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Abstract

Visualization techniques for complex data
are a workhorse of modern scientific pur-
suits. The goal of visualization is to embed
high-dimensional data in a low-dimensional
space while preserving structure in the data
relevant to exploratory data analysis such
as clusters. However, existing visualization
methods often either fail to separate clusters
due to the crowding problem or can only sep-
arate clusters at a single resolution. Here, we
develop a new approach to visualization, tree
preserving embedding (TPE). Our approach
uses the topological notion of connectedness
to separate clusters at all resolutions. We
provide a formal guarantee of cluster sepa-
ration for our approach that holds for finite
samples. Our approach requires no param-
eters and can handle general types of data,
making it easy to use in practice.

1. Introduction

Visualization is an important first step in the analysis
of high dimensional data. High-dimensional data often
has low intrinsic dimensionality, making it possible to
embed the data in a low-dimensional space while pre-
serving much of its structure. However, it is rarely
possible to preserve all types of structure in the em-
bedding. Therefore, dimensionality reduction methods
can only aim to preserve particular types of structure.
Linear methods such as principal component analysis
(PCA) and multidimensional scaling (MDS) (Mardia
et al., 1979) preserve global distances, while nonlinear
methods such as manifold learning (Tenenbaum et al.,
2000; Roweis & Saul, 2000; Belkin & Niyogi, 2003)
preserve local distances defined by kernels or neighbor-
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hood graphs. However, most dimensionality reduction
methods fail to preserve clusters (Venna et al., 2010),
which are often of greatest interest.

Clusters are difficult to preserve in embeddings due
to the so-called crowding problem (van der Maaten &
Hinton, 2008). When the intrinsic dimensionality of
the data exceeds the embedding dimensionality, there
is not enough space in the embedding to allow clusters
to separate. Therefore, clusters are forced to collapse
on top of each other in the embedding. As the embed-
ding dimensionality increases, there is more space in
the embedding for clusters to separate and the crowd-
ing problem disappears, making it possible to preserve
clusters exactly (Roth et al., 2003). However, since
the embedding dimensionality is at most two or three
for visualization purposes, the crowding problem is
prevalent in practice. When the clusters are known,
they can be used to guide the embedding to avoid the
crowding problem (Xing et al., 2002). However, the
clusters are often difficult to find. In fact, the embed-
ding is often used to help find the clusters in the first
place. Therefore, it is important to solve the crowding
problem without knowledge of the clusters.

Force-based methods such as stochastic neighbor em-
bedding (SNE) (Hinton & Roweis, 2003), variants of
SNE (Cook et al., 2007; van der Maaten & Hinton,
2008; Carreira-Perpinan, 2010; Venna et al., 2010), and
local MDS (Chen & Buja, 2009), have been proposed
to overcome the crowding problem. Force-based meth-
ods use attractive forces to pull together similar points
and repulsive forces to push apart dissimilar points.
SNE and its variants use forces based on kernels, while
local MDS uses forces based on neighborhood graphs.
Force-based methods have long been used in graph
drawing to separate clusters (Di Battista et al., 1998;
Kaufmann & Wagner, 2001). Although force-based
methods are effective, it is difficult to balance the rela-
tive strength of attractive and repulsive forces. When
repulsive forces are too weak, they will fail to sepa-
rate clusters, but when repulsive forces are too strong,
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they will artificially create clusters. Therefore, force-
based methods are sensitive to intrinsic resolution pa-
rameters such as kernel bandwidths and neighborhood
graph sizes that control the amount of separation be-
tween points in the embedding.

We introduce tree preserving embedding (TPE) in or-
der to overcome the limitations of force-based meth-
ods. TPE aims to preserve both distances and clusters
by preserving the single linkage (SL) dendrogram in
the embedding. SL is a hierarchical clustering method
that merges clusters with minimum nearest neighbor
distance. The SL dendrogram is the associated tree
with clusters as vertices and merge distances as ver-
tex heights. TPE preserves the SL. dendrogram in the
sense that both the data and the embedding have the
same SL dendrogram. Embeddings and dendrograms
have long been used as representations for dissimilar-
ities (Shepard, 1980). However, there is no guarantee
that embeddings and dendrograms will be consistent
when used separately. In particular, clusters found by
dendrograms may not be found in embeddings due to
the crowding problem. TPE combines embeddings and
dendrograms in a common representation.

