
Hierarchical Classification via Orthogonal Transfer

Dengyong Zhou denzho@microsoft.com

Lin Xiao lin.xiao@microsoft.com

Mingrui Wu mingruiw@microsoft.com

Microsoft Research, 1 Microsoft Way, Redmond, WA 98052, USA

Abstract

We consider multiclass classification prob-
lems where the set of labels are organized
hierarchically as a category tree. We asso-
ciate each node in the tree with a classifier
and classify the examples recursively from
the root to the leaves. We propose a hi-
erarchical Support Vector Machine (SVM)
that encourages the classifier at each node
to be different from the classifiers at its an-
cestors. More specifically, we introduce reg-
ularizations that force the normal vector of
the classifying hyperplane at each node to be
orthogonal to those at its ancestors as much
as possible. We establish conditions under
which training such a hierarchical SVM is a
convex optimization problem, and develop an
efficient dual-averaging method for solving it.

1. Introduction

In many multiclass classification problems, such as
document and web categorization, the set of possi-
ble labels are often organized in a hierarchical struc-
ture, i.e., a category tree or a more general taxon-
omy. While we can approach such problems using
a generic multiclass classifier such as the multiclass
Support Vector Machine (SVM) (Weston & Watkins,
1999; Crammer & Singer, 2001), a challenging ques-
tion is how we can improve the classification accuracy
by using the hierarchical structure as side information.

One straightforward way for exploiting the hierarchi-
cal structure is to decouple the problem into a set of
independent classification problems, each defined for
an internal node in the hierarchy, for classification
between its immediate subclasses (Koller & Sahami,
1997; Weigend et al., 1999; Dumais & Chen, 2000).

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

To better exploit the semantic relationship embed-
ded in the hierarchy, some researchers imposed sta-
tistical similarity constraints between the probabilis-
tic models for adjacent nodes in the hierarchy (e.g.,
McCallum et al., 1998). Similarly, several works on
multi-task and transfer learning employed hierarchy-
induced regularizations that aim to make the classifiers
at adjacent nodes as close as possible (Cai & Hofmann,
2004; Dekel et al., 2004; Evgeniou et al., 2005).

Another popular method for hierarchical classification
is to use tree-induced loss functions (Cai & Hofmann,
2004; Dekel et al., 2004; Cesa-Bianchi et al., 2006).
Roughly speaking, a tree-induced loss for misclassi-
fying two classes is proportional to the length of the
undirected path connecting these two classes (their
graph distance). A closely related approach is to em-
bed the category tree into a Euclidean space such that
two classes connected by a shorter path stay closer in
the embedding space (Weinberger & Chapelle, 2008).
Using tree-induced loss captures the idea that misclas-
sifications between similar classes with shorter graph
distances are less severe and thus should receive lesser
penalty. On the other hand, it is often the case that
classification between classes with shorter graph dis-
tances are much harder than classifying classes with
longer graph distances. In a sense, this approach does
not deal with the hardness of classifying similar classes
at lower levels in the hierarchy, but rather downplays
the difficulty by assigning them small penalties.

In this paper, we develop a hierarchical classification
method that directly tackles the difficulty of classify-
ing very similar classes at lower levels of the hierarchy.
In particular, our formulation encourages the classi-
fier at each node to be different from the classifiers
at its ancestors. The key observation is that the se-
mantic relationships among the categories in a hierar-
chical structure are usually of the type generalization-
specialization. In other words, the lower level cate-
gories are supposed to have the same general proper-
ties as the higher level categories plus additional more
specific properties (a similar observation was made

Hierarchical Classification via Orthogonal Transfer

in Koller & Sahami, 1997). For example, for classi-
fication between documents on sports and computer

science, the frequency of the word computer is a very
indicative feature. However, between the two sub-
classes compiler and operating system in computer

science, the word parsing can be much more indica-
tive than computer. In general, classifications at dif-
ferent levels of the hierarchy may rely on different fea-
tures, or different combinations of the same features.

In the context of a hierarchical SVM, we formalize
the above observation by introducing regularizations
that encourage the normal vector of the classifying
hyperplane at each node to be orthogonal to those at
its ancestors as much as possible. We establish nec-
essary and sufficient conditions under which training
such a hierarchical SVM is a convex optimization prob-
lem. We also develop a variant of the dual-averaging
method (Nesterov, 2009; Xiao, 2010) which is very
efficient for solving such problems. We evaluate the
method on a number of real-world text categorization
tasks and obtain state-of-the-art performance.

