
Robust Matrix Completion and Corrupted Columns

Yudong Chen YDCHEN@UTEXAS.EDU

Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712 USA

Huan Xu MPEXUH@NUS.EDU.SG

Department of Mechanical Engineering, National University of Singapore, Singapore 117575

Constantine Caramanis CARAMANIS@MAIL.UTEXAS.EDU

the Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712 USA

Sujay Sanghavi SANGHAVI@MAIL.UTEXAS.EDU

Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712 USA

Abstract
This paper considers the problem of matrix com-
pletion, when some number of the columns are
arbitrarily corrupted. It is well-known that stan-
dard algorithms for matrix completion can return
arbitrarily poor results, if even a single column is
corrupted. What can be done if a large number,
or even a constant fraction of columns are cor-
rupted? In this paper, we study this very problem,
and develop an robust and efficient algorithm for
its solution. One direct application comes from
robust collaborative filtering. Here, some num-
ber of users are so-called manipulators, and try
to skew the predictions of the algorithm. Sig-
nificantly, our results hold without any assump-
tions on the observed entries of the manipulated
columns.

1. Introduction
Recent work in low-rank matrix completion (Candès &
Recht, 2009; Gross, 2009; Keshavan et al., 2009; Negah-
ban & Wainwright, 2010) has demonstrated the following
remarkable fact: Given a p × n matrix of rank r satisfy-
ing some technical assumptions (namely, incoherence – we
discuss this in detail below), if its entries are sampled uni-
formly at random, then with high probability, the solution
to a convex and in particular tractable optimization prob-
lem yields exact reconstruction of the matrix, when only
O((n+ p)r log2(n+ p)) entries are sampled.

Appearing in Proceedings of the 28 th International Conference
on Machine Learning, Bellevue, WA, USA, 2011. Copyright 2011
by the author(s)/owner(s).

Yet as our simulations demonstrate, if even a single col-
umn of this matrix is corrupted, the output of these algo-
rithms can be arbitrarily skewed from the true matrix. Par-
tial observation makes a priori identification of corrupted
columns vs good columns, a challenging task.

We approaches this task by regarding the corruption pro-
cess as the addition of a column-sparse matrix to a low rank
matrix. The mathematical problem this paper addresses is
as follows. Suppose we are given a partially observed ma-
trix M , and we know that the full matrix can be decom-
posed as

M = L0 + C0,

where L0 is low-rank and C0 has only a few non-zero
columns. Here both components may have arbitrary mag-
nitude; the rank and column/row space of L0 as well as
the number and positions of non-zero columns of C0 are
unknown. Can we efficiently recover the matrix L0 on
the non-corrupted columns, and also identify the non-zero
columns of C0? And, how does the number of corrupted
columns impact the number of observations needed?

We provide an affirmative answer to the first question, and
provide finite sample performance bounds that move to-
wards answering the second. We give a convex optimiza-
tion formulation, and sufficient conditions for when this op-
timization problem yields exact recovery of L0, and identi-
fication of the corrupted columns. In particular, our results
imply the following: if we observe only a vanishing frac-
tion of entries, our convex optimization-based algorithm re-
covers L0 exactly even in the face of an increasing number
of corrupted columns. If a constant fraction of the columns
are corrupted, then our algorithm succeeds in identifying
them and recovers L0 exactly, but now requires a constant
fraction of observed entries.
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Motivating Applications

A primary motivation for our investigation is Robust Col-
laborative Filtering. In online commerce and advertise-
ment, companies collect user rankings for products and
would like to predict user preferences based these incom-
plete rankings. Most popular in the news is the so-called
Netflix problem, but such recommender systems are of in-
creasing popularity and importance in online commerce. In
many of the settings mentioned (again, most well-known in
this category is the Netflix problem) this collaborative fil-
tering problem is usually cast as a matrix completion prob-
lem, where one tries to recover a low-rank matrix L0 from
its partially observed entries. However, the quality of pre-
diction may be seriously hampered by manipulators – po-
tentially malicious users, who calibrate (possibly in a co-
ordinated way) their rankings and the entries they choose
to rank in an attempt to skew predictions (Van Roy & Yan,
2010). Under the matrix completion framework, some of
the columns of the matrix M are provided by manipula-
tors and thus are corrupted and totally unreliable; these
corrupted columns correspond to the column-sparse matrix
C0. Therefore, in order to perform collaborative filtering
with robustness to manipulation, we need to identify the
non-zero columns of C0 and at the same time recover L0,
given only a set of incomplete entries.

