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Abstract

We present a variational Bayesian inference al-
gorithm for the stick-breaking construction of
the beta process. We derive an alternate repre-
sentation of the beta process that is amenable
to variational inference, and present a bound
relating the truncated beta process to its infi-
nite counterpart. We assess performance on
two matrix factorization problems, using a
non-negative factorization model and a linear-
Gaussian model.

1. Introduction

The beta process (Hjort, 1990) has recently found use
in machine learning as a Bayesian nonparametric prior
for sparse latent feature models (Ghahramani et al.,
2007), for example in latent topic modeling (Williamson
et al., 2010) and image reconstruction (Zhou et al.,
2009). The beta process is closely related to the Indian
buffet process (IBP) (Griffiths & Ghahramani, 2006),
which can be linked to the beta process after a slight
parameter modification (Thibaux & Jordan, 2007). Teh
et al. (2007) presented a fully Bayesian representation
of the IBP, for which Doshi-Velez et al. (2009) derived a
variational inference algorithm. This representation is
of the original one-parameter IBP, and does not extend
to the beta process presented in (Hjort, 1990).

Recently, Paisley et al. (2010) derived a stick-breaking
construction of the beta process that differs from that
in (Teh et al., 2007); we discuss this difference in Sec-
tion 4. Paisley et al. (2010) presented an inference
algorithm that relied heavily on Monte Carlo integra-
tion to avoid learning many parameters in the model.
This approximate integration gave another inference
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algorithm for marginalized beta processes.

In this paper, we present an algorithm for performing
variational Bayesian inference (Jordan et al., 1999)
for the stick-breaking construction of the beta process.
Using a simpler representation of the construction given
in (Paisley et al., 2010), this inference algorithm does
not marginalize any parameters of the model, but rather
approximates the full posterior.

We truncate the posterior of the beta process for varia-
tional inference. We present a bound on the closeness
of this truncation to its infinite counterpart that paral-
lels the bound given for truncated Dirichlet processes
(Ishwaran & James, 2001), and is similar to the bound
given in (Doshi-Velez et al., 2009) for truncated IBPs.
We assess the performance of the variational algorithm
on a non-negative matrix factorization model and a
linear-Gaussian model.

2. Constructing Beta Processes

The beta process is a Bayesian nonparametric method
for generating an infinite collection of atoms with cor-
responding weights that have degenerate beta distri-
butions. That is, let Ω be a space and B be the set
of all measurable subsets of that space. Let H0 be a
non-atomic measure on (Ω,B) with H0(Ω) = γ and γ
finite, and let α > 0. Then H is a beta process if

H(dω) ∼ Beta(αH0(dω), α(1−H0(dω))) (1)

for an infinitesimal set dω ∈ B. This definition differs
slightly from (Hjort, 1990) in that γ <∞, α is constant
and the space can be more general than R+.

We can write H in the form H =
∑∞
k=1 πkδωk

, where
πk tends to decrease as k increases (Ghahramani et al.,
2007; Paisley et al., 2010; Teh et al., 2007). H parame-
terizes a Bernoulli process, denoted Xn ∼ BeP(H); see
(Thibaux & Jordan, 2007) for more details.
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Figure 1. An illustration of the stick-breaking construction
of the beta process. Each stick corresponds to an atom
drawn i.i.d. from a base H0. The length of each blue
horizontal bar is a specific atom’s weight. In round i, this
weight equals the ith break from a Beta(1, α) stick-breaking
process. The value of Ci denotes the number of atoms
contributed in round i. A beta process is H =

∑
ij πijδω̂ij .

2.1. A Stick-Breaking Construction of the
Beta Process

Paisley et al. (2010) presented a method for construct-
ing H in which each weight and atom is indexed by two
values, (πij , ω̂ij). The intuition behind this construc-
tion is that atoms are introduced into the model in
“rounds” (indexed by i), and an atom in round i is one
of a collection of atoms in that round (indexed by j).
The number of atoms in round i is a random variable,
Ci, with a Poisson distribution. The weight given to an
atom in the ith round is the ith break from an atom-
specific Beta(1, α) stick-breaking process (Sethuraman,
1994). We illustrate this process in Figure 1.