2. Problem Setting

Let X ⊂ Rn be the instance domain and let Y
be the set of labels. Without loss of generality, let
Y = {1, . . . ,m}. In the context of hierarchical clas-
sification, the labels in Y are identified as nodes in a
category tree. We assume that the root of the tree does
not belong to Y, since it can label all possible instances
and does not give meaningful classification. For conve-
nience, let 0 denote the root and let Y = Y ∪ {0}. For
each node i ∈ Y, denote by C(i) the set of children of i,
and S(i) the set of siblings of i. In addition, let A(i)
be the set of ancestors of i, excluding 0 and itself; and
let D(i) be the set of descendants of i, excluding itself.
Finally, let A+(i) = A(i)∪{i} and D+(i) = D(i)∪{i}.
Let {(x1, y1), · · · , (xN , yN)} be a set of training ex-
amples, where each xk ∈ X and each yk ∈ Y. Our
goal is to learn a classification function f : X → Y
that attains a small classification error. In this paper,
we associate each node i ∈ Y with a vector wi ∈ Rn,
and focus on classifiers f(x) that are parameterized by
w1, . . . ,wm through the following recursive procedure:

f(x) =







initialize i := 0
while C(i) is not empty

i := argmax
j∈C(i)

wT
j x

return i







. (1)

In other words, an instance is labeled sequentially by
choosing the category for which the associated vec-
tor outputs the largest score among its siblings, until

0

1 2

3 4

w1 w2

w3 w4

x

y = 3

wT
1 x < wT

2 x

wT
3 x > wT

4 x

Figure 1. An example with Y = {1, 2, 3, 4}. The instance x
is classified recursively until it reaches the leaf node y = 3.

a leaf node is reached. An example of this recursive
procedure is shown in Figure 1. This classifier always
returns a leaf node. For a testing example (x, y) where
the label y is not a leaf node, a classification error is
declared if and only if y /∈ A+(f(x)).

Similar recursive classifiers have been used before,
e.g., in Koller & Sahami (1997) and Dumais & Chen
(2000). However, the training problem was usually
decomposed as training a separate classifier at each
non-leaf node in the category tree. In our work, we
introduce regularizations that couple the classifiers at
different levels, and consider a joint training problem
over the whole tree (see Section 3).

Non-recursive classifiers have also been used in hierar-
chical classification. One popular choice is

f(x) = argmax
i∈Y

wT
i x. (2)

In order to account for the hierarchical structure, the
vectors wi are further parametrized as

wi =
∑

j∈A+(i) uj , (3)

i.e., ui = wi − wp(i), where p(i) denotes the parent
node of i. In similarity-based transfer learning, the
norms of the ui’s are used as regularizations, which en-
courages wi to be close to wp(i) (e.g, Cai & Hofmann,
2004; Dekel et al., 2004).

The recursive classifier (1) allows both training and
testing at each internal node to focus on specific fea-
tures that are most pertinent to classification among
its immediate children, which usually is a very small
subset of all categories. This can lead to much higher
accuracy in classifying the local sibling classes than
using the flat classifier (2), which is trained by always
considering all categories in the tree. One might ar-
gue that mistakes made at higher levels in a recursive
classifier cannot be corrected at lower levels. However,
this is compensated by higher accuracies at each level.

Hierarchical Classification via Orthogonal Transfer

Another advantage of the recursive classifier (1) is its
computational efficiency. For example, to classify x

on a complete d-ary tree with height h, the number of
inner products wT

i x required for a recursive classifier
is O(hd), while the flat classifier (2) requires O(dh).
Dumais & Chen (2000) also reported large gains in
computational efficiency by using recursive classifiers.

3. Hierarchical SVM with Orthogonal

Transfer

In this section, we describe a hierarchical SVM for
training classifiers of the form (1). It is clear that the
task of learning f(x) is reduced to learning the set of
vectors {wi | i ∈ Y}, which correspond to the normal
vectors of the classification hyperplanes.

As explained in the introduction, our method is mo-
tivated by the observation that accurate classification
at different levels of the hierarchy may rely on dif-
ferent features, or different combinations of the same
features. In order to capture such effects, we intro-
duce the regularization terms |wT

i wj | to add to the
classical hinge loss in an objective function that is to
be minimized. These regularization terms encourage
each normal vector wi to be orthogonal to those at its
ancestors. To be precise, given a set of training exam-
ples {(x1, y1), . . . , (xN , yN)}, we propose to solve the
following optimization problem

minimize
1

2

m∑

i,j=1

Kij

∣
∣wT

i wj

∣
∣+

C

N

N∑

k=1

ξk (4)

subject to wT
i xk −wT

j xk ≥ 1− ξk, ∀ j ∈ S(i),
∀ i ∈ A+(yk), ∀ k ∈ {1, . . . , N},

ξk ≥ 0, ∀ k ∈ {1, . . . , N}.
Here the optimization variables are the normal vectors
w1, . . . ,wm and the slack variables ξ1, . . . , ξN . The
parameter C controls the relative weights between the
regularization terms and the average hinge loss. We
assume the parameters Kij ≥ 0 for i, j = 1, . . . ,m,
and they can be considered as entries of a nonnegative
matrix K ∈ Rm×m. Without loss of generality, let K
be symmetric, i.e., Kij = Kji for all i, j = 1, . . . ,m.