Another motivation is robust Principal Component Analy-
sis (PCA) with partially observed data. In the robust PCA
problem (Xu et al., 2010a;b;c) one is given a data matrix,
of which most of the columns correspond to authentic data
points and lie in a low-dimensional space – the space of
principal components, and the remaining columns are out-
liers; the goal is to negate the effect of outliers and recover
the principal components. In many situations such as med-
ical research (see e.g. (Cesa-Bianchi et al., 2010)), the data
matrix is only partially observed, and the question is if we
can still perform robust PCA in the presence of missing
data entries. Viewing the outliers as columns of C0 and the
authentic data as columns of L0, the partially observed ro-
bust PCA problem can also be cast into our framework. We
note that our setting differs significantly from the low-rank-
plus-sparse setup in (Candès et al., 2009; Chandrasekaran
et al., 2009). We further illustrate this numerically, in Sec-
tion 5. In Section 3.2, we elaborate on our connections with
prior work and the innovations of this paper.

2. Problem Setup
Suppose there is a p × n data matrix M ; among the n
columns, a fraction 1 − γ of them span a r-dimensional
subspace of Rp, and the remaining γn columns are arbi-
trarily corrupted. One is given only partial obervation of
the matrix M , and the goal is to infer the true subspace
of the non-corrupted columns and the identities of the cor-

rupted ones. Notice that neither the true subspace nor its
dimension r is known, and no restriction is imposed on the
corrupted columns except that the total number of them is
controlled – they need not follow any probablistic distribu-
tions, and they may be chosen by some adversary who aims
to skew one’s inference of the non-corrupted columns.

Under the above setup, it is clear that the data matrix M
can be decomposed as

M = L0 + C0.

Here L0 is the matrix corresponding to the non-corrupted
columns; thus rank(L0) = r and at most (1 − γ)n of
the columns of L0 are non-zero. C0 is the matrix corre-
sponding to the corrupted columns; thus at most γn of the
columns of C0 are non-zero. Only some of the entries of
M are observed. Let Ω ⊆ [p]× [n] be the set of indices of
the observed entries, and PΩ be the orthogonal projection
onto the linear subspace of matrices supported on Ω, i.e.,

PΩ(X) =

{
Xij , (i, j) ∈ Ω,

0, (i, j) /∈ Ω.

With this notation, our goal is to exactly recover the column
space of L0 and the locations of the non-zero columns of
C0, given PΩ(M).

2.1. Assumptions

In general, it is not always possible to meet our objective
of completing a low-rank matrix in the presence of cor-
rupted columns. Indeed, under some circumstances, there
are identifiability issues which make the problem ill-posed.
For example, if one row or column of L0 is completely
unobserved, there is no hope of recovering that row or col-
umn. Likewise, if L0 has only one non-zero column, it
is also impossible to distinguish L0 from C0. Finally, if
L0 has only one non-zero row, recovering L0 is infeasi-
ble unless that particular row is fully observed. To avoid
such meaningless situations, we will impose that L0 satisfy
the now standard incoherence conditions (Candès & Recht,
2009; Xu et al., 2010c) and observed entries of L0 are sam-
pled uniformly at random. We note again that we make
no assumptions on how the entries of C0 are sampled, and
moreover these entries could be adversarially chosen.

