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Abstract

We analyze a method for nonparametric den-
sity estimation that exhibits robustness to
contamination of the training sample. This
method achieves robustness by combining a
traditional kernel density estimator (KDE)
with ideas from classical M-estimation. The
KDE based on a Gaussian kernel is inter-
preted as a sample mean in the associated re-
producing kernel Hilbert space (RKHS). This
mean is estimated robustly through the use
of a robust loss, yielding the so-called robust
kernel density estimator (RKDE). This ro-
bust sample mean can be found via a kernel-
ized iteratively re-weighted least squares (IR~
WLS) algorithm. Our contributions are sum-
marized as follows. First, we present a rep-
resenter theorem for the RKDE, which gives
an insight into the robustness of the RKDE.
Second, we provide necessary and sufficient
conditions for kernel IRWLS to converge to
the global minimizer, in the Gaussian RKHS,
of the objective function defining the RKDE.
Third, characterize and provide a method for
computing the influence function associated
with the RKDE. Fourth, we illustrate the ro-
bustness of the RKDE through experiments
on several data sets.

1. Introduction

This paper addresses a method of nonparametric den-
sity estimation that exhibits robustness to contami-
nation of the training sample, meaning the training
sample consists of some realizations that are not from
the density being estimated. Such robust density esti-
mators are motivated, for example, by the problem of
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anomaly detection. When labeled examples of anoma-
lies are unavailable, it is common to define an anomaly
detector by thresholding a density estimate based on
non-anomalous data. In applications where it is diffi-
cult or impossible to obtain a pure sample (containing
no anomalies), robust density estimation can mitigate
the impact of contamination.

We analyze a method for robust nonparametric den-
sity estimation described by Kim & Scott (2008).
This method achieves robustness by combining a tra-
ditional kernel density estimator (KDE) with ideas
from M-estimation (Huber, 1964; Hampel, 1974). The
KDE based on a Gaussian kernel is interpreted as a
sample mean in the reproducing kernel Hilbert space
(RKHS) associated with the kernel. The sample mean
is estimated robustly through the use of a robust
loss, yielding the so-called robust kernel density es-
timator (RKDE). To implement the RKDE, Kim &
Scott (2008) introduce a kernelized form of iterative
re-weighted least squares (IRWLS). The algorithm is
evaluated on 1 and 2 dimensional synthetic datasets.

We make four contributions to the understanding of
the RKDE. First, we present a representer theorem
for the RKDE, and based on which we give an expla-
nation why the RKDE is robust to outliers. Second,
we provide necessary and sufficient conditions for ker-
nel IRWLS to converge to the global minimizer, in the
Gaussian RKHS, of the objective function defining the
RKDE. Third, we define, characterize, and provide a
method for computing the influence function associ-
ated with the RKDE. The influence function quanti-
fies the impact on the density estimator of perturbing
the random sample with a new data point. Fourth,
we conduct experiments on several synthetic and real
data sets to illustrate the robustness of the RKDE. In
particular, we demonstrate robustness through an em-
pirical investigation of both influence functions and of
anomaly detectors based on contaminated data.

Previous work combining robust estimation and kernel
methods has focused primarily on supervised learning
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problems. M-estimation applied to kernel regression
has been studied by various authors (see Brabanter
et al. (2009) and references within). Robust surrogate
losses for kernel-based classifiers have also been stud-
ied (Xu et al., 2006). To our knowledge, the RKDE
is the first application of M-estimation ideas in ker-
nel density estimation. The problem of nonparamet-
ric density estimation with contaminated data, in the
sense considered here, has also received little atten-
tion. Several papers have considered nonparametric
density estimation in the case where data are cor-
rupted by additive noise having known distribution
(see, for example, Devroye (1989)). In contrast, we
suppose that most of the data come from the target
distribution, but a small portion come from some al-
ternative distribution. We begin in Section 2 with a
review of the RKDE and the IRWLS algorithm of Kim
& Scott (2008). In Section 3 we provide a representer
theorem for the RKDE, and necessary and sufficient
conditions for the convergence of IRWLS algorithm.
The influence function is developed in Section 4, and
experimental results are reported in Section 5. Com-
plete proofs can be found at http://www-personal.
umich.edu/~stannum/rkde-supple.pdf.

