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Abstract

Standard Gaussian processes (GPs) model
observations’ noise as constant throughout
input space. This is often a too restric-
tive assumption, but one that is needed for
GP inference to be tractable. In this work
we present a non-standard variational ap-
proximation that allows accurate inference
in heteroscedastic GPs (i.e., under input-
dependent noise conditions). Computational
cost is roughly twice that of the standard GP,
and also scales as O(n3). Accuracy is veri-
fied by comparing with the golden standard
MCMC and its effectiveness is illustrated on
several synthetic and real datasets of diverse
characteristics. An application to volatility
forecasting is also considered.

1. Introduction

In the regression task, we are given a dataset consisting
of input-output pairs D = {x; € RP,y; = y(x;) €
R}? ; modeled as the sum of some unknown latent
function f(x) plus independent noise

y(xi) = f(xi) + i (1)

The typical setting is to assume that {e;}? ; are un-
correlated zero-mean Gaussian random variables with
a global or constant variance, which in statistics is re-
ferred to as homoscedastic (Gaussian) regression (Sil-
verman, 1985). A Bayesian non-parametric approach
to homoscedastic regression is to place a Gaussian pro-
cess (GP) prior on the latent function f(x). The GP
approach is flexible and also has the elegant property
that both the predictive density (given model hyper-
parameters) and the marginal likelihood (useful for
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learning the hyperparameters) are given by analytic
expressions; see e.g. (Rasmussen & Williams, 2006).

In many applications, however, the assumption of con-
stant variance can be unrealistic and it is highly de-
sirable to consider models with input-dependent vari-
ance. This leads to heteroscedastic regression, which
has numerous applications in statistics, especially in
econometrics and statistical finance. For instance,
modeling time series with time-varying volatility and
stochastic volatility models is an important research
field in economics (Brooks et al., 2001; Brownlees
et al., 2009; Liu, 2001). Heteroscedastic regression can
also have several other applications in machine learn-
ing, such as robotics (Kersting et al., 2007), and in
general is a more flexible way of doing regression that
includes homoscedastic regression as a special case.
However, inference in heteroscedastic GP (HGP) re-
gression is very challenging since, unlike in the ho-
moscedastic case, the predictive density and marginal
likelihood are no longer analytically tractable.

In this work, we introduce a novel variational inference
method for HGP regression that is based on varia-
tional Bayes and the Gaussian approximation (Opper
& Archambeau, 2009; Nickisch & Rasmussen, 2008;
Honkela et al., 2011). There is relevant previous work
on approximate inference in HGP regression, partic-
ularly the Markov chain Monte Carlo (MCMC) fully
Bayesian method considered in (Goldberg et al., 1998)
and the maximum a posteriori (MAP) approach used
in (Kersting et al., 2007; Quadrianto et al., 2009).
These approaches have certain limitations: MCMC is
very slow in large scale applications, whereas MAP
estimation does not integrate out all latent variables
and is prone to overfitting. Our variational framework
overcomes these limitations, by maximizing a rigorous
and analytically tractable lower bound on the exact
marginal likelihood. As it will be shown in the exper-
iments, the variational method is very fast (needing
roughly twice the time a normal GP does) and at the
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same time, very accurate. The latter is validated ex-
perimentally through a comparison with the elliptical
slice sampling MCMC method (Murray et al., 2010).

We will exploit some ideas regarding the maximization
of variational lower bounds that simplify optimiza-
tion. Specifically, we will first introduce the concept
of marginalized variational optimization where a mean
field bound with a two-factor variational distribution
q(f)q(g), is firstly maximized by removing analytically
and optimally its dependence w.r.t. ¢(f). Then, by ex-
ploiting the structure of the stationary points at the lo-
cal maxima, a suitable reparametrization can be used
to reduce the number of variational parameters from
n+n(n+1)/2 to just n.