With this intuition, Paisley et al. (2010) showed that
H is a beta process if

H =

∞∑
i=1

Ci∑
j=1

V̂
(i)
ij

i−1∏
l=1

(1− V̂ (l)
ij )δω̂ij

,

V̂
(l)
ij

iid∼ Beta(1, α),

Ci
iid∼ Poisson(γ),

ω̂ij
iid∼ 1

γ
H0, (2)

which we denote H ∼ BP(α,H0). Hats are used over
variables that will be re-indexed in the alternate rep-
resentation given in Section 2.2. Beta processes are
useful as sparse priors for matrix factorization models,
which we consider in Section 5.

2.2. A Simpler Representation

We derive a simpler representation of H that will allow
for easier approximate posterior inference with varia-
tional Bayesian methods. The first step is to re-index
H in (2) into a single summation. We define a new
latent indicator dk which marks the round in which
the kth atom overall appears. That is,

dk = 1 +

∞∑
i=1

I

 i∑
j=1

Cj < k

 . (3)

For example, if d5 = 3, then the fifth atom in H occurs
in round three. Therefore, C1 < 5 and C1+C2 < 5, but
C1 +C2 +C3 ≥ 5, and equation (3) returns the correct
round.1 If C1 = 3, C2 = 0, C3 = 2, C4 = 1, . . . , then
we encode this in the vector d = (1, 1, 1, 3, 3, 4, . . . ),
with dk being the kth element of d. Using this latent
indicator, we rewrite H in (2) as

H =

∞∑
k=1

Vk,dk

dk−1∏
l=1

(1− Vk,l)δωk
, (4)

with ω and V drawn as before.

We next represent
∏
l<dk

(1−Vk,l) using a single random
variable. Let Tk := −

∑
l<dk

ln(1 − Vk,l). Since each

individual − ln(1− Vk,l)
iid∼ Exponential(α), it follows

that Tk ∼ Gamma(dk − 1, α). Therefore, the random

variable exp{−Tk}
d
=
∏
l<dk

(1− Vk,l).

Finally, we relax the strict ordering of d; we no longer
require that dk ≤ dk+1, but only that the total number
of any given integer appearing in d has a Poisson(γ)
distribution. This gives the following representation of
the beta process,

H =

∞∑
k=1

Vke−Tkδωk
,

Vk
iid∼ Beta(1, α),

Tk ∼ Gamma(dk − 1, α),
∞∑
k=1

1dk(r)
iid∼ Poisson(γ), r ∈ N+,

ωk
iid∼ 1

γ
H0. (5)

Note that each dk does not have a distribution, but
instead the cardinality of {k : dk = r} is drawn. Also,
although we indicate in (5) that Tk is drawn when
dk = 1 (with Tk = 0 with probability one), in the next
section we parameterize the gamma prior such that
this distribution only applies when dk > 1.

1We use the notation I(a > b) to indicate a > b, and the
more compact 1a(b) to indicate a = b.
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3. Variational Inference for the SB-BP

We derive a mean-field variational inference algorithm
(Jordan et al., 1999) for approximate posterior infer-
ence of H as represented in Section 2.2. Variational
inference methods approximate the true, full posterior
of a set of latent variables with a simpler, factorized
distribution Q(·) =

∏
q(·); the form of Q is defined in

advance. Each individual q distribution is defined on a
single (or subset) of parameters and is given a specific
functional form with variational parameters. In varia-
tional inference, we fit these parameters to minimize
the KL divergence between Q and the full posterior.