Preserving the SL dendrogram is a natural choice for
several reasons. First, the SL dendrogram is the only
dendrogram consistent with the topology of the min-
imum spanning tree (MST) (Gower & Ross, 1969;
Zadeh & Ben-David, 2009). Preserving the topologies
of neighborhood graphs has been shown to help over-
come the crowding problem (Shaw & Jebara, 2009).
However, while the topologies of neighborhood graphs
such as the MST can only be preserved approximately
in general (Eades, 1996), we show that the SL dendro-
gram can be preserved exactly. Second, the SL den-
drogram represents both global and local structure due
to its hierarchical nature. Preserving global structure
allows TPE to separate clusters, while preserving local
structure prevents TPE from artificially creating clus-
ters. Finally, TPE can separate clusters even when
the SL dendrogram cannot. Although SL is often crit-
icized as a clustering method for finding poor clusters
in practice (Hartigan, 1975), SL finds poor clusters
due to the instability of cutting the SL dendrogram at
a particular height (Stuetzle, 2003). Since TPE pre-
serves the SL dendrogram at all heights, TPE is not
sensitive to the instabilities of the SL dendrogram at
any particular height.

We make cluster separation in TPE precise using the
topological notion of connectedness. A natural and
commonly used notion of a cluster is a set of points
that are connected at a particular resolution. It is
well known that the SL dendrogram finds clusters of
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Figure 1. Relation between the SL dendrogram and con-
nectedness in the embedding. Cutting the SL dendrogram
at a height of ¢ = 0.3 produces three clusters of e-connected
points. Points 3 and 5 are e-connected by point 4 because
the e-ball centered at point 4 contains points 3 and 5, while
points 1 and 2 are not e-connected to any other points be-
cause they are not contained by any e-balls centered at
other points.

connected points at different resolutions for different
heights (Hartigan, 1975). We show that TPE preserves
connectedness in the sense that points in the embed-
ding are connected if and only if they are connected
in the data. Preserving connectedness guarantees that
clusters separated in the data remain separated in the
embedding. Thus, TPE is guaranteed to separate clus-
ters at all resolutions, rather than a single resolution.

Besides its theoretical basis, TPE has several attrac-
tive features in practice. First, in contrast to many
nonlinear dimensionality reduction methods that re-
quire careful parameter selection to perform well, TPE
requires no parameters. Second, TPE inherits the gen-
erality of MDS, which can handle data represented
only in terms of dissimilarities rather than as vectors.
Dissimilarities are found in many applications where
vector representations are either poor or unavailable.
Finally, since the merge order of the SL dendrogram is
preserved under monotonic transformations of the dis-
similarities, TPE is more sensitive to the rank order
than the values of the dissimilarities. Therefore, TPE
can handle non-metric dissimilarities.

2. Tree Preserving Embedding

In this section, we introduce TPE as a set of con-
straints in MDS that preserve the SL dendrogram.
The constraints arise from a characterization of the
SL dendrogram using a notion of connectedness. We
introduce an algorithm similar to hierarchical cluster-
ing to implement TPE. In order to make the algorithm
practical, we propose a variant based on a greedy ap-
proximation that maintains the constraints. Finally,
we show that TPE preserves connectedness in a precise



Tree Preserving Embedding

sense that corresponds well with separating clusters.

2.1. Algorithm

TPE preserves the SL dendrogram in MDS. Given an
n x n dissimilarity matrix D for a set of n objects
S ={1,...,n}, MDS (Buja et al., 2008) finds an em-
bedding X = {z1,...,2,} C RP of the objects in p
dimensions that minimizes the stress function

> (dij(X) - Dij)?,

xzix; €X

o(X)=

the sum of squared errors between the Euclidean dis-
tances d; j(X) = ||z; — ;| in the embedding and the
dissimilarities D; ;. In general, stress is a natural ob-
jective that aims to preserve the underlying metric
of the dissimilarities. However, since stress empha-
sizes approximating large dissimilarities well, minimiz-
ing stress without constraints on the embedding leads
to the crowding problem. TPE preserves the SL den-
drogram in order to overcome the crowding problem.