In the experiments we will validate our method against
the (slow) golden standard MCMC, and compare it
with the MAP approach (Quadrianto et al., 2009) and
the standard GP on synthetic and real-word regression
datasets. We then consider applications in stochastic
volatility forecasting and compare our method with
GARCH(1,1) (Hansen & Lunde, 2005). In this case,
and using the stochastic volatility problem consid-
ered in (Girolami & Calderhead, 2011), we also show
that our variational approximation provides remark-
ably close posterior predictions to the ones obtained
by Riemann manifold Hamiltonian Monte Carlo.

2. The Heteroscedastic GP Model

To define the Heteroscedastic GP (HGP) model we
proceed in a Bayesian nonparametric fashion and place
a GP prior on the unknown function f(x) and Gaus-
sian priors on the noise terms ¢; (see Eq. (1)):

f(x) ~ GP(0,ks(x,x")), e ~N(0,r(x;)).

Therefore, observation noise has a possibly different
variance r(x) at each input point x. If we restrict the
variance to be constant across all the input space (i.e.,
r(x) = o?), the described model corresponds to the
standard (homoscedastic) GP regression, for which an-
alytical inference is possible. Here, we are interested
in the case in which the unknown function r(x) can
vary with x and can take any form. To ensure positiv-
ity, we parametrize r(x) = /) and place a GP prior
9(xX) ~ GP (110, kg (%, X')).

Once some parametric form has been selected for co-
variance functions k¢ (x, x") and ky(x,x’), the model is
fully specified and depends only on the covariance hy-
perparameters (respectively 8 and 0,) and the noise
mean hyperparameter pg. Note that, unlike other
HGP proposals, we explicitly take into account pg so
that we can control the scale of the noise process (since

1o is exponentiated). Assuming ug = 0 imposes an ar-
bitrary noise scale preference, which is not desirable.
HGPs are more flexible than standard GPs, but un-
fortunately they are no longer analytically tractable.

In the following we will use vectorized forms to re-
fer to the observations and the latent functions eval-
uated at the training points so that y = {y;}1 4,

f= {f(xi)}zr';lﬂ and g= {g(xi) ?:D respectively.

3. Variational Approximation

The marginal log-likelihood (evidence) of the HGP
model cannot be computed analytically. However, it
is possible to lower bound it variationally with an an-
alytically tractable expression. We will first intro-
duce a marginalized version of the standard varia-
tional approximation, in general form, and then ap-
ply it to the HGP model. Hyperparameter learn-
ing is deferred to the end of this section. For the
sake of simplicity, here we omit conditioning on inputs
X = {x;}"; or hyperparameters 8 = {6¢,0,, 110}
Supplementary material and code can be obtained
from http://www.tsc.uc3m.es/~miguel.

3.1. The Marginalized Variational Bound

The standard variational approximation defines

F(q(f),q(g)) = logp(y) — KL(¢(f)q(g)lIp(f, gly)),

where it is clear that F' lower bounds the evidence, i.e.,
logp(y) > F(q(f), q(g)) for any possible choice of the
variational probability densities ¢(f) and ¢(g). Since
the value of log p(y) is independent of the variational
densities, maximizing this bound w.r.t. ¢(f) and ¢(g) is
equivalent to minimizing KL(q(f)q(g)||p(f, gly)), i-e.,
obtaining the best possible factorized approximation
to the posterior, in the mentioned KL sense.

As it stands, F' depends on two n-dimensional varia-
tional distributions. We can obtain a simpler, tighter
bound by removing its dependence on one of them.
We will refer to this new bound as the Marginalized
Variational (MV) bound.