2. Kernel Density M-Estimation

Let Xq,...,X,, € R? be a random sample from a dis-
tribution F’ with a density f. The kernel density esti-
mate of f, also called the Parzen window estimate, is
a nonparametric estimate given by

n

frpe (%) = % > ko (x,X5),

=1

where k, (x,X;) is a kernel function. A commonly
used kernel function, which we will work with from
now on, is the Gaussian kernel

1\ x — X;||?
ko (x,X;) = (\/2—71_0> exp<—202||>.

For the Gaussian kernel, there exists a mapping ® :
R? — H, where H is an infinite dimensional Hilbert
space, such that ko (x,x) = (®(x),®(x)). We
will assume that ®(x) is the canonical feature map,
®(x) = ks (-, x). We also recall the reproducing prop-
erty, which states that for all g € H, g(x) = (®(x), g)
(Steinwart & Christmann, 2008).

(c) KDE with outliers (d) RKDE with outliers

Figure 1. Contours of true density and kernel density esti-
mates along with data samples from true density (o) and
outliers (x). 200 data samples are from the true distribu-
tion and 20 outliers are from a uniform distribution.

From this point of view, the KDE can be expressed as

Frpp(0) = =3 (d(x), (X))
=1

n-

By the reproducing property of ®(x), fxpe € H can
be seen as 1 Y1 | ®(X;), the sample mean of ®(X;)’s,
or equivalently, the solution of

i d(X;) — gll?,.
ggg;\\( ) — gl

Consider the case where the training sample is contam-
inated by outliers, i.e., some of Xy,---, X, € R? are
not from F. As we can see in Figure 1 (c), the KDE
is affected by outliers such that the density estimate
has small bumps over the regions where the outliers
exist. This is because it assigns uniform weights 1/n
to every ®(X;) regardless of whether X; is an out-
lier or not, which, in turn, comes from the use of the
quadratic loss of ||®(X;) — g||%-
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Figure 2. The comparison between three different p and v
functions: quadratic, Huber’s, and Hampel’s.

Kim & Scott (2008) proposed the robust kernel den-
sity estimate, a robust version of the kernel density
estimate. They extend the notion of M-estimator pre-
viously used in Euclidean space to the Hilbert space H
in order to find a robust sample mean of the ®(X;)’s.
For a robust loss function p(x) on x > 0, the robust
kernel density estimate is defined as

= argmin pl||@(X
i ) (12

Well-known examples of robust loss functions are Hu-
ber’s or Hampel’s p. Unlike the quadratic loss, these
loss functions have the property that 1) £ p' is
bounded. For Huber’s p, ¢ is given by

J/C\RKDE —9||H)-

r ,0<x<a
w(x)={ (1)
a ,a<x.
and for Hampels’ 9,
T 0<zr<a
a a<z<b
= ’ - 2
v(@) a-(c—x)/(c—b) ,b<z<c @)
0 e < .

These functions are plotted in Figure 2.

Kim & Scott (2008) also propose a kernelized iter-
atively re—welghted least squares (IRWLS) algorithm

for computing fRKDE Starting with initial w(o) eR,
i=1,...,n, the algorithm generates a sequence { f (k)}
by iterating on the following procedure:

7O =3 N = 3wk X,
‘ i=1

o = 2®X) = fM )
BN’

T XeleX;) -

where ¢(z) = ¢(x)/x. It was shown that |®(X;) —
AR |l3 can be computed using the kernel trick.

3. Representer Theorem and IRWLS
Convergence

For greater generality that will be needed in Section
4, we define M-estimates in H with respect to a gen-
eral probability distribution u. Given u, we define the
kernel density M-estimate f, € H as a minimizer of
Ju(g), where

709) = [ o106 = gll) dut). (3

If u is the empirical distribution F, = %Z;;l X,
then

Tr,(0) = = S p(18(X0) — gll),
i=1

and thus an = .]?RKDE~

We consider the following assumptions on p and 1:

(A1) p is non-decreasing, p(0) = 0, and p(z)/x — 0
asz — 0

(A2) ¢(x) and ¥(x)/x are continuous

(A3) t(x) and 9(x)/z are bounded

which hold for Huber or Hampel’s 1.