SL is a hierarchical clustering method that iteratively
merges pairs of clusters A, B C S with minimum near-
est neighbor distance

d(A,B)= min D, ;

icAjeB "

starting with singleton clusters and ending with the
trivial cluster. The SL dendrogram is the associated
binary tree of depth n—1 with singleton clusters as leaf
vertices, the trivial cluster as the root vertex, merged
clusters as internal vertices, and merge distances as
vertex heights. There are many equivalent character-
izations of the SL dendrogram (Hartigan, 1985). We
use the following notion of connectedness to express
the SL dendrogram as a set of constraints on pairs of
objects.

Definition 1. Objects i,j € S are e-connected if
there exists a path oy = i,...,qmy = j € S such that
D <eforl=1,...,m—1.

Definition 2. Points z;,z; € X are e-connected if
there exists a path To, = %4, ..., %q,, = T; € X such
that doy,c (X) <€ forl=1,...,m— 1.

Q041

Intuitively, objects are connected if there exists a path
with short hops between them. The SL dendrogram
contains the paths with short hops between objects.
Cutting the SL dendrogram at a height of £ produces
a partition of the objects into clusters with heights at
most €. It is well known that cutting the SL dendro-
gram at a height of € produces clusters of e-connected
objects (Hartigan, 1975). Therefore, objects are e-
connected if there exists a path of vertices with heights

Algorithm 1 Tree Preserving Embedding
Input: dissimilarity matrix D, embedding dimen-
sionality p
Output: embedding X
// Initialize clusters
Set Sl = {1},...,571 = {n}
Set I = {1,...,TL}
Set X1 = {Il 10}7,Xn = {I’n :0}
for k=1ton—1do
// Find the next cluster merge
Set ag, by, = arg min, 7, d(Sq, ) st
Set dj, = d(Sak7Sbk)
// Merge the clusters
Set Spik = Sak @] Sbk
Set Ik+1 = {Z elp:i 75 ak,bk}u{n+k}
// Find the ultrametric distances for the
merged cluster
for i,7 € S,y do

a#b

Uay,ij ifi,5€ 8,
Set Un+k, i,j = Ubk,i,j if i,j S Sbk
dy, otherwise
end for
// Embed the merged cluster
Set Xn+k =
arg min o(X)

X={z,€ERP:i€S, 1}
s.t. x;,x; are Up4p, j-connected Vi,j5 € Spyp
di ;(X) > Ungriy V9,5 € Sntk

end for
Return X5, 1

at most € between their singleton clusters in the SL
dendrogram. The relation between the SL dendrogram
and connectedness in an embedding is illustrated in
Figure 1.

Cluster merges connect objects in the SL dendrogram.
The ultrametric distance between objects is the dis-
tance at which they are merged into the same cluster in
the SL dendrogram (Johnson, 1967). It is well known
that the ultrametric distance in the SL dendrogram is
equivalent to the sub-dominant ultrametric distance

. m—1
min  maxD,,,
a1=t,...,am=j l=1

Uij= Qg1
the maximum hop in a minimum path between the ob-
jects (Carlsson & Mémoli, 2010). The SL dendrogram
can be characterized by two constraints on each pair of
objects. First, each pair of objects must be connected
by its ultrametric distance. Second, each pair of ob-
jects must not be connected by any distance less than
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its ultrametric distance. The first constraint guaran-
tees that clusters are merged at the same distances as
the SL dendrogram, while the second constraint guar-
antees that clusters are merged in the same order as
the SL dendrogram. TPE uses the constraints on pairs
of objects as constraints on associated pairs of points
in the embedding.

Algorithm 1 implements TPE. The algorithm proceeds
similarly to hierarchical clustering. There are n —1 it-
erations, one for each depth of the SL dendrogram.
At each iteration, a pair of clusters is merged and the
merged cluster is embedded by minimizing stress sub-
ject to the connectedness constraints. At the last iter-
ation, the trivial cluster is embedded and returned.
The number of objects being embedded changes at
each iteration depending on the size of the merged
cluster. Since the embeddings at each iteration are
independent, only the embedding at the last iteration
is needed. However, earlier embeddings can be used
to help initialize later embeddings in practice.