In order to optimally remove the dependence of
F(q(f),q(g)) on q(f), we compute the distribution
¢*(f) that maximizes F'(q(f), ¢(g)) for a given ¢(g) and
insert it back into the bound. The variational Bayesian
theory gives the optimal distribution ¢*(f) as

* PE)  fae)togpylfg)d
¢*(f) = argmax F = ———~_¢J a(8)loeplylf.g)dg (9
) q(f) Z(q(g)) 2)

where Z(q(g)) is the normalizing constant needed
for ¢*(f) to integrate to ome, ie., Z(q(g)) =
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[ ef a®)logp(yIf.e)dey, £)df. Inserting ¢*(f) (which of
course depends on ¢(g)) back into the bound, we ob-
tain, after some simplifications, the MV bound:

F(q(g)) = log Z(q(g)) — KL(¢(g)llp(g)),  (3)

where the dependence on ¢(f) has been removed. The
MV bound upper bounds the standard variational
bound and (since it is particular case of it) also lower
bounds the evidence. Hence, logp(y) > F(q(g)) =
F(q*(f),q(g)) = F(q(f),q(g)). This is a general
derivation, and holds for any variational bound de-
pending on two independent distributions.

3.2. MV Bound for the HGP Model

For the HGP likelihood and priors, the MV bound
can be computed in closed form if we restrict ¢(g) =
N(glp, X), ie., to be a multivariate normal distribu-
tion. Note that we do not need to impose any con-
straint on ¢(f) because the MV bound does not de-
pend on it. Using K¢ and K, to name the covariance
matrices resulting from evaluating the corresponding
covariance functions at the inputs, (3) becomes

F(p,X) = 1Og/efN(gIAME)logp(ylf,g)dg/\/(ﬂo’ K)df

— KL(N(g|p, 2)[IV (glrol,Ky)).
The term inside the exponential is
1
[ N eli 2 logp(1t. )8 = og N (y1£. R)-  1r(2) - (1)

where R is a diagonal matrix with elements
[R];; = eltli=2ii/2 Further, observing that
[ N(y|f, R)N(£]0,K[)df = N(y|0,K;+R), the MV
bound has the following simple expression for HGP:

F(p,X) =1ogN(y|0,Kf +R) — itr(E)

— KLV (gl )NV (gluol, Ky)).  (5)

Observe the correspondence between the MV bound
and the evidence of a standard, homoscedastic GP.

3.3. Reparametrization and Optimization

Bound (5) depends on n + n(n + 1)/2 free variational
parameters (defining g and ), i.e., the number of free
parameters is quadratic in the number of observations.
In this section we explain how to obtain an equivalent
bound that depends on just n parameters. This is ad-
vantageous both from a computational point of view
(reduced complexity) and from an optimization point
of view (the optimization problem becomes easier and

the interplay between variational parameters and hy-
perparameters is significantly reduced when both are
jointly optimized).

By following a similar derivation to the one used in
the Gaussian approximation (Opper & Archambeau,
2009), the stationary equations %‘;’2) = 0 and
% = 0, which must be satisfied at any local or
global maximum, reduce to the pair:

p=Ky(A - 31+ pol, T =K, '+ A, (6)

for some positive semidefinite diagonal matrix A (see
supplementary material for proof). So the above
equation tells us that, at maxima, (u@,X) both de-
pend on some common diagonal matrix A, which de-
pends only on n diagonal elements. Therefore, we can
reparametrize (p, 3) according to Eq. (6) and use the
n positive elements of A as the only free variational
palrameters1 .

Finally, the lower bound F(p(A),3(A)) = F(A)
needs to be maximized w.r.t. the n variational param-
eters in A. Such an optimization by construction mini-
mizes the KL divergence between the approximate and
exact posterior distribution. Simultaneously, we can
maximize F' w.r.t. the model hyperparameters 8, thus
implementing Type-II Maximum Likelihood (ML-II)
for model selection. The whole optimization is non-
linear and gradient-based procedures, such as conju-
gate gradient, can be used. The derivatives w.r.t.
(A, 0) can be computed analytically and efficiently.

The variational bound and its complete gradient can
be computed in O(n3) time. This is the same cost
of a standard GP. In practice, computing the VHGP
bound and its gradient takes roughly twice the time
required to compute the evidence and its derivatives
in a standard homoscedastic GP.