We have the following remarks on the formulation (4):

• To reflect the hierarchical structure embedded in
a tree, we always set Kij = 0 whenever node i is
neither an ancestor nor a descendent of node j.
Thus we can rewrite the regularization terms
1
2

∑m

i,j=1 Kij

∣
∣wT

i wj

∣
∣ more explicitly as

1

2

∑

i∈Y

Kii‖wi‖2 +
∑

i∈Y

∑

j∈A(i)

Kij

∣
∣wT

i wj

∣
∣ .

The first term contains the squared L2-norms
of wi, which is common for most variants of
SVMs. The second term penalizes the absolute
values of the inner products between the vectors
wi andwj whenever j ∈ A(i). This effectively en-
courages orthogonality among the normal vectors
of the classification hyperplanes.

• In the constraints, each example (xk, yk) is used
for discriminating its category yk and all its an-
cestors from their own siblings. Classifier pairs
that are not siblings do not appear together in a
constraint. This reflects the recursive nature of
the classifier (1), and also leads to higher compu-
tational efficiency. Again consider the example of
a complete d-ary tree with height h. The num-
ber of constraints in our formulation is O(Ndh),
which is much smaller thanO(Ndh) in many other
variants of the multiclass SVM (see Section 5).

• Following Crammer & Singer (2001), we use the
same slack variable ξk for all of the discriminative
constraints associated with the example (xk, yk).
Nevertheless, the classification margins at differ-
ent levels in the hierarchy can be effectively differ-
entiated by setting the diagonal coefficients Kii.

3.1. Convexity

We are interested in finding conditions on the param-
eters Kij (i.e., the matrix K) such that the prob-
lem (4) is a convex optimization problem. Since the
constraints and the hinge loss only involve linear func-
tions, it suffices to establish convexity of the function

Ω(w) =
1

2

m∑

i,j=1

Kij

∣
∣wT

i wj

∣
∣ . (5)

Here w ∈ Rmn denotes the concatenation of the vec-
torsw1, . . . ,wm. To present our results, we first define
the comparison matrix K ofK, whose entries are given
as

Kij =

{
|Kii| if i = j,

−|Kij | otherwise.

Theorem 1. The function Ω(w) is convex if the ma-
trix K is nonnegative (entry-wise) and its comparison
matrix K is positive semidefinite. If n ≥ m − 1, then
these conditions are also necessary.

We note that in most applications the number of fea-
tures n is much larger than the number of labels m,
thus the conditions in Theorem 1 are necessary and
sufficient for convexity for such applications.

Due to space limitations, all proofs for results in this
paper are given in the technical report (Zhou et al.,
2011).

Hierarchical Classification via Orthogonal Transfer

In Section 4.2, we will develop an efficient algorithm
for solving problem (4), which relies on the concept of
strong convexity. The function Ω is strongly convex if
there exists σ>0 such that ∀α∈ [0, 1] and ∀u,v∈Rmn,

Ω(αu+(1−α)v) ≤ αΩ(u)+(1−α)Ω(v)−σ

2
α(1−α)‖u−v‖2.

The constant σ is called the convexity parameter of Ω
(see, e.g., Nesterov, 2004, § 2.1.3). A slightly stronger
condition establishes strong convexity for Ω:

Corollary 2. If the matrix K is nonnegative and its
comparison matrix K is positive definite, then Ω(w) is
strongly convex with a convexity parameter λmin(K),
which is the smallest eigenvalue of K.

It appears that there is still a lot of freedom in choosing
the parameters Kij . While further work is needed to
develop more principled methods for choosing these
parameters, we found some simple heuristics that work
reasonably well in practice. One simple choice is to set

Kij = Kji =







|D+(i)| if i = j,
α if i ∈ A(j),
0 else,

(6)

where α > 0 is a parameter. For problems with a rela-
tively small tree hierarchy, setting α = 1 often gives a
positive definite K. Otherwise, we can always reduce
the value of α, or increase the diagonal values Kii, to
make K positive definite.

It is worth noting that the choice of K in the equa-
tion (6) impliesKii > Kjj whenever i ∈ A(j). In SVM
training, this effectively encourages ‖wi‖ < ‖wj‖ for
i ∈ A(j). As shown in the classical theory on SVMs
(Vapnik, 1998), a small norm ‖w‖ corresponds to a
large classification margin. Hence, the choice of K

in (6) tends to give a larger classification margin at a
higher-level classification. This is in accordance with
the intuition that the classification tasks are relatively
easier at higher or more general levels, and become
more difficult from the top to the bottom of the tree.

