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Abstract

A new nonparametric Bayesian model is de-
veloped to integrate dictionary learning and
topic model into a unified framework. The
model is employed to analyze partially an-
notated images, with the dictionary learning
performed directly on image patches. Effi-
cient inference is performed with a Gibbs-
slice sampler, and encouraging results are re-
ported on widely used datasets.

1. Introduction

Statistical topic models, such as Latent Dirichlet Allo-
cation (LDA) (Blei et al., 2003), originally developed
for text analysis, have been applied successfully for
image-analysis tasks. In this setting researchers typi-
cally represent an image as a bag of visual words (Fei-
Fei & Perona, 2005; Li & Fei-Fei, 2007). Using such
methods, there has been interest in developing models
for automatic clustering, classification and annotation
of images, based on image features as well as available
meta-data such as image annotations (Barnard et al.,
2003; Blei & Jordan, 2003; Blei & MaAuliffe, 2007;
Wang et al., 2009; Li et al., 2009; Du et al., 2009).

In such research one typically treats image feature ex-
traction as a pre-processing step, decoupled from the
subsequent statistical analysis. Local image descrip-
tors, e.g., scale-invariant feature transform (SIFT)
(Lowe, 1999), are commonly used to extract features
from local patches (Fei-Fei & Perona, 2005; Li & Fei-
Fei, 2007; Wang et al., 2009), segments (Li et al., 2009),
or super-pixels (Du et al., 2009). In such research
the extracted local features are typically used to de-
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sign a discrete codebook (i.e., vocabulary), with vector
quantization (VQ). When analyzing images, each lo-
cal descriptor is subsequently assigned to one of the
codewords, with these codes playing the role of dis-
crete words in traditional documents (Fei-Fei & Per-
ona, 2005).

Although the above research has realized significant
success, there is no principled way to define the code-
book size; this parameter must be tuned and is in
general a function of the dataset considered. Further,
since feature extraction is performed separately from
the subsequent statistical analysis, it is unclear which
features should be used and why one class of features
should be preferred.

In this paper we integrate feature learning and topic
modeling within a unified setting. The feature ex-
traction is performed using dictionary learning, with
this integrated within topic modeling. Recent research
on dictionary learning and sparse coding has demon-
strated superior performance in a number of challeng-
ing image processing applications, including image de-
noising, inpainting and sparse image modeling (Mairal
et al., 2008; Zhou et al., 2009). Recent advances in
image classification show that substantially improved
performance may be achieved by extracting features
from local descriptors with dictionary learning and
sparse coding, this replacing VQ (Yang et al., 2009).
In the work reported here we also replace VQ, with
the number of features (dictionary atoms) and their
characteristics inferred via a new application of the
hierarchical beta process (Thibaux & Jordan, 2007).

We develop a novel hierarchical Bayesian model that
integrates dictionary learning, sparse coding and topic
modeling, for joint analysis of multiple images and
(when present) associated annotations. The model de-
fines topics in terms of the probabilities with which
dictionary atoms are used, with the dictionary learned
jointly while performing topic modeling. The learned



On the Integration of Topic Modeling and Dictionary Learning

model clusters all images into groups, based upon dic-
tionary usage; a statistical distribution is also provided
for words that may be associated with previously non-
annotated images (only a subset of the images are
assumed annotated when learning the model). The
encouraging performance of the framework is demon-
strated on several commonly analyzed datasets, with
comparisons to previous related research. We also
quantitatively examine the utility of jointly perform-
ing image feature learning and topic modeling, vis-a-
vis treating these as two disjoint processes. Addition-
ally, we compare the performance of learned features
applied directly to the image, as opposed to first do-
ing feature extraction using such methods as SIFT. To
the authors’ knowledge, this paper is the first to unify
dictionary learning and statistical topic modeling.

2. Model Construction

We wish to analyze M images, and a subset of the im-
ages have accompanying words or an annotation; the
vocabulary of such annotations is assumed to be of di-
mension L. The vector x,, represents the pixels asso-
ciated with image m, and y,,, = (Ym1,--->Ymr)’ Tep-
resents a vector of word counts for that image, when
available (y,,; represents the number of times word
1 e€{l,...,L} is present in the annotation). The ob-
jective is to organize/sort/cluster the images, utilizing
annotations when available.

The M images are assumed characterized by the fol-
lowing hierarchy. Each image is assumed to have an
associated category/class. For example, some images
may be characterized as city scenes, while others may
be forest or beach scenes. The number of such cate-
gories is not set or defined a priori, and is to be inferred
by the data under analysis. At the next level of the hi-
erarchy, each image category is characterized in terms
of a distribution of objects/entities that may appear in
the image (these image objects are analogous to topics
in topic models). Again, the number of such objects
is to be inferred by the data, and the partial presence
of annotations plays an important role in defining an
appropriate number of objects.