4. Predictive Distribution

The predictive distribution for a new test output ys.
(corresponding to input x,) given training data can
be expressed as p(y«|x«, D). Though it cannot be com-
puted in closed form, if we regard ¢*(f)g(g) as a good
approximation to p(f, g|D), its mean and variance are
analytically tractable.

First, we need an explicit expression for ¢*(f). Insert-
ing (4) in (2) we get ¢*(f) o< N(y|f, R)p(f), so
¢ (f) = N(f[Kya, Ky — Kf(Ky + R)7'Ky).
!This result is related to (Opper & Archambeau, 2009).
Their general method results in 2n free parameters. How-

ever, in our case the stationary equations have additional
structure that allows the reduction to n free parameters.
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where a = (K; + R)™'y. The posterior distribution
for f. = f(x.) under the variational approximation is

a(f.) = / p(fe 1% X, B)g (F)AE = N(fulan, ),

with a, = kj,c and ¢2 = kg, — kj,(K; + R) kg,

The posterior distribution of g, = g(x.) under the
variational approximation is

a(g.) = / P21 X, )a()dg = N (g 12 02),

with g = k), (A—211)1+p0 and 02 = kg, — k), (Kg+
Afl)*lkg*. Based on those, the predictive distribution
for a new observation y, becomes

a(y.) = / / p(y2lge. £)a( 2 )a(g:)d odg.

- / N (g, @ + 9N (g1, 02)dge

which is not analytically tractable. However, its value
can be approximated up to several digits using inex-
pensive Gauss-Hermite quadrature. Its mean and vari-
ance, on the other hand, can be computed analytically:
E,[y« %+, D] = a. and V,[y.|x,, D] = ¢ 4 et=F97/2,
Note that the predictive density is not Gaussian.

5. Most Likely HGP (MLHGP) and
Max. A Posteriori HGP (MAPHGP)

MLHGP was recently introduced in (Kersting et al.,
2007). In this work, the full posterior over g is replaced
by a point estimation and an iterative algorithm to
perform that estimation is provided. As the authors
point out, the algorithm is not guaranteed to converge
and may instead oscillate. Furthermore, it may re-
quire many iterations (each one requiring to train two
standard GPs) before stabilizing. In a related, more
recent work (Quadrianto et al., 2009), these issues are
addressed by choosing g so as to maximize a penal-
ized likelihood, equivalent up to a constant to p(g|D),
thus introducing the MAPHGP approximation. No-
tice that this method provides a point estimate for g,
while our method is a more fully Bayesian approach
that variationally integrates out g.

Code implementing MAPHGP was kindly provided by
the authors. We compare it with VHGP in Sections
6.1 and 6.2.1, using the authors’ initializations. We
found that the quality of the solution was highly de-
pendent on the number and location of the latent noise
variables described in (Quadrianto et al., 2009). We
set them to 10 as the authors did, since for higher val-
ues MAPHGP overfit severely. In contrast, VHGP is

not vulnerable to such overfitting: The number of hy-
perparameters specifying the model is very small, and
optimizing the n variational parameters, implies better
approximating the exact posterior. In our experience,
VHGP is more robust than MAPHGP and allows for
smoother optimization, being less likely to get stuck
in bad local minima than MAPHGP is.

6. Experiments

In this section we will assess the accuracy of the VHGP
and MAPHGP approximations by comparing their
posteriors with MCMC; we will also compare their
predictive performance in terms of Normalized Mean
Square Error (NMSE) and Negative Log-Probability
Density (NLPD) with the homoscedastic GP (which
will refer to simply as GP); and finally apply VHGP
to the volatility prediction problem. For all problems,
we assume the outputs to be zero-mean.