3.1. Joint Likelihood of the SB-BP Model

Let D represent the data, Θ be the set of all latent
variables in the model and Υ all the hyperparameters.
Let θk = {Vk, Tk, dk, z1:N,k} be the variables for each
atom, ΘH = {θk} and Θ−H be all other model-specific
variables. We include gamma priors on α and γ

α ∼ Gamma(a1, a2), γ ∼ Gamma(b1, b2). (6)

The joint likelihood of the model is p(D,Θ|Υ) =
p(D,Θ−H |ΘH ,Υ)p(ΘH |Υ). We focus on the hidden
variables for the beta-Bernoulli process prior,

p(ΘH |Υ) = p(α)p(γ)p(d|γ) × (7)

∞∏
k=1

p(Vk|α)p(Tk|dk, α)
∏N
n=1 p(znk|Vk, Tk, dk).

The data and model-specific variables are contained in
p(D,Θ−H |ΘH ,Υ), which is left undefined. Later, we
will consider matrix factorization problems, in which
case these are the relevant terms. We expand

p(znk|Vk, Tk, dk) = p(znk|Vk)1dk
(1)p(znk|Vk, Tk)I(dk>1)

to account for the round in which an atom appears.
This representation activates Tk when it becomes part
of the model, i.e. when dk > 1. We also focus on two
terms in (7):

p(Tk|dk, α) =
αvk(1)∏

r≥2

Γ(r − 1)1dk
(r)
T
vk(2)
k e−αTkI(dk>1),

where vk(s) := Σr≥2(r − s)1dk(r), and

p(d|γ) =

∞∏
r=1

γ
∑

k 1dk
(r)

{
∑
k 1dk(r)}!

e
−γI

(
∞∑

r′=r

∞∑
k=1

1dk
(r′)>0

)
.

We use several indicator functions in these probability
distributions to obtain the proper form of the joint

likelihood. In p(Tk|dk, α), indicators are used to select
the parameters for the gamma prior distribution on Tk,
or remove this term if dk = 1. The distribution p(d|γ)
is a product of Poisson distributions with Cr replaced
by
∑∞
k=1 1dk(r). The term I(

∑∞
r′=r

∑∞
k=1 1dk(r′) > 0)

is introduced in the exponential for inference purposes,
which we discuss in detail in Section 3.3.3. Under the
infinite beta process prior, this indicator is equal to one
with probability one, and therefore does not change
the form of the Poisson distribution.

3.2. Variational Posterior and Lower Bound

Since the model evidence p(D|Υ) is intractable, the
posterior p(Θ|D,Υ) cannot be found by normalizing
the joint likelihood. We therefore approximate the
true posterior with a factorized variational distribution.
We use two truncations for inference; we truncate the
number of factors at K, and the number of rounds at
R. The variational distribution is

Q = q(α)q(γ)

K∏
k=1

q(dk)q(Vk)q(Tk)
∏N
n=1 q(znk), (8)

and we select q distributions as follows,

q(dk) = Multinomial(dk|ϕk),

q(znk) = Bernoulli(znk|φnk),

q(Vk) = Beta(Vk|a′k, b′k),

q(Tk) = Gamma(Tk|u′k, v′k),

q(α) = Gamma(α|κ1, κ2),

q(γ) = Gamma(γ|τ1, τ2). (9)

Let Ψ be the set of variational parameters. We expand
the lower bound L(D,Ψ) = EQ[ln p(D,Θ|Υ)]−EQ[lnQ]
for the SB-BP prior terms below,

L(D,Ψ) = EQ [ln p(D,Θ−H |ΘH ,Υ)] . . .

+
∑
n,k

ϕk(1)Eq[ln p(znk|Vk)] +

K∑
k=1

Eq[ln p(Tk|α, dk)]

+
∑
n,k

ϕk(r > 1)Eq[ln p(znk|Vk, Tk)] +

K∑
k=1

Eq[ln p(Vk|α)]

+

R∑
r=1

Eq[ln p(Σk1dk (r)|γ)] + Eq[ln p(α)] + Eq[ln p(γ)]

− EQ[lnQ−T ]−
K∑

k=1

ϕk(r > 1)Eq(Tk)[ln q(Tk)], (10)

where ϕk(r > 1) :=
∑
r>1 ϕk(r). We multiply the

entropy of Tk by the variational probability that atom
ωk is not in the first round. This keeps the entropy of
Tk from blowing up when ϕk(1) → 1, since it is the
only term that remains involving Tk in this case.
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This variational objective function requires two ap-
proximations to achieve an analytical form, which we
discuss in the next section. We optimize the variational
objective using a coordinate ascent algorithm, where
each parameter is updated to approximately maximize
L(D,Ψ) conditioned on the current values of all other
parameters. For the variational SB-BP model, varia-
tional parameters for q(dk), q(znk), q(α) and q(γ) are
updated analytically, while those for q(Vk) and q(Tk)
require gradient methods. We give the variational in-
ference algorithm in the appendix.