INCOHERENCE CONDITIONS

Suppose the Singular Value Decomposition (SVD) of L0

is L0 = U0Σ0V
>
0 . Let ei be the ith standard basis. We

assume that the matrix L0 satisfies the following two inco-
herence conditions, with parameter µ0:

max
i

∥∥U>0 ei∥∥2 ≤ µ0
r

p
,

max
j

∥∥V >0 ej
∥∥2 ≤ µ0

r

(1− γ)n
.
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Given a small incoherence parameter µ0, the condition as-
serts that the left singular vectors of L0 are spread out.
Without such a condition, matrix completion does not make
sense, since it would be possible for the matrix L0 to
also be row-sparse — one cannot hope to recover a row-
sparse matrix with sparse observations, even without out-
liers. Consequently, this is a standard assumption made in
the matrix completion literature (Candès & Recht, 2009;
Gross, 2009; Keshavan et al., 2009), and µ0 is likely to be
small for many reasonable models (Candès & Recht, 2009).

The second condition asserts that the right singular vectors
of L0 are incoherent, and it essentially enforces the condi-
tion that the information about the column space of L0 is
spread out among the columns. This condition is important
in the face of corrupted columns. If, for instance, a col-
umn of L0 were not in the span of all the other columns,
one could not hope to recover it or distinguish it from one
of the corrupted columns. This condition is standard in the
robust PCA literature, and most practical problems have a
very small parameter µ0.

For the corrupted columns, we make only one assumption:
they are indeed corrupted. That is, we assume only the
following. Suppose an oracle were to provide the true col-
umn space, U0, of the low-rank matrix, L0. There would
be no way to complete the unobserved entries of any of the
columns of C0, so that it lies in the column space of L0.
If this does not hold, then there is no reasonable way to
distinguish a corrupted column from an authentic column.
Moreover, such entries will not affect the recovery of the
unobserved entries in the authentic columns. In terms of
the collaborative filtering application, this is akin to saying
that we will only call a user a “manipulator” if the corre-
sponding entries indeed would manipulate the entries of the
authentic users. In fact, this is better viewed as a definition
of corruption rather than an assumption. Other than this
identifiability requirement, we make no assumptions what-
soever on the corrupted columns. The incoherence assump-
tions are imposed on the column and row spaces of L0, not
on M , as are the sampling assumptions, and thus the cor-
rupted columns are not restricted in any way by these. One
consequence of this is that it is fundamentally impossible
to recover the complete corrupted columns, but we are able
to recover their identities.

SAMPLING MODEL

Let I0 ⊂ [n] be the set of indices of the corrupted columns.
Let Ω̃ ⊆ [p] × Ic0 be the set of indices of observed entries
on the non-corrupted columns (i.e. the nonzero columns
of L0). We assume that Ω̃ is sampled uniformly random
from all size-m subsets of [p]×Ic0 (this is sometimes called
sampling without replacement); so m is the number of ob-
served entries on the non-corrupted columns. Note that no

assumption whatsoever is imposed on the observed entries
on the corrupted columns; the adversary may choose to fill
in all entries on columns in I0 or just a fraction of them,
and the locations of these observed entries may be chosen
randomly or depending on L0. On the other hand, as we
do not aim at (and there is no hope of) recovering the un-
observed entries of C0, we can assume without loss of gen-
erality that all the unobserved entries of C0 are zero, i.e.,
PΩ(C0) = C0.

2.2. Notation and Preliminaries

We provide here a brief summary of the notation used in the
paper. We will abuse notation by letting Ω̃ and Ω̃c represent
both sets of matrix entries and the linear space of matrices
supported on these entries; similarly I0 and Ic0 denote both
the set of column indices and the linear space of matrices
supported on these columns. For a linear subspace S, we let
PS denote the orthogonal projection onto S. The SVD of
L0 is U0Σ0V