We will be using the Automatic Relevance Determina-
tion Squared Exponential (ARD-SE) kernel, defined

—[x’ 2
as karpse(X,X') = 57(2) exp (f% chl)=1 (s eg 14) )

6.1. Assessing the quality of the
approximation using MCMC

In order to obtain an accurate posterior for the het-
eroscedastic GP regression model, we use MCMC.
The recently proposed elliptical slice sampling (Mur-
ray et al., 2010) was used to draw posterior samples
from p(g|y) while f was integrated out analytically.
More specifically, the joint probability density func-
tion with f marginalized out is

p(y,g) = N (y|0,K; + diag(e®)) N(g|pol, Ky).

Notice the similarity of this expression with the
“marginalized” variational lower bound (5), in which
distribution ¢(f) had been optimally removed.

We build a one-dimensional toy dataset according to
the proposed heteroscedastic model described in Sec-
tion 2, generating 100 samples in the range = € [—1, 1].
We select the covariance function for f(z) to be the SE
with parameters ¢ = 0.5, 02 = 2, and the covariance
function for g(z) to be another SE with parameters
¢=0.5, 02 = 1 plus noise of power o2 = 0.25.

Inference is then performed using MAPHGP, VHGP
and MCMC, fixing the hyperparameters to the known
true values. This removes the effect of hyperparame-
ter learning, so that we can assess whether MAPHGP
and VHGP predictions are close to the asymptotically
unbiased MCMC estimates, for the same set of hy-
perparameters. We emphasize that MCMC is much
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slower than variational inference: With just 100 data
points, VHGP takes 4 s and MAPHGP takes 3 s, but
MCMC takes 400 s. The O(n?®) time scaling of the
learning process renders MCMC impractical even for
moderate-size datasets.

As shown in Fig. 1.a, the approximate posterior pro-
vided by VHGP is very close to the exact solution
provided by MCMC, both for y(x) and g(z). Differ-
ences between the exact and the approximate meth-
ods are of course more noticeable in the posterior over
g(z) (Fig. 1.b), since for y(z), integration over g(x)
smooths out the differences to some extent. MAPHGP
produces clearly worse results, as could be expected.
Also, its approximation for g(x) is deterministic, in-
stead of a full distribution.

We can further analyze the behavior of VHGP by
looking at the full predictive posterior. The marginal
posterior at x = 0.9 (marked with a vertical line in
Fig. 1.a) is plotted in Fig. 1.c. The exact posterior
produced by MCMC is almost perfectly matched by
the leptokurtic VHGP posterior in red, dashed line.
Such a good match could not be achieved by a Gaus-
sian posterior, as depicted by the matching-moments
Gaussian plotted in red, dotted line. Recall that ML-
HGP, MAPHGP and most previous approximations
use a Gaussian to approximate the posterior.

The accuracy of VHGP’s hyperparameter learning is
of course not reflected in these experiments; it will be
discussed in Section 6.3.2.

6.2. Regression performance

We will now assess the performance of VHGP on sev-
eral synthetic and real datasets. We use an ARD SE
covariance function for f(z) and an ARD SE covari-
ance function plus noise of power o2 for g(x). In or-
der to initialize hyperparameters, we first run a ho-
moscedastic GP with an ARD SE plus noise covari-
ance function. For f(z), we set {(yHCF = (GP1D
oyHEP =GP For g(z), we set {£yHCF = (GP1D
oy HOP =1, oVHOP = 1/2 11y = 21og(c®F) — 1/2.

Throughout, we will use the NMSE = Zzyil(#f_yff

21 (e =)

and the NLPD = —-L 7" logp(y.;|D) as perfor-
mance measures. Here, y,; is the j-th observation
within the test set, §.; is the mean of the posterior
for that observation, n, the number of test observa-
tions and g the mean of the training observations.

6.2.1. ONE-DIMENSIONAL DATASETS

We will first consider four regression datasets that have
traditionally been used to assess heteroscedastic re-

gression, see e.g. (Kersting et al., 2007):

G. The synthetic dataset from (Goldberg et al., 1998),
consisting of 100 data points. Inputs are uniformly
spaced in the [0, 1] range and outputs are generated as
2sin 2z plus Gaussian noise, with standard deviation
linearly increasing from 0.5 at « =0 to 1.5 at = 1.