3.2. Representer Theorem

Theorem 3. If the matrix K is nonnegative and its
comparison matrix K is positive definite, then the so-
lution to the optimization problem given in (4) admits

a representation of the form wi =
∑N

k=1 cikxk, for all
i ∈ Y, where the cik’s are scalar coefficients.

The representer theorem implies that our method can
be considered in a more general reproducing kernel
Hilbert space (RKHS) by choosing a problem-specific
reproducing kernel. Therefore more expressive non-
linear classifiers can also be established (see, e.g.,
Schölkopf & Smola, 2001).

4. Optimization Algorithm

Establishing convexity of an optimization problem
does not always mean that it can be readily solved
by existing algorithms and available software. This is
certainly the case for the problem in (4). In particu-
lar, it cannot be easily transformed into any standard
conic optimization form that lends itself to efficient
interior-point methods. Neither does it fit any avail-
able general or special-purpose SVM solver.

We propose to transform the problem (4) into an un-
constrained optimization problem, and solve it using
a subgradient-based algorithm. More specifically, by
eliminating the slack variables ξ1, . . . , ξN in (4), we
arrive at the following equivalent problem

minimize
w∈Rmn

J(w) , Ω(w) +H(w), (7)

where H(w) is the hinge loss, given by

H(w) =
C

N

N∑

k=1

max

{

0, max
j∈S(i),

i∈A+(yk)

{
1−wT

i xk +wT
j xk

}

}

.

The hinge-loss function H(w) is convex, since it is
the sum of N piece-wise linear functions, each being
a pointwise maximum of several linear functions (see,
e.g., Boyd & Vandenberghe, 2004, §3.2). If K satisfies
the conditions in Theorem 1, then Ω(w) is also a con-
vex function, and so is their sum J(w). On the other
hand, both Ω(w) and H(w) are nondifferentiable. So
we resort to subgradient-based methods for solving (7).

Surprisingly, even computing a subgradient of J(w)
can be very subtle.

4.1. Computing the Subgradients

The subtlety lies in computing a subgradient for Ω(w).
Given its expression in (5), it is tempting to assemble
a subgradient of Ω(w) by first obtaining a subgradient
for each summand Kij

∣
∣wT

i wj

∣
∣ and then adding them

together. However, this rule of subdifferential calcu-
lus is valid only if all summands are convex (see, e.g.,
Nesterov, 2004, Chapter 3). Although Ω(w) is convex
(assuming conditions in Theorem 1 are satisfied), the
summands Kij

∣
∣wT

i wj

∣
∣, when i 6= j, are not convex.

Indeed, subgradient does not exist for them almost
everywhere. Therefore, the subdifferential calculus for
the sum of convex functions does not apply here.

In general, computing subgradients of a convex func-
tion like Ω(w) (which is the sum of both convex and
nonconvex functions) requires the theory and heavy
machinery of lexicographic differentiation (Nesterov,
2005). Luckily for us, the particular form of Ω(w)
admits a simple expression for its subgradient:

Hierarchical Classification via Orthogonal Transfer

Theorem 4. Assume K is nonnegative and K is posi-
tive semidefinite. Then a subgradient of Ω(w) is given
by gΩ = (gΩ

1 , . . . ,g
Ω
m), where

gΩ
i = Kiiwi +

∑

j 6=i

sign(wT
i wj)Kijwj ,

and sign(α) equals 1 if α>0, −1 if α< 0, and 0 if α=0.

The form of gΩ above indeed looks as if it were com-
puted by following the subdifferential calculus for the
sum of convex functions. Nevertheless, justifying it
requires a nontrivial proof (Zhou et al., 2011).

In contrast, a subgradient of H(w) can be computed
by following the subdifferential calculus for the sum of
convex functions. For each example (xk, yk), let
(
i(k), j(k)

)
= argmax

j∈S(i), i∈A+(yk)

{
1−wT

i xk +wT
j xk

}
,

and compute a vector hk = (hk
1 , . . . ,h

k
m) as follows:

• If 1−wT
i(k)xk +wT

j(k)xk ≤ 0, then let hk = 0;

• Otherwise, let hk
i(k) = −xk, h

k
j(k) = xk, and let

hk
i = 0 for all i ∈ Y \ {i(k), j(k)}.

Then a subgradient of H(w) is given by the sum

gH = C
N

∑N

k=1h
k. Finally, using again the subdifferen-

tial calculus for sum of convex functions, a subgradient
of J(w) is given by gJ = gΩ + gH .

The classical subgradient method for general nons-
mooth convex optimization has a convergence rate
O(1/

√
t) (see, e.g., Nesterov, 2004, Chapter 3). In

this paper, we present a more efficient algorithm for
solving the problem (7) when J(w) is strongly convex
(by choosing K appropriately). Next, we first describe
the algorithm in a more general context, then discuss
how to apply it to the problem in (7).