The connectedness constraints in the optimization
problem may appear to be too rigid to allow TPE to
find a low stress embedding since each pair of objects
can be connected by an arbitrary sequence of objects.
However, the connectedness constraints do not specify
that the paths connecting pairs of points must be the
same as the paths connecting associated pairs of ob-
jects. Preserving the paths that fulfill the connected-
ness constraints would preserve the MST, which is not
possible in general (Eades, 1996). Moreover, the flexi-
bility in choosing the paths to fulfill the connectedness
constraints allows points to move freely in the embed-
ding to lower stress. However, this flexibility comes at
a cost. Due to the combinatorial nature of choosing
paths, the optimization problem is intractable. Nev-
ertheless, we can obtain a tractable approximation by
restricting the types of paths that can be chosen.

2.2. Greedy Approximation

The optimization problem allows all points in a merged
cluster to be rearranged in the embedding at each iter-
ation. However, since each cluster being merged has al-
ready been embedded in prior iterations, it is wasteful
to allow each cluster to be rearranged internally. The
connectedness constraints within the clusters are al-
ready fulfilled in the prior embeddings. Since connect-
edness is preserved under rigid transformations, if we
restrict the placement of the clusters to rigid transfor-
mations, then we only need to fulfill the connectedness
constraints between the clusters. The paths that ful-
fill the connectedness constraints between the clusters
must pass through their nearest neighbors. Therefore,

placing the clusters exactly their merge distance apart
fulfills the connectedness constraints between them.
The remaining flexibility in placing the clusters can
be used to minimize the stress between them.

In place of the optimization problem at each iteration
k, the greedy approximation proceeds as follows. We
find a rigid transformation that aligns the prior em-
beddings of the clusters while keeping them separated
by their merge distance

T* =arg min (dij(T) — Di,j)Q
TeE(p) 2i€Xa, ,2;€Xy,
s.t. min d; ;(T) = di,

ﬂci,EXak ,.”L'jEka

where d; ;(T) = ||T'(x;) — ;|| is the Euclidean distance
in the embedding after alignment F(p) is the set of
rigid transformations in p dimensions. We align the
clusters by setting x; = T*(z;) for all z; € X,, and
and return the merged cluster X, = X,, U Xy, .

The greedy approximation is reminiscent of Procrustes
analysis (Gower & Dijksterhuis, 2004), which can be
used to merge different embeddings (Quist & Yona,
2004). However, Procrustes analysis aligns embed-
dings without constraints, making it sensitive to the
crowding problem. In contrast, the greedy approxi-
mation has a constraint that keeps the clusters sepa-
rated in order to preserve the SL dendrogram. The
constraint makes the greedy approximation more dif-
ficult to solve than Procrustes analysis. Nevertheless,
the greedy approximation can be solved efficiently in
practice using constrained optimization methods.

The efficiency of the greedy approximation comes at
the cost of sensitivity to the merge order of the SL den-
drogram. Since the greedy optimization cannot change
the shapes of the clusters from prior embeddings, it
cannot always align the clusters well. For small clus-
ter merges, the prior embeddings will have little effect
on the alignment. However, for large cluster merges,
there may not be enough empty space in the prior
embeddings to allow the clusters to be aligned well.
Nevertheless, we found that a good alignment of the
clusters can usually be found in practice.

The greedy approximation has a time complexity of
O(n?) since there are O(n) iterations, each of which
requires minimizing the O(n?) stress between the clus-
ters in order to find the alignment of the clusters. The
greedy approximation has the same time complexity as
dimensionality reduction methods based on a spectral
decomposition of a dissimilarity matrix. While the cu-
bic time complexity of the greedy approximation may
be prohibitive for some applications, methods devel-
oped to improve the scalability of MDS such as land-
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Figure 2. Embeddings of protein sequences by TPE, non-metric MDS, and t-SNE. Each point is a protein sequence labeled
by the domain it belongs to where ‘A’ denotes Archaea, ‘B’ denotes Bacteria, and ‘E’ denotes Eukaryota.

mark points (de Silva & Tenenbaum, 2003) can also
be applied to TPE in principle.

2.3. Connectedness

TPE preserves clusters at all resolutions rather than
just a single resolution due to the hierarchical nature
of the SL dendrogram. Since the clusters found by
cutting the SL dendrogram at different heights can
be characterized by connectedness at different resolu-
tions, TPE preserves connectedness in the following
sense.

Theorem 1. For any € > 0, points x;,x; € X
are e-connected if and only if objects i,j € S are e-
connected.