>
0 . Let PU0 be the projection of each column

of a matrix onto the column space, and PV0
the projection

onto the row space, as well as the range of those projec-
tions. The subspace T0 is defined as the span of matrices
with the same column or row space as L0, and the projec-
tion is given by PT0 . The complementary operator PT ⊥0 is
defined as usual. For a vector x, xi is its ith entry. For a
matrix A, Ai is its ith column and Aij is its (i, j)th entry.
Six matrix norms are used: ‖A‖∗ is the nuclear norm (the
sum of singular values), ‖A‖ is the spectral/operator norm
(the largest singular values), ‖A‖∞ is the matrix infinity
norm (the largest absolute value of the entries), ‖A‖1,2 is
the sum of `2 norms of the columns of A, ‖A‖∞,2 is the
largest `2 norm of the columns of A, and finally ‖A‖F is
the Frobenius norm. For the non-corrupted columns: Let
n1 = n− |Ic0| = (1− γ)n be the number of non-corrupted
columns. To facilitate operations on the Ic0 portion of a
matrix, we define R to be the operator that extracts the
columns in Ic0 , and R−1 the operator that maps back to
the full-columns space, inserting all-zero columns into the
entries corresponding to I0. Letting Ṽ0 = R(V >0 )>, we
define analogs of our previous definitions, PṼ0

, PT̃0 and
PT̃ ⊥0 , where T̃0 is defined by U0 and Ṽ0.

3. Main Results and Consequences
Surprisingly, we can simultaneously recover L0, the non-
corrupted columns, and identify I0, the position of the cor-
rupted columns, based on PΩ(M), a set of incomplete en-
tries, as long as the the number of corrupted columns and
unobserved entries are controlled. Moreover, this can be
achieved efficiently by solving a tractable convex program.
Our algorithm is as follows.

We say our algorithm succeeds if we always have
PIc0 (L′) = L0, PU0

(L′) = L′, and I ′ = I0. We recall
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Algorithm 1 Manipulator Pursuit
Input PΩ(M), Ω, λ.
Solve for optimum (L∗, C∗):

minimizeL,C ‖L‖∗ + λ ‖C‖1,2 (1)
subject to PΩ(L+ C) = PΩ(M).

Set I ′ = {j : C∗ij 6= 0 for some i}, L′ = PI′c(L∗).
Output L′, I ′.

our single restriction on the corrupted columns: they are
indeed corrupted, in that they cannot be completed so as to
lie in the column space of the true matrix L0 — failing this,
asking for I0 to be recovered does not make sense, nor is it
even clear why such a column should be called “corrupted.”

3.1. Main Theorems

Our main theorem states that under some natural condi-
tions, our algorithm exactly recovers the non-corrupted
columns and the identities of the corrupted columns with
high probability. Here and in what that follows, by with
high probability, we mean with probability at least 1−cn−5

for some constant c > 0. Recall that ρ is the fraction of ob-
served entries on the non-corrupted columns and γ is the
fraction of corrupted columns.

Theorem 1. Suppose n1 ≥ p ≥ 32 and r ≤ r̄, γ ≤ γ̄,
ρ ≥ ρ. If (r̄, γ̄, ρ) satisfies

ρ ≥ η1
µ2

0r̄
2 log3(4n1)

p
(2)

and

γ̄

1− γ̄
≤ η2

ρ2(
1 + µ0r̄

ρ√p

)2

µ3
0r̄

3 log6(4n1)
, (3)

where η1 and η2 are absolute constants, then with high
probability Algorithm 1 with λ = 1

48

√
ρ

γ̄r̄µ0n log2(4n1)

strictly succeeds.

Remark. Notice that to choose λ, one does not need to
know the exact values of ρ, γ, and r, but rather bounds on
them.

We give three corollaries to illustrate the consequence of
Theorem 1.

Corollary 1. If r ≤ η1
1
µ0

, ρ ≥ η2
log(4n1)
p1/4

, γ ≤ η3
1√
p , then

Algorithm 1 with λ =
√

p1/4

n succeeds with high probabil-
ity..