C. The synthetic dataset from (Cawley et al., 2006),
consisting of 100 data points. Inputs are uniformly
spaced in the [—1,1] range and outputs are the Heav-
iside function of the inputs plus Gaussian noise of
standard deviation 0.1. This dataset is not truly het-
eroscedastic, but the steep change at + = 0 can be
better modeled using a locally higher noise level.

M. The motorcycle dataset from (Silverman, 1985),
consisting of 133 of accelerometer readings through
time following a simulated motorcycle crash during an
experiment to determine the efficacy of crash-helmets.

T. The 1D toy dataset, consisting of 100 data points,
that has already been described in Section 6.1.

Each dataset is generated according to its description,
then a random split is performed, using 90% of the
samples for training and 10% of the samples for test-
ing. This procedure is repeated 300 times. Table 1
shows average results for GP, MAPHGP and VHGP.

The three models perform similarly in terms of NMSE;,
indicating that for these datasets considering the het-
eroscedastic noise produces little improvement in the
predictive mean. However, the heteroscedastic models
produce more accurate posterior distributions and this
shows as a clear improvement on the NLPD measure.
VHGP is equivalent or superior to MAPHGP in all
datasets, as it was expected, and incurs in a smaller
standard deviation in the results. Analogous results
were observed on other datasets not reported here.

6.2.2. LARGE, MULTI-DIMENSIONAL DATASETS

In order to show how VHGP can handle large mul-
tivariate datasets?, we tested it on: Abalone®, Pole
Telecommunications?* and Elevators®. Results are
compared with an homoscedastic GP in Table 2.

Consistent with previous results, VHGP outperforms
the standard GP in terms of test NLPD, showing its
superior ability to model these datasets. NMSE results
are comparable between both methods, except for Pole

T. For this problem, VHGP’s residual distribution is

2Available at http://www.liaad.up.pt/~ltorgo/
Regression/DataSets.html

33133 training/1044 testing samples, 8 attributes.

43000 training/12000 testing samples, 26 attributes.

53000 training/13599 testing samples, 17 attributes.
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Figure 1. Comparison of posterior distributions for MAPHGP (green, dash-dotted line), VHGP (red, dashed line) and
the golden standard MCMC (black, continuous line). All methods use the same set of hyperparameters.

highly non-Gaussian, with most deviations being very
small and a few being very big. If instead of the mean
square error we computed the median square error,
we would obtain 2.151 for the GP and a much smaller
0.269 for the VHGP.

Table 1. Average results including one standard devia-
tion. Statistically significant differences w.r.t. GP are
marked as e, whereas statistically significant differences
w.r.t. MAPHGP are marked as ¢. Significance is measured
according to the t-test at the 5% significance level. Results
correspond to averaging over 300 independent splits.

Problem GP MAPHGP VHGP

G. (NMSE) 0.40+0.21  0.39+0.21 0.39+0.21
G. (NLPD) 1.51£0.28  1.53+0.44 1.45+0.28 o
C. (NMSE) 0.084£0.06  0.11+0.08 ¢  0.10£0.07 oo
C. (NLPD) -0.444+0.52 -0.4440.61 -0.59£0.31 oo
M. (NMSE)  0.26+0.18  0.26+0.17 0.26+0.17
M. (NLPD) 4.59£0.22  4.32+0.60 ¢  4.32£0.30 ®
T. (NMSE) 0.78+0.33  0.77+0.33 0.77+0.32
T. (NLPD) 2.2241.16  2.10+1.15 1.91+0.97 o

Table 2. Performance of GP and VHGP on several large,
multidimensional problems. See text for a description.