3.1. Representer Theorem

In this section, we will describe how fR KDE can be ex-
pressed as a weighted combination of the k. (x, X;)’s,
where the weights offer insight into the robustness of
the RKDE. Let V,, : H — H be given by

/¢ ||<I’ —9glln)
[®(x QHH

and D C H be the convex set defined as

D= {9 ‘ 9= /‘P(Y)du'(y),u’ € A}

where A is the set of probability distributions on R?.
(For the integral of H-valued functions, see Berlinet
& Thomas-Agnan (2004).) V,(g) is related to the
Gateaux differential of J,,(g) in that for h € H,

8Ju(g:h) = —(Vu(g), )

where 0T(z, h) is the Gateaux differential of T at z
with incremental h (Luenberger, 1997).

(®(x) — g) du(x)

Lemma 1. Suppose assumptions (A1)-(A3) are sat-
isfied. Then,

(a) fu satisfies V,(f.) =0
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(b) fueD
(c) fu is a density

Proof sketch. First, (a) directly comes from the fact
that a minimizer f, of J, has to satisfy 6.J,(fu;h) =0
for Yh € H. By expressing V,(f,) = 0 in terms of
fu, we obtain f,(x) = [w(y)kes(x,y)du(y) for some
w € Li(p) such that w > 0 and ||w| g, = 1. This
establishes (b) and (c). O

From the above lemma with yu = F),, we have the fol-
lowing representer theorem for fr, = frrxpg, similar
to those known for supervised kernel methods.

Theorem 1 (Representer Theorem). Suppose as-
sumptions (A1)-(A3) are satisfied. Then,

FrDE(X) = Z wiky(x, X;) (4)

where w; > 0, Z?:l w; = 1. Furthermore,
w; < o(||®(X;) — frDE||#)-

Note that while ¢(z) is constant for the quadratic
loss, the Huber or Hampel’s counterparts decrease as
x increases. If ¢ is decreasing, w; will be small when
|®(X;) — frxpE||% is large. Now for any g € H,

[®(X:) — g3 = (2(X;) — g, 2(X;) — g)
= |@(X;)|3, — 2(@(Xa), 9) + gl
= (V2r0) ™" = 29(X,) + |93,

Iaking g = fRKD E, we see that w; is small when
frepE(X;) is small. Therefore, the RKDE is robust
in the sense that it down-weights outlying points.

Lemma 1. (a) provides a necessary condition for f, to
be the minimizer of (3). With additional assumptions
on p and/or p, this is also sufficient.

Theorem 2. Suppose assumptions (A1)-(A3) are sat-
isfied. J,, is strictly convex provided either (1) p is
strictly convez, or (2) p is convex, strictly increasing,
and p is not a discrete measure having only 1 or 2
atoms. If J, is strictly convez, then V,(g) = 0 is suf-

ficient for g = f,.

3.2. Convergence of IRWLS Method in
Hilbert Space

In general, the equation Vg, (¢g) = 0 does not have a
closed form solution for fr,. The kernelized IRWLS
algorithm explained in Section 2 has been proposed

to find fr, in an iterative way. In fact, the kernel-
ized IRWLS can be viewed as a kind of optimization
transfer /majorize-minimize (MM) algorithm (Lange &
Yang, 2000; Jacobson & Fessler, 2007) with a quadratic
surrogate for p.

The convergence to some value, not necessarily op-
timal, of {Jp, (f(*)}32, is proven in Kim & Scott
(2008), but the convergence of {f*)}%°  is still in
question. The next theorem characterizes the conver-
gence of this sequence.

Theorem 3. Suppose assumptions (A1)-(A3) are sat-
isfied, and p(x) is nonincreasing. Let

S = {g € ’H|VFn(g) = 0}

and {f*)}22 | be the sequence produced by the kernel-
ized IRWLS algorithm. Then, S # () and

1% = Sll3 £ inf || f*) — gl — 0
geS

as k — oo.

Proof Sketch. Proof by contradiction. Suppose || f*)—
S|l - 0. Then, there exist € > 0 such that we can
construct a subsequence { f(*)}%° with || f(F) —S||5 >
e forl =1,2,.... Since {f(kl)},;“;l lies in a compact
set, it has a convergent subsequence with limit fT € S.

Thus, we can choose j such that ||f*3) — ft]|;, < e/2.
This is a contradiction because

e < inf || f*) — gllgy < [|f%) — [Tl < €/2.
geS

O

In words, if the number of iterations grows, f*) be-
comes arbitrarily close to the set of the stationary
points of Jr, , points g € H satistying 0Jr, (g;h) =
0 VheH.