Remark. Notice that the choice λ is universal and does
not depende on any unknown quantity. In the case of
p = Θ(n1), we can recover the non-corrupted columns

with a vanishing fraction of entries observed and a grow-
ing number of corrupted columns.

Corollary 2. If ρ ≥ 0.1 and r ≤ r̄ ≤ η1

√
p

µ0 log3/2(4n1)
,

then Algorithm 1 with λ = µ0r̄ log2(4n1)√
n

succeeds with high
probability if

γ ≤ η2
1

µ3
0r̄

3 log6(4n1)

Remark. With a constant fraction of entries observed, the
fraction of corrupted columns can be as large as one over
a poly-logarithm factor. If ρ = 1, we partially recovers the
result in (Xu et al., 2010c).

Corollary 3. If γ = 0, r ≤ r̄, and m satisfies

m ≥ η1µ
2
0r̄

2n log2(4n)

then w.h.p. Algorithm 1 with λ = n has a unique solution
(L0, 0).

Remark. This recovers the matrix completion result in
(Candès & Tao, 2010; Recht, 2009; Gross, 2009).

3.2. Connections to Prior Work and Innovation

In this section we briefly discuss the relationship to pre-
vious work. Matrix completion – to recover a low rank
matrix from a small number of its entries – using convex
optimization (Candès & Tao, 2010; Gross, 2009; Recht,
2009) is now standard. This paper significantly extends
this line of work and shows that if some columns are com-
pletely corrupted , even in a malicious way, one can still re-
cover the non-corrupted columns and identify the corrupted
columns.

Our main methodology is to develop and analyze a con-
vex relaxation of a natural yet intractable formulation of
decomposing the observation into a low rank matrix and
a column-sparse matrix. From a high level, this follows
a similar line as works in support recovery (Candès et al.,
2006), low-rank matrix recovery and matrix completion pa-
pers, (Recht et al., 2010; Candès & Tao, 2010; Gross, 2009;
Recht, 2009)) and matrix decomposition (Candès et al.,
2009; Chandrasekaran et al., 2009). However, because of
the obvious difference in the setup since we allow entire
column to be corrupted, previous approaches for matrix
completion or matrix completion with sparse corruption
fails. Moreover, this setup brings novel challenges to math-
ematical analysis. First, the optimal solution of the convex
problem is in general neither the original low rank matrix
L0, which is supported only on the non-corrupted columns,
nor the exact matrix C0. It is, however, in an appropriately
defined equivalence class of the original L0 and C0. This is
in sharp contrast to all aforementioned works where the in-
tended outcome is known a priori. This critical difference
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requires the use of an “Oracle Problem” in order to iden-
tify an element of the equivalence class for which one can
then certify optimality. Second, this problem essentially
disentangles three structures: low rank, column-sparse, and
element-sparse. This requires to develop several new con-
centration results in the ‖ · ‖∞,2 norm.

4. Skeleton-Proof of Main Theorem
In this section we provide a proof-skeleton of our main
theorem. The full proof details are given in (Chen et al.,
2010). The main roadmap to proving a convex optimiza-
tion problem recovers a desired solution, is to demonstrate
that with high probability, one can find a dual certificate
of optimality of the desired solution. This basic recipe
underlies many of the proofs in sparse recovery and low-
rank recovery (Candès et al., 2009; Candès & Recht, 2009;
Chandrasekaran et al., 2009). A central roadblock to this
approach is that unless the adversary’s corrupted columns
happen to be perfectly perpendicular to the column space of
the true low-rank matrix, the convex optimization problem
given will not precisely recover L0. The reason is simple:
if the corrupted columns have a non-perpendicular compo-
nent, then some part of that will be put into the L matrix
the optimization recovers. Algorithmically, this matter is
irrelevant: as long as the corrupted columns are identified,
and the recovered L matches the desired L0 on the non-
corrupted columns, our objective is met, and the problem
is solved. The analysis, however, is significantly compli-
cated, since because we do not recover L0 exactly, we no
longer explicitly know for what to write a certificate of op-
timality.