4.2. A Regularized Dual Averaging Method

Consider convex optimization problems of the form

minimize
w∈W

J(w) , φ(w) + Ψ(w), (8)

where W is a closed convex subset of Rmn. The ob-
jective function J(w) is decomposed as the sum of two
parts. We assume that φ(w) is convex, and Ψ(w) is
strongly convex with convexity parameter σ > 0.

Algorithm 1 is a new variant of the regularized dual
averaging (RDA) method (Nesterov, 2009; Xiao, 2010)
that is well suitable for solving (8). In particular, Al-
gorithm 1 without steps 3 and 4 corresponds to a spe-
cial case of the RDA method in Xiao (2010). This al-
gorithm enjoys an O(ln(t)/σt) convergence rate. To

Algorithm 1 RDA Method with Optimality Bounds

input: training examples {(x1, y1), · · · , (xN , yN)},
constant C > 0, and accuracy ε > 0

initialization: w(1) = 0, g(0) = 0, δ(0) = 0,
upper bound J(1) = C, lower bound J(1) = 0

repeat for t = 1, 2, 3, . . .
1. Compute a subgradient g(t) ∈ ∂φ(w(t)), and

g(t) =
t− 1

t
g(t− 1) +

1

t
g(t)

2. Compute the next weight vector:

w(t+ 1) = argmin
w∈W

{

g(t)
T
w +Ψ(w)

}

(9)

3. Update the upper bound J :

J(t+ 1) = min
{

J(t), J(w(t+ 1))
}

4. Update the lower bound J :

δ(t) =
t−1

t
δ(t−1) +

1

t

(
φ(w(t))− g(t)Tw(t)

)

J(t+1) = δ(t) + g(t)Tw(t+1) + Ψ(w(t+1))

J(t+1) := max
{
J(t), J(t+ 1)

}

until J(t+ 1)− J(t+ 1) ≤ ε

be more specific, let J? denote the optimal objec-
tive value, and let w(t) denote the solution among
w(1), . . . ,w(t) that has the smallest objective value
(which can be easily recorded), then

J (w(t))− J? ≤ O

(
ln(t)

σt

)

. (10)

However, this theoretical result does not provide a
practical stopping criterion that guarantees a solution
of specified precision. The difficulty is that the hidden
constants in the O(·) notation are problem-dependent
and hard to estimate.

The extra steps 3 and 4 in each iteration of Algorithm 1
provide both an upper bound and a lower bound on the
objective value. Therefore we have an effective stop-
ping criterion to produce an ε-approximate solution,
without the need to estimate any problem-dependent
constant. This type of guarantee is very rare for sim-
ple subgradient-based methods. Updating the upper
bounds J(t) in Algorithm 1 is straightforward, so we
only need to explain the lower bounds J(t). Since g(t)
is a subgradient of φ at w(t), we have

φ(w) ≥ φ(w(t)) + g(t)T
(
w −w(t)

)
, ∀w ∈ W.

Therefore, for all w ∈ W,

J(w) ≥ 1

t

t∑

τ=1

(

φ(w(τ)) + g(τ)>(w−w(τ))
)

+Ψ(w).

Hierarchical Classification via Orthogonal Transfer

Taking the minimum on both sides, we have

min
w∈W

J(w)

≥ min
w∈W

{
1

t

t∑

τ=1

(

φ(w(τ)) + g(τ)T(w−w(τ))
)

+Ψ(w)

}

=
1

t

t∑

τ=1

(

φ(w(τ))−g(τ)Tw(τ)
)

︸ ︷︷ ︸

+min
w∈W

{
g(t)Tw +Ψ(w)

}

= δ(t) + g(t)Tw(t+ 1) + Ψ(w(t+1)).

The last line above is precisely what is used to compute
the new lower bound in step 4.

The complexity in (10) is given in terms of number of
iterations (i.e., number of subgradient queries). For
Algorithm 1 to be practically efficient, The minimiza-
tion problem in (9) needs to be easy to solve. For ex-
ample, in the special case of Ψ(w) = (σ/2)‖w‖2 and
W = Rmn, it has a closed form solution

w(t+ 1) = − 1

σ
g(t), (11)

and the computational cost per iteration is O(mn).

4.3. Splitting the Objective

Algorithm 1 can only be applied to solve the prob-
lem (7) when J(w) is strongly convex. This can be
guaranteed by choosing the matrix K properly. As-
suming that K is nonnegative and its comparison ma-
trix K is positive definite, then the function Ω(w) is
strongly convex (Corollary 2). Since J(w) is the sum
of Ω(w) and a convex functionH(w), it is also strongly
convex with the same convexity parameter (see, e.g.
Nesterov, 2004, Chapter 2). Let λmin > 0 be the small-
est eigenvalue of K, then both Ω(w) and J(w) are
strongly convex with convexity parameter σ = λmin.