Problem GP VHGP
Abalone. (NMSE)  0.4359  0.4259
Abalone (NLPD) 2.1265  2.0130
Pole T. (NMSE) 0.0237  0.0934
Pole T. (NLPD) 2.9082  1.8047
Elevators (NMSE)  0.0905  0.0939
Elevators (NLPD) -4.7997 -4.8450

6.3. Application to volatility forecasting

Heteroscedastic GP regression is naturally suited to
the problem of volatility modeling and forecasting. In

financial time series, volatility is defined as the stan-
dard deviation of a return series at time instant® x
given all the information available at time instant x—1.
Return series can be obtained from price series p(z) as
y(x) = log(p(x)) — log(p(z — 1)). Then, pairs (z, y(x))
constitute a dataset in which the noise level (i.e., the
volatility) changes over time and VHGP can be applied
to estimate historical volatility or make forecasts.

To remain consistent with the existing literature, we
make the usual assumption of considering the return
series as a zero-mean noise-only process, i.e. set f(z) =
0 and also assume that time instants are discrete, inte-
ger intervals, such as days. Note, however that VHGP
can seamlessly deal with variable sample rates, make
forecasts for fractional intervals and even learn a non-
zero f(x), if a model for its covariance is available”.

In the following, we will describe one of the volatil-
ity models to which VHGP can be applied to perform
approximate inference, evaluate the quality of the in-
ference as compared to MCMC and further make a test
on real data, comparing it with the GARCH model.

6.3.1. VOLATILITY MODEL

It turns out that the volatility model proposed in (Liu,
2001), though stated differently, corresponds exactly
to the VHGP model when the latent function is set
to zero (i.e. k¢(x,x’) = 0), the covariance function of
g(z) is ky(z, ') = 03/(1 = ¢*)pl"='|, g = 2log 3,
and zx is restricted to be an integer. Thus, = repre-
sents the time instants in which the returns are ob-
served. Note that k4(x, ') is a reparametrization of

SFor consistency with our previous notation, we will use

x to denote time.
"This can be used to model drifts in the mean of the
return series.
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the standard Ornstein-Uhlenbeck covariance function,
and in the case in which z is restricted to be an in-
teger, reduces g(z) to an AR(1) process. This is a
first-order Markov process, that, for ordered time in-
stants, results in K;l being tridiagonal rather than a
full matrix. It is possible to exploit this fact to com-
pute the variational bound and all its derivatives on
O(n) time, thus rendering the whole learning process
of VHGP linear in the number of training samples.

6.3.2. Accuracy OF VHGP VOLATILITY MODEL

In the recent work of (Girolami & Calderhead, 2011),
an efficient technique to perform MCMC called Rie-
mann Manifold Hamiltonian Monte Carlo (RMHMC)
is introduced. In their experiments, inference for the
precise model described in Section 6.3.1 is considered,
though hyperparameters ¢, ¢ and 3 are not fixed, but
integrated over. Furthermore, they also exploit the
tridiagonal property of Kg_1 to increase the efficiency
of their algorithm, so that RMHMC can be applied to
model volatility for relatively large datasets. We were
kindly provided with their original code and datasets,
so that we can compare the accuracy of VHGP with
an asymptotically exact, fully Bayesian model.

Girolami and Calderhead generated a synthetic
dataset of 2000 data points according to the men-
tioned model, using parameters oy = 0.15, ¢ = 0.98,
B8 = 0.65. Using their dataset, we computed the
approximate posterior over g(z) using VHGP, while
jointly learning the hyperparameters (i.e., using ML-
IT to estimate them). Those were initialized as in their
work: o9 = 0.5, ¢ = 0.5, 8 = 0.5.