Step 1. For the algorithm to succeed, it is sufficient for
the recovered pair (L∗, C∗) to have the right column space
and correct non-corrupted columns for L∗, and the right
column support for C∗. To identify such a solution, we
consider the following Oracle Problem; here Γ denotes the
space of matrices supported on the set of all entries in the
non-corrupted columns plus the observed entries in the cor-
rupted columns.

minimizeL,C ‖L‖∗ + λ ‖C‖1,2
subject to PΓ(L+ C) = PΓ(M0)

PU0
(L) = L

PI0(C) = C.

The Oracle Problem is feasible, since the true pair (L0, C0)
is feasible. Let (L̂, Ĉ) denote the solution to the Oracle
Problem. We must identify conditions that a dual certificate
must satisfy to guarantee that (L̂, Ĉ) is an optimal solution
to Algorithm 1, and that any optimal solution to Algorithm
1 must also have the correct column space and column sup-
port.

Step 2. To state these conditions, we need some definitions.

Û Σ̂V̂ > := the singular value decomposition of L̂

T̂ =
{
Z ∈ Rp×n|Z = ÛX> + Y V̂ >,

∀X ∈ Rp×r, Y ∈ Rn×r
}

Î = column support of Ĉ
G(Ĉ) =

{
H ∈ Rp×n|PIc0 (H) = 0;

∀i ∈ Î, Hi =
Ĉi∥∥∥Ĉi∥∥∥

2

;

∀i ∈ I0 ∩ (Î)c, ‖Hi‖2 ≤ 1
}
.

It is now straightforward to demonstrate that Q̂ is a dual
certificate as long as it satisfies the following:

(a) Q̂ ∈ Ω

(b) PT̂ (Q̂)− Û V̂ > = 0

(c)
∥∥∥PT̂ ⊥(Q̂)

∥∥∥ < 1

(d) PI0(Q̂) ∈ λG(Ĉ)

(e)
∥∥∥PIc0 (Q̂)

∥∥∥
∞,2

< λ.

We construct a certificate Q̂ ∈ Ω, by first constructing a
certificate, Q, that satisfies (b) through (e), and then sam-
pling it according to Ω and scaling appropriately. We then
use concentration inequalities to show that the sampling
procedure is “close enough” to the identity map. Following
this program requires some care. In particular, the equality
constraint in (b) must be relaxed, since the concentration
inequalities can only guarantee that it is approximately sat-
isfied with high probability. This is done in the next step.

Step 3. Consider any feasible perturbation, (L̂ + ∆1, Ĉ +
∆2). Given a Q̂ that satisfies properties (a)− (e) above, it
is immediate to show that (L̂+∆1, Ĉ+∆2) is suboptimal:∥∥∥L̂∥∥∥

∗
+ λ

∥∥∥Ĉ∥∥∥
1,2
≤
∥∥∥L̂+ ∆1

∥∥∥
∗

+ λ
∥∥∥Ĉ + ∆2

∥∥∥
1,2
.

Condition (b) above, PT̂ (Q̂)− Û V̂ > = 0, comes from the
need to show that the above inequality holds for all val-
ues of the perturbation, ∆1, and in particular, its projection
onto PT̂ , the column and row space of L̂. However, ∆1

cannot be arbitrary.

Lemma 1. Suppose ∆1, ∆2 ∈ Rp×n are feasible pertur-
bations, i.e., they satisfy PΩ(∆1) + PΩ(∆2) = 0. Then
under the sampling regime in the above results, with high
probability,

∥∥PIc0PT̂∆1

∥∥
F
≤
√

2pn1

m

(∥∥PT̂ ⊥∆1

∥∥
∗ +

∥∥PIc0∆2

∥∥
1,2

)
.
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Using this, the equality of condition (b) can be relaxed,
leading to alternative conditions that Q̂ must satisfy.
Proposition 1 (Condition of Success). Suppose λ < 1.
Then with high probability, under the sampling regime of
the results, (L̂, Ĉ) is an optimal solution to (1) if there
exists Q̂ such that