Corollary 1. Suppose that the assumptions in Theo-
rem 3 hold. In addition, assume that p is convex and
strictly increasing, and {X;}"_, contains at least three
distince X;’s. Then, {f*)}3° | converges to the unique
global minimizer of (3).

4. Influence Function for Robust KDE

To quantify the robustness of the RKDE, we introduce
the influence function. First, we recall the traditional
influence function from robust statistics. Let T'(u) be
an estimator based on y. As a measure of robustness
of T, the influence function was proposed by Hampel
(1974). The influence function (IF) for T at F is de-
fined as

[F(2/;T,F) = lim (A = 9)F +s0w) = T(F)

s—0 S
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Basically, IF(a’;T, F) represents how T(F') changes
when the distribution F' is contaminated with infinites-
imal probability mass at z’. One robustness measure
of T is whether the corresponding IF is bounded or
not.

For example, the maximum likelihood estimator for
the unknown mean 6 of Gaussian distribution is the
sample mean T'(u),

T() = E,[X) = [ 2du(a). (5)
The influence function for T'(F) in (5) is
[F(sT, F) = lim T((1—5)F+sd,)—T(F)

s—0 S

= I/ 7EF[X}.

Since [IF(z'; T, F')| increases without bound as z’ goes
to Fo00, the estimator is considered as not robust.

Now, we define a similar concept for a function esti-
mate. Since the estimate is a function, not a scalar, we
should be able to express the change of the function
value at every X.

Definition 1 (IF for function estimate). Let T'(x; p)
be a function estimate based on u, evaluated at X.
Then, we define the influence function for T'(x; F') as

T(x; Fy) — T(x; F
IF(x,x';T, F) = lim (6 Fy) T F)

s—0 S

where Fg = (1 — $)F + sdx/

IF(x,x';T, F) represents the change of the estimated
function T at x when we add infinitesimal probability
mass at x’ to F.

For example, the standard KDE is T(x;F) =

fKDE(X; F) = f ko(XaY)dF(y) = EF[kU(va)} where
X ~ F. In this case, the influence function is

IF(val;J?KDE»F)

o, JxDB(GF) = Frepp(xi F)

_ h:j Ep, ko (x, X)f— Eplkqs(x,X)]
23ﬂ%ﬁ&+%wan

= s—ﬁEOF kg (3, X)] + E(sj (ko (x, X)]

= —Eplks(x,X)] + ko (x,x') (6)

With the empirical distribution F,,
IF(x,x'; fxpE. )

:_%Zyﬂxm+m@m% (7)

For the robust KDE, T(x,F) = frxpp(x;F) =
(®(x), fr), we have the following characterization of
the influence function. Let ¢(x) = ¢’ (x) — ¥ (z).

Theorem 4. Suppose assumptions (A1)-(A3) are sat-
isfied. In addition, assume that p(x) is nonincreasing
and szschztz continuous, and fr, = fr as s — 0. If

fF - hms~>0 frir fF

IF(X,X  fripe, F) =
where fp € H satisfies

(/www—ﬁmm@.ﬁ
(fr,®(x) — fr)
* /(M&%ﬁﬁ%
mmm-nm»@w—nﬁww
= (@) — fr) - (|8() — frlln). (8)

Unfortunately, for Huber or Hampel’s p function, there
is no closed form solution for fr of (8). However, if we
work with F), instead of F', we can find fr, explicitly.
Let

exists, then

(2(x), fr)

1=11,...,1]%,
K = [ko(x,X1),..., ko (X', X,)]T
and I, be a n x n identity matrix, K :=
(ko (X4, X)) 1,j=1 be the kernel matrix, @ be a diag-

onal matrix with Q;; = ¢(|®(X;) — fr, [|%)/[1®(X;) —
an and

=3 eI®(X) — fr, ).
i=1

w = [wy,...,w,]"

)

where w gives the RKDE weights as in Theorem 1.