3.3. A Discussion on Variational Inference for
the SB-BP Model

We discuss three terms in the expansion of (10). Two
terms require approximations before the variational
objective can be put into a tractable form, and the
third term relates to the modified Poisson prior on the
number of atoms in round r.

3.3.1. The Term EQ[ln(1− Vke−Tk)]

The first term we discuss is EQ[ln(1− Vke−Tk)], which
appears in Eq[ln p(znk|Vk, Tk)]. As written, this term is
intractable. We use a Taylor expansion of the natural
logarithm about the point 1,

ln(1− Vke−Tk) = −
∞∑
m=1

1

m

(
Vke−Tk

)m
, (11)

which converges since |Vk exp{−Tk}| < 1. The expec-
tation of this sum becomes the sum of the expectations
by monotone convergence, after which each expecta-
tion can be calculated analytically. We truncate the
summation at a large number, M . For example, we set
M = 1000 in our experiments. Since Vke−Tk ∈ (0, 1),
the error in the approximation decreases rapidly as M
increases for values of Vke−Tk that are not very close
to one, and likewise for their expectations.

3.3.2. The Term EQ[ln({
∑
k 1dk(r)}!)]

The second term of interest is EQ[ln({
∑
k 1dk(r)}!)],

which is the expectation of the log of the denominator
of the Poisson distribution with respect to Q. We write
this term in the following, more tractable form

ln

(∑
k

1dk(r)

)
! =

∑
k 1dk

(r)∑
`=1

ln ` (12)

=

∞∑
`=1

I

(∑
k

1dk(r) ≥ `

)
ln `.

Once ` >
∑
k 1dk(r), the natural logarithm is multi-

plied by zero for the remainder of the summation. The

expectation of this outer indicator is the probability of
the event

∑
k 1dk(r) ≥ ` with respect to the variational

distributions ϕ1:K . Since this term is combinatorially
intractable, we use Markov’s inequality to lower bound
the negative of this value (and therefore L),

PQ

( ∞∑
k=1

1dk(r) ≥ `

)
≤ 1

`2
EQ

( ∞∑
k=1

1dk(r)

)2
 ,
(13)

and we replace −
∑
r,` PQ(

∑
k 1dk(r) ≥ `) ln ` with

−
R∑
r=1


K∑
k=1

ϕk(r) +
∑
i6=j

ϕi(r)ϕj(r)


K∑
`=1

ln `

`2
(14)

in the truncated model. Though the value of∑K
`=1 `

−2 ln ` can be calculated for any K, we use
the value of the original infinite summation, which
to four significant digits is ξ :=

∑∞
`=1 `

−2 ln ` ≈ 0.9375.
Markov’s inequality holds for all powers, p, but we
select p = 2 because ξ = ∞ for p = 1, and for the
computational ease relative to p > 2.

The impact of this approximation is to change the
penalty for increasing the number of atoms in a round.
Previously, the factorial term in the denominator of
the Poisson distribution penalized additional atoms
with a penalty that grows in the number of atoms,
which is easily seen in (12). The derivative of (14) with
respect to ϕk(r) is −ξ − ξ

∑
i 6=k ϕi(r). We see that

our approximation replaces the increasing per-atom
penalty of the Poisson distribution with a constant
penalty ξ, and therefore the overall penalty is linear in
the number of atoms in a round. This overall penalty is
larger than the original penalty for the first four atoms,
and smaller afterwards.