(a) Q̂ ∈ Ω,

(b′) PT̂ (Q̂)− Û V̂ > = PT̂R
−1(D),

for some D with ‖D‖F ≤
1

2

√
m

2pn1
λ,

(c′)
∥∥∥PT̂ ⊥(Q̂)

∥∥∥ ≤ 1

2
,

(d) PI0(Q̂) ∈ λG(Ĉ)

(e′)
∥∥∥PIc0 (Q̂)

∥∥∥
∞,2
≤ λ

2
.

If both inequalities are strict, and PI0 ∩ PV̂ = {0}, then
any optimal solution (L′, C ′) to (1) satisfies PIc0 (L′) =
L0, PU0

(L′) = L′, and PI0∩Ω(C ′) = C ′, which means
Algorithm 1 succeeds.

Step 4. The next step requires constructing a dual certifi-
cateQ, that satisfies properties (b)−(e), and also (b′)−(e′).
This is the Q that we then sample. The sampling procedure
is described next.

Step 5. The final step requires us to sample Q to obtain
Q̂, and then show using concentration inequalities, that the
resulting Q̂ satisfies (a′) − (e′) with high probability. The
naive approach does not quite work, and thus requires a
different sampling scheme. We do this using a modifica-
tion of the approach coined “The Golfing Scheme” (Gross,
2009; Recht, 2009). We sample Ω by a modified batched
sampling-with replacement scheme. The final step requires
showing that Bernstein’s inequality still holds under this
scheme (since the sampled entries are no longer all inde-
pendent).

The Oracle Problem approach, the conditions on ∆1 and
∆2 in the Lemma above, the alternative conditions for the
certificate that we present here, and the validation of our
choice of the certificate, are new. Moreover, because our
objective involves a ‖ · ‖1,2–term, our results require us to
obtain new concentration results for the dual ‖·‖∞,2 bound,
that are previously not known (at least to us).

5. Implementation and Simulations
To facilitate fast and efficient solution, we use a family of
algorithms called Augmented Lagrange Multiplier (ALM)
methods (see e.g., (Lin et al., 2009)), shown to be effec-
tive on problems involving nuclear norm minimization. We
have adapted this method to our ‖·‖∗ + λ ‖·‖1,2-type prob-
lem; see Algorithm 2.

Algorithm 2 The ALM Algorithm for Robust Matrix Com-
pletion

input: PΩ(M) ∈ Rp×n, Ω ⊆ [p] × [n], λ (assum-
ing PΩc(M) = 0)
initialize: Y (0) = 0; L(0) = 0; C(0) = 0; E(0) =
0; u0 > 0; α > 1; k = 0.
while not converged do

(U, S, V ) = svd(M − E(k) − C(k) + u−1
k Y (k));

L(k+1) = ULu−1
k

(S)V >;

C(k+1) = Cλu−1
k

(M − E(k) − L(k+1) + u−1
k Y (k));

E(k+1) = PΩc(M − L(k+1) − C(k+1) + u−1
k Y (k));

Y (k+1) = Y (k)+uk(M−E(k+1)−L(k+1)−C(k+1));
uk+1 = αuk;
k = k + 1;

end while
return (L(k+1), C(k+1))

Here Lε(S) is the entry-wise soft-thresholding operator:
if |Sij | ≤ ε, then set it to zero, otherwise, let Sij :=
Sij−εSij/ |Sij |. Similarly, Cε(C) is the column-wise soft-
thresholding operator: if ‖Ci‖2 ≤ ε, then set it to zero, oth-
erwise let Ci := Ci − εCi/ ‖Ci‖2. In our experiments, we

choose u0 =
(
‖M‖1,2

)−1

and α = 1.1, and the criterion
for convergence is∥∥∥M − E(k) − L(k) − C(k)

∥∥∥
F
/ ‖M‖F ≤ 10−6.