Theorem 5. Suppose assumptions (A1)-(A3) are sat-
isfied. In addition, assume that ¢(x) is nonincreasing
and Lipschitz continuous, fr, . — fr, as s = 0, and
{X;} are distinct. Then, '

IF(x,x; JrxpE. F Zaz i)+ 'k (x,x")
where

o' =n-p([|®x) - fr,ln)/c
and o = [y, ..., a,)T is the solution of the following

system of linear equations:
{c]n + (I, —1-wHTQU, —1- WT)K}a

= —np(|e) = fr, )W
—a (I, -1-wHTQ- (I, —1-w") K.
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— true K . KDE

KDE " == RKDE(Huber)
- = RKDE(Huber) —— RKDE(Hampel)
—— RKDE(Hampel) —ex

(a) (b)
Figure 3. (a) true density and density estimates. (b) IF as
a function of x when x’ = —5

The condition fr, ., — fF, is satisfied, for example,
when Jp, is strictly convex (see Theorem 2).

As mentioned above, in classical robust statistics, the
robustness of an estimator can be determined by the
boundedness of the corresponding influence function.
However, the influence functions for density estimators
are bounded even if ||x'|| = oco. Therefore, when we
compare the robustness of density estimates, we com-
pare how close the influence functions are to the zero
function.

Simulation results are shown in Fig 3. As we can see in
(b), for a point x" in the tails of F, the influence func-
tions for robust KDEs are overall smaller than that of
standard KDE in absolute value (especially with Ham-
pel’s loss).

We give a possible explanation for this observation.
Assume that the parameter a in (1) or (2) is such
that for all X;, ||®(X;) — fF, |l < a. Equivalently,
fr,(X;) > X for a corresponding A. This results in
w = %1, c=mn, and @ = 0. In this case, the influence
function is

IF(x,%; frrpm, Fn)

_ (_ijk[,(x,xi)ma(xx'))

=1

where k = ¢(||fr, — ®(x')||%). If we compare the
above result with (7), the robust KDE will less affected
than the KDE by an outlier x’ with fr, (x') < A, in
which case k < 1.

5. Experiments

We demonstrate experimental results on synthetic and
real data sets. In each experiment, the parameters
a, b, and ¢ in (1) and (2) are set as follows. First,
we compute (1), the RKDE based on p = | - |, and
di = ||® (X;) = fM||%. Then, a is set to be the median
of {d;}, b the 95th percentile of {d;}, and ¢ = max{d;}.
IRWLS is always initialized with uniform weights.

5.1. Synthetic data

First, we demonstrate the robustness of the RKDE
on 1, 2, and 5 dimensional synthetic data. For each
dimension, the true distribution is a mixture of two
normal distributions and the outlying distribution is
a single normal distribution. These are summarized
in Table 1. The bandwidth o of the Gaussian ker-
nel is chosen via least square cross validation (LSCV)
(Turlach, 1993).

As a quantitative measure of how close the estimated
density is to the true density, we compute ||f — f||L,-
For each € = 0, 0.05, 0.10, 0.15, and 0.20, we generate
a random sample of size n from the true distribution
and add m outliers where m = ¢-n (n is given in
Table 1). Figure 4 (a) - (c¢) show the average Lo er-
ror over 100 simulations as a function of e. All three
density estimates provide similar Lo errors when there
are no outliers, i.e., ¢ = 0. However, in the presence
of outliers, € > 0, we see that RKDEs (especially with
Hampel’s loss) have smaller Lo errors than KDEs.

As another measure of robustness, we compare the
influence functions for the density estimates given in
Theorem 5. We examine «(x') = I'F(x/,x'; T, F,,) and

Bx) = ( / (IF(x, %3 T, Fn))de)1/2-

In words, a(x’) is the change of the density estimate
value at an added point x" and B(x’) is an overall im-
pact of x’ on the density estimate over RZ. We gener-
ate 1000 random samples from the outlying distribu-
tion, each of which serves as an x’. This gives us 1000
a(x’)’s and B(x’)’s. The boxplot of these are shown in
Figure 4 (d) - (i), from which we can see that RKDEs
are less affected by outliers x’ than KDEs.

5.2. Application to Anomaly Detection

We apply RKDEs in anomaly detection problems with
benchmark data sets. Each density estimate serves as
an anomaly detector by thresholding the value of the
density estimate at a test point. Robustness can be
checked by comparing a performance measure, e.g.,
AUC, of the anomaly detectors, where the density es-
timates are based on contaminated training data.