Proof. First, we show that if objects i,5 € S are e-
connected, then points x;,z; € X are e-connected. We
know that x;,z; are é-connected by the distance § =
dy, at which z;, z; were merged into the same cluster
at some iteration k. Let aq,...,qa,, € S be the path
that e-connects 4,j. Since ¢ € S,, and j € S, , there
exists some [ such that oy € S,, and a;41 € Sp,. Since
a; and agy; are in different clusters, 6 < Dg; 0, < €.
Therefore, x;,z; are e-connected.

Now, we show that if points z;,z; € X are e-
connected, then objects 7,5 € S are e-connected.
Without loss of generality, let z;,; be points merged
into the same cluster at iteration k such that x;,x;
are e-connected by the distance ¢ = di. Let

Taqs---1%a,, € X be the path that e-connects
24, ;. We know that there exists some [ such that
day,air (X) = di. Let kp < k be the minimum number

of iterations such that «aq,...,q; are in the same clus-
ter. Then ayq, ..., are d-connected by d = di,. Since

dy, is monotonically increasing in k, § < €. Therefore,
Qq,...,qp are e-connected. Similarly, ayyq, ..., q, are
e-connected. Since «; and ayy; are in different clus-
ters, Da;,ar, < €. Therefore, i, j are e-connected. [J

TPE preserves connectedness in the sense that points
are connected in the embedding if and only if they are
connected in the data. Clusters at any resolution can
be neither too close together nor too far apart in the
embedding without violating connectedness at some
resolution. Therefore, preserving connectedness guar-
antees that clusters separated in the data remain sep-
arated in the embedding. Preserving connectedness is
of more than just theoretical interest. Since connect-
edness applies to finite samples, preserving connected-
ness provides a formal guarantee of cluster separation
for TPE in practice. To our knowledge, TPE is the
first method with a formal guarantee of this kind.

Preserving connectedness can be used to obtain dis-
tance bounds on points in the embedding. Points in
the embedding can be no closer than the merge dis-
tance between their clusters and no further apart than
the total merge distances between and within their
clusters. Therefore, points that are merged into the
same cluster earlier in the SL dendrogram will tend to
be closer in the embedding.

Theorem 2. We have

m—1
m—1
I?:alXDaz,Oéwl < di,j(X> < lz; Daz,az+1
where ay = 14, ...,Q;, = J is the path between the ob-

jects in the MST.

Proof. Let x;, z; be points merged into the same clus-
ter at iteration k. Since the merge distances of the
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Figure 3. Embeddings of radar signals by TPE, PCA, and t-SNE. Each point is a radar signal labeled by its quality where
‘G’ denotes a good radar signal and ‘B’ denotes a bad radar signal.

SL dendrogram are equivalent to the edge lengths of
the MST (Gower & Ross, 1969), the lower bound is
equivalent to the merge distance between the clusters
ak,br and the upper bound is equivalent to the total
merge distances between and within the clusters ay, by.
Therefore, the lower and upper bounds follow from the
connectedness constraints. O

The distance bounds can be used to obtain an upper
bound on the stress of the embedding. Therefore, pre-
serving connectedness prevents the embedding from
having arbitrarily high stress.

Corollary 1. We have

O'(X) S Z max{(Di’j —

mi,.’L‘jEX

Ui ;)% (Dij — Lij)*}.

3. Results

In this section, we demonstrate the applicability of
TPE by analyzing simulated and real examples drawn
from molecular biology, signal processing, and com-
puter vision. Rather than being exhaustive, our goal
is to highlight some of the properties of TPE through
each example. We compare TPE to both traditional
methods, PCA, non-metric MDS, and Isomap (Tenen-
baum et al., 2000), and a force-based method, t-SNE
(van der Maaten & Hinton, 2008), that recent stud-
ies have found separates clusters well (Venna et al.,
2010). We demonstrate that TPE most robustly pre-
serves different types of structure.