To apply Algorithm 1, we also need to split J(w)
into the form of (8) appropriately. In particular,
the obvious splitting by assigning φ(w) = H(w) and
Ψ(w) = Ω(w) does not work, because in this case the
minimization problem in (9) does not admit a simple
solution. In our implementation, we use

φ(w) = Ω(w)− λmin

2
‖w‖2 +H(w),

Ψ(w) =
λmin

2
‖w‖2.

With this splitting, the function Ψ(w) is strongly con-
vex with convexity parameter σ = λmin. The func-
tion φ(w) is convex, since subtracting λmin from the
diagonals of K still leaves the corresponding compar-
ison matrix positive semidefinite. With this splitting,
we can calculate subgradients of φ(w) following Sec-
tion 4.1, and the equation (9) can be replaced by (11).

5. Related Work

In addition to the general discussion of related work
in Section 1, here we give the exact formulations of a
few methods that we will compare with in Section 6.

• FlatMult. This is the flat multiclass SVM of
Crammer & Singer (2001). It uses the flat classi-
fier (2) and trains the classifier by solving

minimize
1

2

∑

i∈Y

‖wi‖2 +
C

N

N∑

k=1

ξk (12)

subject to wT
yk
xk −wT

i xk ≥ 1− ξk,

∀ i ∈ Y\{yk}, ∀ k ∈ {1, . . . , N},
ξk ≥ 0, ∀ k ∈ {1, . . . , N}.

Since this formulation ignores the hierarchical
structure, we apply it only to the leaf labels in
the tree, i.e., we replace Y by the set of leaves L.

• HierMult. This is the hierarchical multiclass
SVM suggested by Dumais & Chen (2000). It
uses the recursive classifier (1), and solves a sep-
arate flat multiclass SVM at each non-leaf node.
That is, for each j ∈ Y \ L, we solve a problem
like (12) above by replacing Y with C(j).

• Transfer. This approach uses the recursive clas-
sifier (1), and employs a regularization that en-
courages the classifiers to be close to its ancestors:

minimize
1

2

∑

i∈Y

(

‖wi‖2+
∑

j∈C(i)

‖wi−wj‖2
)

+
C

N

N∑

k=1

ξk

subject to wT
i xk −wT

j xk ≥ 1− ξk, ∀ j ∈ S(i),
∀ i ∈ A+(yk), ∀ k ∈ {1, . . . , N},

ξk ≥ 0, ∀ k ∈ {1, . . . , N}.
In light of the parametrization (3), we have the
relationship ‖wi −wj‖ = ‖uj‖ for j ∈ C(i).

• TreeLoss. This is a form of the hierarchical
SVM of Cai & Hofmann (2004). It uses the flat
classifier (2) and solves a training problem in
terms of the incremental vectors ui that appeared
in the parametrization (3). More specifically,

minimize
1

2

∑

i∈Y

‖ui‖2 +
C

N

N∑

k=1

ξk

subject to
∑

i∈A+(yk)

uT
i xk−

∑

j∈A+(y)

uT
j xk ≥ 1− ξk

∆(yk, y)
,

∀ y ∈ Y \ {yk},
ξk ≥ 0, ∀ k ∈ {1, . . . , N}.

The path-loss coefficient ∆(yk, y) is set to be half
of the graph distance (length of shortest path)
between yk and y in the tree structure.

Hierarchical Classification via Orthogonal Transfer

Table 1. Some statistics of RCV1-v2/LYRL2004

|Y| |L| Total Train Test

CCAT 31 26 209,133 5,810 203,323
MCAT 9 7 189,211 5,438 183,773
ECAT 23 18 71,356 2,196 69,160

Table 2. Testing performance on CCAT (%)

0/1 Loss Tree Loss Micro F1

FlatMult 26.93(±0.28) 37.46(±0.47) 73.07(±0.28)
HierMult 26.19(±0.28) 35.80(±0.45) 73.81(±0.28)
Transfer 26.21(±0.26) 35.60(±0.42) 73.79(±0.26)
TreeLoss 37.57(±0.35) 50.45(±0.49) 62.43(±0.35)
Orthognl 23.62(±0.43) 33.12(±0.58) 76.38(±0.43)

Table 3. Testing performance on MCAT (%)

0/1 Loss Tree Loss Micro F1

FlatMult 7.03(±0.20) 8.96(±0.27) 92.97(±0.20)
HierMult 7.36(±0.21) 9.32(±0.27) 92.64(±0.21)
Transfer 8.20(±0.22) 10.72(±0.31) 91.80(±0.22)
TreeLoss 26.16(±0.34) 34.28(±0.45) 73.84(±0.34)
Orthognl 6.57(±0.19) 8.74(±0.27) 93.43(±0.19)