3.3.3. The Term PQ(
∑R
r′=r

∑K
k=1 1dk(r′) > 0)

Finally, we discuss the term PQ(
∑
r′≥r,k 1dk(r′) > 0),

which is the expectation of the indicator in the exponent
of the Poisson distribution. This is the probability with
respect to ϕ1:K that at least one of theK indexed atoms
occurs in round r or higher. Under the infinite beta
process prior, there will always be an atom that occurs
in round r or higher, and so this will always equal one.
However, this is not the case for the truncated model,
where there are only K atoms.

The probability that
∑
r′≥r,k 1dk(r′) > 0 given ϕ1:K is

PQ

(
R∑

r′=r

K∑
k=1

1dk(r′) > 0

)
= 1−

K∏
k=1

r−1∑
r′=1

ϕk(r′). (15)

We include this term because is keeps the parameter γ
relevant to the truncated model. When not included
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in the exponential of the Poisson distribution during
inference, the truncated model reads all rounds that
do not contain atoms as having zero atoms, which is
a valid draw from the underlying Poisson distribution.
In this case, the value of Eq(γ)[γ] always equals K/R,
since the model considers there to be a total of K atoms
in R rounds. Therefore, removing this term forces γ
to be fixed and depend entirely on K and R, which
makes the selection of these values critically important.
Instead, we wish to say that, if there is an r′ for which
there are no atoms in round r′ ≤ r ≤ R, then those
rounds do not exist. This term achieves this by down-
weighting these rounds. The number of used rounds
can still increase, but does so gradually.

4. Truncated Beta Processes

By truncating Q for variational inference at K, we
are assuming that at most K atoms appear in the
posterior of H. To give a sense of how reasonable this
assumption is, we give a truncation bound for the beta
process. This bound is a measure of closeness between
the truncated and infinite beta processes, and provides
information when selecting K and R.

In the spirit of (Doshi-Velez et al., 2009; Ishwaran &
James, 2001), we derive a bound on the L1 distance
between the marginal distributions of data that are
drawn from a beta process prior, m∞(X), and a BP
truncated after the Rth round, mR(X). When trun-
cating K, this bound is valid when K contains the first
R rounds, or K ≥

∑R
r=1 Cr. From Doshi-Velez et al.

(2009), we have

1

4

∫
|mR(X)−m∞(X)| dX (16)

≤ P
(
∃k > ΣRr=1Cr and 1 ≤ n ≤ N : znk = 1

)
.

The value of P is the probability that, in N binary
vectors sampled from BeP(H) with H ∼ BP(α,H0),

there exists a k >
∑R
r=1 Cr and n for which znk = 1.

Intuitively this means that, from the perspective of the
data, a truncation of H at round R will be noticed.

Theorem 1 Let N samples be drawn from BeP(H),
where H ∼ BP(α,H0) is constructed according to (2)
and truncated after the first K atoms. Then the bound

1

4

∫
|mR(X)−m∞(X)| dX ≤ 1−exp

{
−2γN

(
α

1 + α

)R
}

is valid with probability 1− γK

Γ(k)

∫ R
0
uK−1e−γu du.

We sketch a proof of Theorem 1 in the appendix. The
integral is of a Gamma(K, γ) distribution, and is the

probability that the truncation K ≥
∑R
r=1 Cr.

5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

R

B
ou

nd

 

 
Bound
Truth

10 20 30 40

20

40

60

80

100

120

140

R

K

 

 

p = 0.99
p = 0.9
p = 0.75

Figure 2. Let N = 5000, γ = 3 and α = 2. (left) The bound
as a function of R. (right) R vs. K for different probability
thresholds, p, on the bound being valid.2

Figure 2 contains an example of this bound, where we
use 5000 samples of H for each value of R to approxi-
mate the ground truth.

Though Theorem 1 can help in selecting K and R,
we note that the variational inference algorithm here
effectively learns R. We recall the discussion in Section
3.3.3, where a penalty is given to rounds that are
far away from those currently occupied by the atoms.
Even when R is set to a large number, this penalty
adds resistance to exploring higher indices, which must
be overcome by the data.