3.1. Protein Sequences

As a first example, we analyzed 124 protein sequences
of 3-phosphoglycerate kinases (3-PGKs) belonging to

the domains Archaea, Bacteria, and Eukaryota col-
lected from public databases by Pollack et al. (2005).
Since protein sequences cannot be represented as vec-
tors, methods such as PCA that require such a rep-
resentation cannot be used. Finding a good metric
for protein sequences is a difficult and longstanding
problem (Atchley et al., 2005). We used sequence
alignment scores from the basic local alignment search
tool (BLAST) (Althscul et al., 1990) as dissimilarities.
Since BLAST scores can be highly non-metric (Roth
et al., 2003), they are notoriously difficult to embed
without collapsing points on top of each other. Fig-
ure 2 shows the embeddings by TPE, non-metric MDS,
and t-SNE. TPE clearly separates all three domains,
while non-metric MDS and t-SNE mix members of dif-
ferent domains together.

3.2. Radar Signals

As a second example, we analyzed 351 radar signals
targeting free electrons in the ionosphere collected by
(Sigillito et al., 1989). Each radar signal consisted of
34 integer and real measurements. We treated each
radar signal as a 34 dimensional vector and used Eu-
clidean distances as dissimilarities. Good radar sig-
nals were defined as those that returned evidence of
free electrons in the ionosphere, while bad radar sig-
nals were defined as those that passed through the
ionosphere and returned background noise. Therefore,
good radar signals are highly similar, while bad radar
signals can be highly dissimilar. Figure 3 shows the
embeddings by TPE, PCA, and t-SNE. TPE clearly
separates good and bad radar signals, while PCA and
t-SNE mix them together.
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Figure 4. Embeddings of handwritten digits by TPE, PCA, and t-SNE. Each point is an image labeled by the digit it

represents.

3.3. Handwritten Digits

As a third example, we analyzed 1000 images of hand-
written digits collected by the United States Postal
Service in (Hull, 1994). Each image was 16 x 16 pix-
els and greyscale color. We treated each image as a
256 dimensional vector and used Euclidean distances
as dissimilarities. Since the intrinsic dimensionality of
handwritten digits is thought to be much higher than
two or three (Saul & Roweis, 2003), it is notoriously
difficult to separate all ten digits in an embedding due
to the crowding problem. Figure 4 shows the embed-
dings by TPE, PCA, and t-SNE. TPE and t-SNE sep-
arate all ten digits, while PCA only separates some.

3.4. Stability

In order to test the sensitivity of TPE to sampling
variability, we generated 100 samples of the barbell,
a popular example of a two-dimensional non-convex
manifold (Saul & Roweis, 2003). For each sample,
we generated 150 points as follows. We sampled 50
points each from multivariate normal distributions
with means (0,0) and (10,10) and standard deviation
1 and 50 points with coordinates (u,u) + z where u
is sampled uniformly from the interval [0,10] and z is
sampled from a multivariate normal distribution with
mean (0,0) and standard deviation 0.05. The barbell
is notoriously difficult to embed due to the presence
of both clusters in the bells and continuity in the bar
(Saul & Roweis, 2003), making it a good example to
test for stability.

We compared TPE, Isomap, and t-SNE by using Pro-
crustes analysis to align their embeddings to the exact
embedding. The average sample variance of the coor-
dinates of the points in the embeddings was 3.45 for

the exact embedding, 2.72 for TPE, 3.40 for Isomap,
and 984.54 for t-SNE. TPE and Isomap had compa-
rable stability to the exact embedding, while t-SNE
was two orders of magnitude less stable than TPE and
Isomap.

4. Discussion

Revealing clusters is one of the main goals of visu-
alization. However, most dimensionality reduction
methods have difficulty preserving clusters due to the
crowding problem. In three difficult examples, TPE
was able to separate clusters of interest well compared
to other dimensionality reduction methods. It is im-
portant to emphasize that the success of TPE is not
a mere consequence of the ability of the SL dendro-
gram to separate clusters. In all of the examples, the
clusters found by cutting the SL dendrogram were no
better than random clusters in terms of accuracy with
respect to the clusters of interest. TPE succeeds by
preserving clusters at all resolutions rather than just
a single resolution.

TPE is a promising approach to visualization because
it has a formal guarantee of cluster separation, requires
no parameters, and can handle general types of data.
However, there are a few issues with TPE that limit
its applicability. First, TPE has a cubic time com-
plexity, which can be prohibitively slow for large data
sets. Second, since TPE only provides an embedding
rather than a mapping, it cannot be applied to out-of-
sample data. Finally, although we have found that the
greedy approximation works well in practice, better
optimization methods may significantly improve the
performance of TPE. We hope that these issues will
be addressed by future research.
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