Girolami and Calderhead obtain a reasonably peaked
posterior for the hyperparameters, with posterior
means E[og|D] = 0.1714, E[¢|D] = 0.9771, E[5|D] =
0.6654, quite close to the above mentioned ground
truth values. In turn, VHGP provides the following
ML-IT estimates: op = 0.1483, ¢ = 0.9814, 8 = 0.6662,
which are also very accurate. The posterior over g(x)
produced by VHGP is plotted in Fig. 2 (top) together
with that of RMHMC. We observe very good agree-
ment between both, with RMHMC having a slightly
higher predictive variance, due to the effect of inte-
grating over the hyperparameters. To verify this latter
claim, we also run MCMC fixing the hyperparameters
to those obtained by VHGP. Results are plotted in
Fig. 2 (bottom). In this case the agreement between
the exact posterior and VHGP is almost exact!

Even though RMHMC was specifically tuned to ex-
ploit the tridiagonal inverse matrices involved in this
model, the speed difference with VHGP was signifi-
cant: RMHMC took 300 s to process the 2000 data

0 100 200 300 400

0 100 200 300 400

Figure 2. Posterior over g for the toy volatility dataset us-
ing VHGP (red, dashed line) vs. RMHMC (black, contin-
uous line). RMHMC can integrate over hyperparameters
(top) or fix them to VHGP ML-II values (bottom). Pink
squares show ground truth values for g(z), not available to
the methods. Only first 400 points are shown for clarity.

points, whereas VHGP took less than 5 s (including
hyperparameter selection). This means that VHGP
is a very fast, while still very accurate, alternative to
MCMC to make inference under this volatility model.

6.3.3. VOLATILITY FORECASTING

After validating VHGP as an accurate approximation
to the exact posterior for this volatility model, in this
section we will test its actual forecasting ability.

We used the return series of the daily exchange rate be-
tween the Deutschmark (DEM) and the Great Britain
Pound (GBP), from Jan 1984 to Jan 1992 (totaling
1974 trading days). This series has become a standard
to assess the performance of volatility prediction sys-
tems (McCullough & Renfro, 1998; Brooks et al., 2001;
Wilson & Ghahramani, 2010). As a benchmark for
comparison, we use GARCH(1,1), whose performance
has been reported to be very competitive for this task
(Hansen & Lunde, 2005). GARCH(1,1) models y(x) ~
N (y|0,7(z)), with r(z) = ag+ar1y*(x—1) +byr(z—1),
for some ag, a; and b;. These values are obtained by
constrained maximum likelihood on the training set.

Following (Wilson & Ghahramani, 2010), we use a
rolling window of the previous 120 days of returns to
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make 1, 7, and 30 day ahead volatility forecasts and
retrain the model every 7 days. Predictions are made
for the last 1825 trading days of this series.

As a performance measure, we use the MSE between
the predicted volatility and the squared returns. This
is one of the few consistent ways to measure volatility,
as discussed in (Brownlees et al., 2009).

Table 3. MSE for three different forecast horizons, using
GARCH and VHGP.

Method Days ahead (x107°)
1 7 30

GARCH(1,1) 3.092 3.312 5.043

VHGP 3.087  3.092 3.118

We see that VHGP was slightly superior to
GARCH(1,1) in this time series, with an increased ad-
vantage being obtained for distant forecast horizons.
This is consistent with the result reported by (Wilson
& Ghahramani, 2010) for their copula processes.

7. Discussion and Future Work

In this work we have provided a theoretically well-
founded approximation that enables accurate inference
in heteroscedastic GPs with a comparable cost to that
of standard, analytically tractable homoscedastic GPs.
In order to do this, the well-known variational approx-
imation has been used, but introducing non-standard
modifications: ¢(f) has been “marginalized” out from
the bound and the number of variational parameters
has been drastically reduced by exploiting the relations
appearing in this model at the local optima.

We think this is a promising line of work, since the
homoscedasticity assumption may be too strong for
many real problems. It is relatively straightforward to
extend this variational method to handle classification
or to obtain sparse heteroscedastic GPs.

It also turns out that by selecting ky(x,x') = 080xx/,
a leptokurtic i.i.d. prior is induced in noise and thus
VHGP can be directly used for robust regression, a
matter that deserves further investigation.
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