A key difference between the truncated BP and the
truncated IBP presented in (Doshi-Velez et al., 2009)
is that the prior in Section 2.2 does not require a strict
ordering of the atom weights. Recall that for the stick-
breaking construction of the IBP, the weight given to

the kth atom is
∏k
i=1 Vi, where Vi

iid∼ Beta(α, 1) (Teh
et al., 2007). In contrast, in Section 2.2 the strict
ordering of d1, d2, . . . was relaxed, which allows atoms
with high and low probability to take any index value
without being penalized by the prior. Also, through
the variational posteriors ϕ1:K , we don’t enforce a hard
assignment, but learn distributions on these values.

5. Experiments

We evaluate performance of the variational SB-BP prior
in the matrix factorization setting. We consider a V ×N
data matrix D ∼ f(Λ), where f(·) is some distribution,
Λ is a latent matrix and the above notation indicates
that dvn ∼ f(λvn). We model Λ = Φ(W ◦ Z), where ◦
indicates element-wise multiplication and Z has a beta-
Bernoulli process prior. Therefore, though the initial
rank of the factorization may be large, the posterior
will place a high probability on a low rank representa-
tion. We consider two cases: (i) non-negative matrix
factorization, in which Φ and W contain iid gamma

2As another example, let N = 1000, γ = 2 and α = 3.
If K = 180 and R = 75, then with probability greater than
0.99 the upper bound is ≈ 1.7× 10−6.
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Table 1. The average number of factors used per-document
and corpus-wide for The New York Times and Science.
These results are for β = 0.5.

New York Times Science
per-doc corpus per-doc corpus

SB-BP 12.9 68.4 14.7 125.4
VB-IBP 15.4 94.8 20.0 164

random variables and f(·) is a Poisson distribution;
and (ii) a linear-Gaussian model, in which Φ and W
contain iid Gaussian random variables and f(·) is a
normal distribution. We set K = 200 and R = 50 in
both models. We place vague gamma priors on α and
γ. We terminate each algorithm when the fractional
change in the lower bound falls below 10−3.

5.1. A Non-negative Factorization Model

We first evaluate performance on a non-negative ma-
trix factorization problem. We consider a word count
matrix D, where dvn is the number of times word v
appears in document n. We perform experiments on
The New York Times and Science corpora. In each
case, we partition the data into five training/testing
sets, with 5000 training documents and 3000 testing
documents.

For testing, we randomly partition the words in each
document into two groups, dT1

and dT2
. We then learn

document-specific parameters for the first half of each
test document, dT1

∼ f(λT1
), where λT1

= Φ(wT1
◦zT1

).
The q distributions from training are used for Φ and as
the prior for zT1 . We measure performance using held-
out perplexity on the second half of each document.
We normalize λT1

to calculate the word distribution
for each test document.2

We compare the SB-BP prior with three other models:
(i) the VB-IBP prior (Doshi-Velez et al., 2009); (ii)
the model with the beta-Bernoulli process removed,
called VB-NMF; and (iii) the NMF algorithm of Lee
& Seung (2001). The first two models use variational
inference. The last model is the maximum-likelihood
version of (ii). Models (ii) and (iii) require a pre-set
factorization rank; we perform experiments on ranks
K = 10, 25, 50, 75, 100. The Bayesian models have
Gamma(β, βV ) priors on the values in Φ, where V is
vocabulary size. We place Gamma(.25, .25) priors on
the elements of W . The maximum-likelihood NMF has
no parameters (other than the factorization rank). For
the SB-BP, we take five steps for each gradient update.

2We recall that, when generating data (e.g. word counts)
from a collection of Poisson distributions, the distribution
on the specific words conditioned on the total number of
words is the normalized Poisson parameters.

Figure 3. Perplexity results for The New York Times and
Science. The best factorization rank for The New York
Times was VB-NMF: K = 50, NMF: K = 25 and for
Science was VB-NMF: K = 75, NMF: K = 75.

