow learning (MPF). Learned 10 x 10
pixel independent component analysis receptive fields J
trained on natural image patches via (a) MPF and (b)
maximum likelihood learning (ML). The average log like-
lihood of the model found by MPF (—120.61 nats) was
nearly identical to that found by ML (—120.33 nats), con-
sistent with the visual similarity of the receptive fields.

dependent component analysis (ICA) (Bell AJ, 1995)
model with a Laplace prior,

o= SilTax|

() (x:J)= ——
p (X,J) 2K |J_1| ’ (24)

on 100,000 10 x 10 whitened natural image patches
from the van Hateren database (Hateren & Schaaf,
1998). Since the log likelihood and its gradient can
be calculated analytically for ICA, we solved for J
via both maximum likelihood learning and MPF, and
compared the resulting log likelihoods. Both train-
ing techniques were initialized with identical Gaussian
noise, and trained on the same data, which accounts
for the similarity of individual receptive fields found
by the two algorithms. The average log likelihood of
the model after parameter estimation via MPF was
—120.61 nats, while the average log likelihood after
estimation via maximum likelihood was —120.33 nats.
The receptive fields resulting from training under both
techniques are shown in Figure 5. MPF minimization
was performed by alternating steps of updating the
connectivity function g(x;,x;) using a Hamiltonian
dynamics based scheme, and minimizing the objective
function in Equation 15 via LBFGS for fixed g (x;,X;).
This is described in more detail in Appendix E.

5. Summary

We have presented a novel, general purpose frame-
work, called minimum probability flow learning
(MPF), for parameter estimation in probabilistic mod-
els that outperforms current techniques in both learn-
ing time and accuracy. MPF works for any paramet-
ric model without hidden state variables, including
those over both continuous and discrete state space
systems, and it avoids explicit calculation of the par-
tition function by employing deterministic dynamics
in place of the slow sampling required by many ex-
isting approaches. Because MPF provides a simple
and well-defined objective function, it can be mini-
mized quickly using existing higher order gradient de-
scent techniques. Furthermore, the objective function
is convex for models in the exponential family, ensur-
ing that the global minimum can be found with gra-
dient descent in these cases. MPF was inspired by
the minimum velocity approach developed by Movel-
lan, and it reduces to that technique as well as to score
matching and some forms of contrastive divergence un-
der suitable choices for the dynamics and state space.
We hope that this new approach to parameter estima-
tion will enable probabilistic modeling for previously
intractable problems.
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