Table 4. Testing performance on ECAT (%)

0/1 Loss Tree Loss Micro F1

FlatMult 16.36(±0.30) 23.71(±0.40) 83.64(±0.30)
HierMult 15.99(±0.31) 22.77(±0.40) 84.01(±0.31)
Transfer 17.04(±0.36) 24.33(±0.48) 82.96(±0.36)
TreeLoss 26.71(±0.51) 36.49(±0.74) 73.29(±0.51)
Orthognl 16.18(±0.31) 24.21(±0.45) 83.82(±0.31)

6. Preliminary Experiments

We evaluated our method on the widely used text
categorization benchmark called RCV1-v2/LYRL2004
(Lewis et al., 2004). The documents have been tok-
enized, stopworded and stemmed to 47,236 unique to-
kens (features) and represented as L2-normalized log
TF-IDF vectors. The top categories MCAT, CCAT
and ECAT were used to form three classification tasks.
For each task, we excluded documents with multiple
labels to stick with a tree structure. The other top
category GCAT was not considered because its struc-
ture is flat rather than organized hierarchically. Some
statistics of the dataset are summarized in Table 1,
where |Y| is the number of all categories and |L| is the
number of leaf categories.

We compared our method with the four methods de-
scribed in Section 5. We converted all of them into un-
constrained optimization problems by eliminating the
slack variables, similar to (7). Then we solved them us-
ing Algorithm 1, as they all fit into the structure of (8).
We used the parameter C = 1 in all formulations,
which is common in text classification (e.g., Joachims,
1998; Lewis et al., 2004; Cai & Hofmann, 2004). We
also tried different values of C varying from 1 to 100,
but didn’t observe significant differences in the results.

Table 5. Some statistics of the hierarchical subset

|Y| |L| Total Train Test

CCAT 16 12 138,125 3,676 134,449
MCAT 7 5 123,343 3,682 119,661
ECAT 18 13 57,582 1,734 55,848

Table 6. Testing performance on CCAT.Hierarchical (%)

0/1 Loss Tree Loss Micro F1

FlatMult 21.39(±0.29) 32.66(±0.56) 78.61(±0.29)
HierMult 21.41(±0.29) 32.23(±0.53) 78.59(±0.29)
Transfer 21.91(±0.31) 33.45(±0.56) 78.09(±0.31)
TreeLoss 26.32(±0.39) 40.95(±0.66) 73.68(±0.39)
Orthognl 17.46(±0.74) 28.97(±0.95) 82.54(±0.74)

Table 7. Testing performance on MCAT.Hierarchical (%)

0/1 Loss Tree Loss Micro F1

FlatMult 5.23(±0.21) 5.90(±0.23) 94.77(±0.21)
HierMult 4.84(±0.20) 5.41(±0.21) 95.16(±0.20)
Transfer 4.70(±0.20) 5.27(±0.22) 95.30(±0.20)
TreeLoss 13.34(±0.71) 16.31(±1.00) 86.66(±0.71)
Orthognl 3.00(±0.14) 3.56(±0.15) 97.00(±0.14)

Table 8. Testing performance on ECAT.Hierarchical (%)

0/1 Loss Tree Loss Micro F1

FlatMult 13.57(±0.26) 20.76(±0.39) 86.43(±0.26)
HierMult 13.57(±0.27) 20.53(±0.40) 86.43(±0.27)
Transfer 13.67(±0.28) 20.88(±0.41) 86.33(±0.28)
TreeLoss 17.13(±0.37) 26.20(±0.63) 82.87(±0.37)
Orthognl 12.47(±0.30) 20.89(±0.57) 87.53(±0.30)

Our method is listed as Orthognl. We chose the
matrix K according to (6). For this dataset, setting
α = 1 makes the comparison matrices positive definite.

The evaluation metrics include 0/1 loss (error rate),
tree-induced loss (half of the graph distance between
two categories), and micro-averaged F1 score (see, e.g.,
Lewis et al., 2004). The results are summarized in Ta-
bles 2-4, all shown in percentages. Each entry in the
tables shows the average metric, as well as the stan-
dard deviation, computed over 50 rounds of random
samplings. The training/testing split ratio for each
round is the same as shown in Table 1. The numbers
in bold fonts are the best results judged by a t-test
with a significance level of 0.01. Our method outper-
formed other approaches on CCAT and MCAT, but is
slightly worse than HierMult on ECAT, mainly in
terms of tree-induced loss.