We show results in Figure 3. For algorithms (ii) and
(iii) we show results for the best factorization ranks.
Among the variational algorithms, the SB-BP prior
performs the best for almost all values of β. The
decrease in performance of the VB-IBP is likely due
to the strict ordering of the probabilities in the prior.
Because gradient methods are used, SB-BP is slower
than VB-IBP, taking 30-45 seconds per-iteration to
update the variational posterior of the beta process.
Figure 4 contains the variational posteriors of the round
indicators for one run of The New York Times and
Science. Though we truncate the rounds at 50, the
variational distributions ϕk do not explore beyond the
35th round—a result of the penalty discussed in Section
3.3.3. In Table 1 we show latent factor statistics for
both corpora. We observe similar results on data from
Huffington Post and Wikipedia (not plotted for space).

5.2. A Linear-Gaussian Model

We also studied the performance of the SB-BP using
the linear-Gaussian model. We consider the HGDP-
CEPH human genome diversity cell line panel (Conrad
et al., 2006), which is a collection of DNA samples from
subjects around the world. After whitening, the data
matrix is D ∈ R377×1056. We place N(0, 1) priors on W
and N(0, 106) (i.e. vague) priors on Φ, and we set the
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Figure 4. Variational distributions ϕk(r) on the latent
round indicators for (left) The New York Times and (right)
Science. Not all rounds are used, and atoms of varying
probability can take any index value.

noise variance equal to one. For the linear-Gaussian
model, we use indicator variational distributions on
znk, which we discuss in the appendix.

We ran the model using the SB-BP and VB-IBP priors,
each with the same initialization. We sorted the initial-
ization so that highly probable factors have high index
values. We found that SB-BP used fewer total ones
(i.e. Σnk znk) than VB-IBP, and had slightly worse
reconstruction error in that it learned a larger noise
variance. However, the sharing of factors by people
of similar geographic regions was less ambiguous for
the SB-BP, as shown in Figure 5, indicating that a
clearer underlying gene structure may have been found.
The number of factors having at least a single one was
approximately 130 for each model, so the additional
ones for VB-IBP occurred within a set of factors the
same size as used by the SB-BP.

6. Conclusion

We have derived a variational inference algorithm for
stick-breaking beta process priors using a simpler rep-
resentation of the construction given in (Paisley et al.,
2010). We derived a bound relating truncated and non-
truncated BPs to aid in selecting truncation levels. We
demonstrated competitive performance on two matrix
factorization paradigms.
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Appendix

A1. The Variational Inference Algorithm

We present the coordinate ascent algorithm for finding
a local maximum of the lower bound of (10). We first
define each 1

mE[(Vke−Tk)m], which are the expectations
of the terms in (11), using the notation

∆k(m) :=
1

m

Γ(a′k + b′k)

Γ(a′k + b′k +m)

Γ(a′k +m)

Γ(a′k)

(
v′k

v′k +m

)u′
k

.

The algorithm below also uses the derivatives of ∆k(m)
with respect to a′k, b

′
k, u
′
k and v′k. We also let ∆k(·) :=∑M

m=1 ∆k(m), and n1k :=
∑N
n=1 φnk(1), n0k := N −

n1k and ξ := 0.9375. All expectations involving a
specific variable are given in the variational update for
that variable. Coordinate ascent variational inference
cycles through the following updates.

Coordinate update for q(znk). The variational up-
date for φnk is model-specific. We focus on the BP
prior. Let the term corresponding to the likelihood be
fi = exp{∂E[ln p(D,ΘH |Z,Θ−H)]/∂φnk(i)}. Then

φnk(1) ∝ f1 exp {E[lnVk]− ϕk(r > 1)E[Tk]} , (17)

φnk(0) ∝ f0 exp {ϕk(1)E[ln(1− Vk)]− ϕk(r > 1)∆k(·)} .

For an indicator variational distribution, i.e. when
q(znk) = 1znk

(1), we can use the above equations and
set 1znk

(1) = I(φnk(1) > φnk(0)).