The first set of experiments demonstrates the power of
the manipulator, as we show that even a single adversari-
ally corrupted column can arbitrarily skew the prediction
of standard matrix completion algorithms. In our experi-
ments, we fix n = p = 400, and γ = 1/400. For differ-
ent ρ and r, we generate the low-rank matrix L0 by form-
ing the product L0 = AB>. The matrices A ∈ Rp×r
and B ∈ Rn(1−γ)×r, have i.i.d. standard Gaussian en-
tries. The single corrupted column C0 ∈ Rp×1 is cho-
sen identical to first column of L0 except for the last entry,
which is assigned a large value (10 in our experiments).
In Collaborative Filtering this corresponds to a manipula-
tor trying to promote the last movie. The set of observed
entries in the uncorrupted columns is chosen uniformly at
random from all subsets of [p] × [n] of size ρ × pn1. Set
M =

[
L0 C0

]
. PΩ(M) and Ω are then given as input.

We apply both our algorithm and standard nuclear-norm-
based matrix completion. As shown in Figure 1, standard
matrix completion fails essentially for all values of ρ and
r, while our algorithm is almost unaffected. Here for each
pair of (ρ, γ) we run the experiment for 5 times, and plot
the frequency of success. Our figures show the number
of successes by grayscale, where white denotes all success
and black denotes all failure.
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Next, we investigate our algorithm’s performance under
different numbers of corrupted columns, and neutral and
adversarial corruption. In the first case, each entry of C0 is
i.i.d. Gaussian. In the second case, the corrupted columns
are constructed as follows. For 1 ≤ i ≤ γn, corrupted
column i copies the observed entries of clean column i and
fills other entries with i.i.d. Gaussian noise. We fix r = 10
and vary (ρ, γ). In both cases, each entry in C0 is ob-
served with probability ρ independently. Other settings are
the same as in the first set of experiments. The results for
our algorithm and standard matrix completion are shown in
the left and right panes of Figure 2 for the first corruption
scheme, and in Figure 3 for the second corruption scheme.

Comparison to Low-rank Plus Sparse. When only a
small fraction of the entries are observed, the corrupted
columns PΩ(C0) can be viewed as a sparse matrix. There-
fore, to separateL0 fromPΩ(C0), one might think it is pos-
sible to apply the techniques in (Candès et al., 2009; Chan-
drasekaran et al., 2009), dubbed L+S approach, which de-
compose a low-rank matrix and a sparse matrix from their
sum. In particular, given input PΩ(M), one attempts to
decompose it by solving the following convex program:

min ‖L‖∗ + λ ‖S‖1 (4)
s.t. PΩ (L+ S) = PΩ (M) .

However, note that a central assumption of the L + S ap-
proach, namely, the support of the sparse matrix is uni-
formly random, is violated in the setup considered in this
paper. In contrast, our approach specifically deals with cor-
rupted columns, in order to deal with persistent corruption.
Therefore, it is no surprise that using the above algorithm
instead should not be successful. Indeed, this is the case,
and we illustrate this numerically in Figures 2 and 3, using
the same synthetic data described above.
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Figure 1. Experiment results for 400× 400 matrix with one corrupted column. We plot the probability of successful recovery of the low
rank matrix. Panes (a) and (b) show the results of our approach with and without the corrupted column, respectively. Pane (c) shows the
essentially complete failure of standard matrix completion, due to the corrupted column.
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Figure 2. Experiment results for 400×400 rank-10 matrix with different fraction of observed entries ρ and fraction of corrupted columns
γ. Corrupted columns are generated neutrally random. Panes (a) and (c) show the results of our approach and standard matrix completion,
repectively. Pane (b) shows the results of minimizing a convex combination of the nuclear norm and the matrix `1 norm.
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Figure 3. Experiment results for adversarial corruptions. Other settings are the same as in Fig. 2.