We also did experiments on a particular subset of
RCV1-v2/LYRL2004. This subset was built simply
by removing the first-level categories that have no de-
scendants. In other words, we only kept those branches
in the tree that have at least two levels. This subset
emphasizes the effects of hierarchical structure. The
statistics of this subset are summarized in Table 5.
The classification performances of different methods

Hierarchical Classification via Orthogonal Transfer

are summarized in Tables 6-8. We see that on this
subset of data, our orthogonal transfer method per-
formed even better compared to the other approaches.

7. Conclusions

We proposed a novel method called orthogonal transfer
for hierarchical classification, which specifically tack-
les the difficulty of classifying similar classes in the
lower levels of the category hierarchy. We presented a
convex optimization formulation for the problem and
devised an efficient dual-averaging method for solving
it. Preliminary experiments show that our method can
effectively exploit the hierarchical structure and is able
to produce improved classification accuracy.

Several results in this paper can be of independent
interests: the necessary and sufficient conditions for
Ω(w) to be convex, the derivation of its subgradient,
and the general RDA method with optimality bounds.

As future work, we are very interested in analyzing
orthogonal transfer from a learning theory perspective.
We also hope to investigate more principled methods
for choosing or learning K for better performance.

Acknowledgments

We thank Professor Yurii Nesterov for comments on
the convexity conditions and pointers to the subject
of lexicographic differentiation.

References

Boyd, S. and Vandenberghe, L. Convex Optimization.
Cambridge University Press, 2004.

Cai, L. and Hofmann, T. Hierarchical document cat-
egorization with support vector machines. In Proc.
13th ACM International Conference on Information
and Knowledge Management, pp. 78–87, 2004.

Cesa-Bianchi, N., Gentile, C., and Zaniboni, L. In-
cremental algorithms for hierarchical classification.
JournalofMachineLearningResearch, 7:31–54, 2006.

Crammer, K. and Singer, Y. On the algorithmic im-
plementation of multiclass kernel-based vector ma-
chines. Journal of Machine Learning Research, 2:
265–292, 2001.

Dekel, O., Keshet, J., and Singer, Y. Large margin hi-
erarchical classification. In Proc. 21st International
Conference on Machine Learning, pp. 27–34, 2004.

Dumais, S. T. and Chen, H. Hierarchical classification
of web content. In Proceedings of SIGIR’00, pp.
256–263, 2000.

Evgeniou, T., Micchelli, C. A., and Pontil, M. Learn-
ing multiple tasks with kernel methods. Journal of
Machine Learning Research, 6:615–637, 2005.

Joachims, T. Text categorization with support vector
machines: Learning with many relevant features. In
Proceedings of the 10th European Conference on Ma-
chine Learning, pp. 137–142, 1998.

Koller, D. and Sahami, M. Hierarchically classifying
docuemnts using very few words. In Proc. 14th Intl.
Conf. Machine Learning, pp. 171–178, 1997.

Lewis, D. D., Yang, Y., Rose, T., and Li, F. RCV1:
A new benchmark collection for text categorization
research. Journal of Machine Learning Research, 5:
361–397, 2004.

McCallum, A. K., Rosenfeld, R., Mitchell, T. M., and
Ng, A. Y. Improving text classification by shrinkage
in a hierarchy of classes. In Proc. 15th Intl. Conf.
on Machine Learning, pp. 359–367, 1998.

Nesterov, Yu. Introductory Lectures on Convex Opti-
mization: A Basic Course. Kluwer, Boston, 2004.

Nesterov, Yu. Lexicographic differentiation of nons-
mooth functions. Mathematical Programming, 104:
669–700, 2005.

Nesterov, Yu. Primal-dual subgradient methods for
convex problems. Mathematical Programming, 120:
221–259, 2009.

Schölkopf, B. and Smola, A. J. Learning with Kernels:
Support Vector Machines, Regularization, Optimiza-
tion, and Beyond. MIT Press, 2001.

Vapnik, V. N. Statistical learning theory. John Wiley
& Sons, New York, 1998.

Weigend, A. S., Wiener, E. D., and Pedersen, J. O.
Exploiting hierarchy in text categorization. Infor-
mation Retrieval, 1:193–216, 1999.

Weinberger, K. and Chapelle, O. Large margin tax-
onomy embedding with an application to document
categorization. In Advances in Neural Information
Processing Systems 21, pp. 1737–1744, 2008.

Weston, J. and Watkins, C. Support vector machines
for multi-class pattern recognition. In Proceedings
of the 6th European Symposium on Artificial Neural
Networks (ESANN), pp. 219–224, 1999.

Xiao, L. Dual averaging methods for regularized
stochastic learning and online optimization. Journal
of Machine Learning Research, 11:2543–2596, 2010.

Zhou, D., Xiao, L., and Wu, M. Hierarchical classi-
fication via orthogonal transfer. Technical Report
MSR-TR-2011-54, Microsoft Research, 2011.