Coordinate update for q(dk). The update for each
ϕk is given below for r = 1, . . . , R. For r ≥ 2, let

ρ(r) := (r − 1)E[lnα]− ln Γ(r − 1) + (r − 2)E[lnTk],

then

ϕk(1) ∝ exp

n0kE[ln(1− Vk)]− ξ
∑
i 6=k

ϕi(1)

 (18)

ϕk(r) ∝ exp {−(n1k + E[α])E[Tk]− n0k∆k(·) + H[q(Tk)]

+ρ(r)− ξ
∑
i 6=k

ϕi(r)− E[γ]

r∑
j=2

∏
k′ 6=k

j−1∑
r′=1

ϕk′(r′)


We note that the last term in ϕk(r) is the penalty for
extending into rounds that are unused.

Coordinate update for q(Vk). We use gradient as-
cent to jointly update (a′k, b

′
k). Let λ1 := n1k + 1− a′k,

λ2 := n0kϕk(1) + α− b′k and λ3 := n0kϕk(r > 1). The
derivatives are

∂L
∂a′k

= λ1E[lnVk]− λ2ψ
′(a′k + b′k)− λ3

∂∆k(·)
∂a′k

(19)

∂L
∂b′k

= −λ1ψ
′(a′k + b′k) + λ2E[ln(1− Vk)]− λ3

∂∆k(·)
∂b′k

with E[lnVk] = ψ(a′k)−ψ(a′k + b′k) and E[ln(1−Vk)] =
ψ(b′k)− ψ(a′k + b′k).

Coordinate update for q(Tk). We use gradient as-
cent to jointly update (u′k, v

′
k). The derivatives are

∂L
∂u′k

= ψ′(u′k)
∑
r≥2

(r − 2)ϕk(r) + ϕk(r > 1) × (20)

(
1− n1k + E[α]

v′k
− n0k

∂∆k(·)
∂u′k

+ (1− u′k)ψ′(u′k)

)
∂L
∂v′k

= − 1

v′k

∑
r≥2

(r − 2)ϕk(r) + ϕk(r > 1) × (21)

(
u′k
v′2k

(n1k + E[α])− n0k
∂∆k(·)
∂v′k

− 1

v′k

)
with E[Tk] = u′k/v

′
k and E[lnTk] = ψ(u′k)− ln v′k.

Coordinate update for q(α). The variational pa-
rameter updates for q(α) are analytical and are

κ1 = K +

K∑
k=1

∑
r≥2

(r − 1)ϕk(r) + a1 (22)

κ2 = −
K∑

k=1

E[ln(1− Vk)] +

K∑
k=1

E[Tk]ϕk(r > 1) + a2

with E[α] = κ1/κ2 and E[lnα] = ψ(κ1)− lnκ2.

Coordinate update for q(γ). The variational pa-
rameter updates for q(γ) are analytical and are

τ1 = K + b1 (23)

τ2 =

R∑
r=1

{
1−

K∏
k=1

r−1∑
r′=1

ϕk(r′)

}
+ b2

with E[γ] = τ1/τ2 and E[ln γ] = ψ(τ1)− ln τ2.

A2. Proof of Theorem 1 (sketch)

Let πrj := V
(r)
rj

∏
l<r(1 − V

(l)
rj ). An upper bound on

(16) can be derived by bounding P(·) as follows:

P(·) = 1− E

E
( ∞∏

r=R+1

Cr∏
j=1

(1− πrj)

)N

| Cr

 (24)

≤ 1− exp

{
N

∞∑
r=R+1

E

[
Cr∑
j=1

E [ln(1− πrj)]

]}
(25)

≤ 1− exp

{
− γN

1 + α

∞∑
m=1

1

m

∞∑
r=R

(
α

m+ α

)r
}

(26)

We use Jensen’s inequality to go from (24) to (25).
In (26), we use a Taylor expansion as in (11) and a
bound on E[V m]. To go from (26) to Theorem 1, we
refer to Appendix F in the technical report associated
with (Doshi-Velez et al., 2009). The corresponding
probability follows from constructing a Poisson process
on R+ with rate γ and stopping time R.