We conduct experiments on 15 benchmark data sets
(Banana, B. Cancer, Diabetes, F. Solar, German,
Heart, Image, Ringnorm, Splice, Thyroid, Twonorm,
Waveform, Pima Indian, Iris, MNIST) !, which were
originally used in the task of classification. For each

"http:/ /www.fml.tuebingen.mpg.de/Members/ for the
first 12 data sets and UCI machine learning repository for
the last 3 data sets.
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Table 1. Summary of distributions. Ny(x;m;C) represents a d-dimensional normal distribution with mean m € R? and
d x d covariance matrix C. n is the number of samples from true distribution.

dimension | # of samples true distribution outlying distribution
(1 —mn) - Na(x;my, M T) +n- Ng(x;mg, AoT) Na(x; mo; Ao 1)
n=04
1 n=200 m;=-3, A\ =15 my = 10, Ay = 2.25
my =+3, Ay = 1.5
n=20.5
2 n=400 m; — [—3,0] 5 )\1 =1 mgy = [0,3]T, /\0 =1
my = [+3,0] 5 )\2 =
n=20.6
5 n=1000 m; =[-1,1,-1,1,-1]7, \; = 0.5 my = [3,-3,3,-3,3]T, g =1
my = [0, 0, 0,0, 0]7, \y =0.5
I RKDE(Huber 09 ﬁ/ """ RICDE(buber) Table 2. The comparison of average ranks of the three den-
—— RKDE(Hampel) . —— RKDE(Hampel)

il o8 sity estimators, by the Friedman test. The critical differ-
) 7 ence of the post-hoc Nemenyi test is 0.86 at a significance
2 0.6 2 0.6[*

S ol Z sk level of 0.05.
RKDE | RKDE
o3l 02 ¢ | KDE (Huber) | (Hampel) p-value
o - 0.00 | 217 | 1.90 1.93 0.71
o 0 0.05 | 2.57 2.23 1.20 0.00
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
false alarm false alarm 0.10 | 2.67 2.20 1.13 0.00
(a) Iris, e = 0.1 (b) MNIST, € = 0.2 0.15 | 2.67 | 2.20 1.13 0.00
0.20 | 2.67 2.20 1.13 0.00

Figure 5. Examples of ROC.

data set with two classes, we take one class as the nom-
inal data and the other class as anomalies. For Iris,
there are 3 classes and we take one class as nominal
data and the other two as anomalies. For MINST, we
choose to use 0 digit as nominal and 1 digit as anoma-
lies. For MNIST, the original dimension 784 is reduced
to 8 via kernel PCA using Gaussian kernel with band-
width 30.

For each data set, the training sample consists of n
nominal data points and m outliers, and as mentioned
before m = € - n for e = 0, 0.05, 0.10, 0.15, and 0.20.
The bandwidth of the Gaussian kernel is set as the
median distance to the nearest neighbor. KDEs and
RKDEs are estimated based on these contaminated
training data, and ROCs are generated by varying the
threshold. Examples of the ROCs are shown in Fig-
ure 5. While the ROCs from the RKDE with Hu-
ber’s loss is fairly close to that of the KDE, the RKDE
with Hampel’s loss provides better detection probabil-
ities, especially at low false alarm rates. This results
in higher AUC.

To compare the density estimators across multiple

data sets, we adopt the methodology of Démsar (2006).
For each data set and each ¢, the density estimates are
ranked 1 (best) through 3 (worst) based on AUC. For
each ¢, we use the Friedman test in order to determine
whether there was a significant difference in the av-
erage ranks of the three density estimators across the
data sets. The average ranks and p-values are shown
in Tables 2. The results indicate that there is a signif-
icant difference among the estimators with the excep-
tion of € = 0. For three methods on 15 data sets, with
a significance level of 0.05, the critical difference (CD)
for the Nemenyi test is 0.86. If the average ranks dif-
fers by more than the CD, the methods are deemed to
be significantly different. This indicates that RKDEs
with Hampel’s loss are significantly better than KDEs
and RKDEs with Huber’s loss where € > 0.

6. Conclusions

In this paper, we have investigated the convergence
and robustness of the kernel density M-estimators. We
derive an influence function for the estimator and give
an explanation of why RDKEs are more robust than
KDEs through the influence function. The argument
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-4

1a%10° ex10° 14%10
o KDE o KDE o KDE
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Figure 4. Experimental results on 1, 2, and 5 dimensional synthetic data.

is also supported by experimental results on several
data sets.
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