Finally, each object (or topic) is characterized at the
patch level in terms of a distribution over dictionary
atoms. The number of dictionary atoms and their
composition are also inferred based on the data under
test. The dictionary atoms play the role of words in
topic models. In classical topic models (Blei et al.,
2003) each topic is characterized by a distribution
over words. In the analysis that follows, each topic
is characterized by a set of probabilities, defining the
probabilities with which particular dictionary atoms

(“words”) are selected to represent a particular object.

2.1. Hierarchical BP & Dictionary learning

When presenting the model we start at the level of
the observed pixels, and then work our way up to
the top (image-class) level. As is customary in dictio-
nary learning applied to image analysis, we divide each
image into partially overlapping patches, where each
patch consists of a contiguous subset of pixels. Specifi-
cally, the mth image is divided into IV,,, patches, where
the ith patch is denoted @,,,; € RY withi=1,..., N,,.

Each patch x,,; is represented as a sparse linear com-
bination of learned dictionary atoms. Further, each
patch is assumed associated with an object/entity
(“topic”); the probability of which dictionary atoms
are employed for a given patch is dictated by the ob-
ject associated with it. The connection between the
different topics, the dictionary usage, and the dictio-
nary form is constituted via a hierarchical beta pro-
cess (HBP) (Thibaux & Jordan, 2007), in the following
manner.

Each patch is represented as @,,; = D (2 ®8mi)+€mi,
where ® represents the element-wise/Hadamard prod-
uct, D = [dy, - ,dg] € RP*K K is the trunca-
tion level on the possible number of dictionary atoms,
Zmi = [zmila T 7ZmiK]Ta Smi = [Smila ce aSmiK}Tv
Zmik € {0,1} indicates whether the kth atom is active
within patch i in image m, s € RT, and €,,; is the
residual error. Note that z,,; represents the specific
sparseness pattern of dictionary usage for @,,;. The
hierarchical form of the model is

Trmi ~ N(D(Zmi © $mi), 7. 1)

d, ~ N(0, %Ip)
Smi NJr(Ov’Y;IIK)
K
Zmi ™~ H Bernoulli(my,,, ;) (1)
k=1

where gamma priors are placed on both ~. and ~s.
Unlike conventional dictionary learning (Zhou et al.,
2009), positive weights s,,,; (truncated normal, N, (-))
are imposed, which we have found to yield improved
results.

In (1) the indicator variable h,,; defines the topic asso-
ciated with «,,;, and this will be controlled via higher
layers of the model; we discuss this below. We now
focus on how the probabilities 7, are constituted,
in terms of an HBP. Specifically, the K-dimensional
vector 7, defines the probability that each of the K
columns of D is employed to represent object type
h € {1,...,J}, where the kth component of 7 is
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Thi- Using an HBP construction as in (Thibaux
& Jordan, 2007), these probability vectors are de-
fined as ) ~ Hszl Beta(cing, c1(1 — ni))  np ~
Beta(cono, co(1—19)) where n; represents the “global”
probability of using dictionary atom dj, across all top-
ics (object types), and 7 represents the probability
of using dj, for object type h. Although the model is
truncated to J topics, in practice J is set to a large
value, and the model infers which subset of {7} are
actually needed to represent the observed data. Sim-
ilarly, K is set to a large value, and the model infers
the subset of dictionary atoms (“words”) needed to
represent the data.

In the Indian buffet metaphor (Griffiths & Ghahra-
mani, 2005; Thibaux & Jordan, 2007), each of the
topics is a customer at a buffet of dictionary atoms
(“words” in the context of a topic model). The vector
7, defines the probability of dictionary atom selec-
tion for topic/customer h. While each topic shares
the same buffet of dictionary atoms, the probability
with which such are selected is topic-dependent.

2.2. Topic-modeling component

The generative model has now constituted a set of
topic-dependent dictionary-usage probabilities {7y},
and a given image patch x,,; is linked to an indicator
variable h,,; € {1,..., J} defining the topic associated
with patch ¢ in image m. What remains is to define
probabilities with which objects/topics may be found
in an image, and to link this probability vector to the
specific image class under test.

Let r,,, € {1,...,T} represent the image class associ-
ated with image m, which we seek to cluster. Then the
remainder of the generative process may be expressed
as

J
hmi ~ Y Vr,i0j » Vi ~ Dir(ay /T, 0y, /)
j=1
T
Tm ~ Y 0, o~ Dir(a, /T, ..., /T)  (2)
t=1

where J, is a unit measure at the point a. The J-
dimensional probability vector v, defines the proba-
bility with which each of the J objects are manifested
in image class ¢, while p defines the probability with
which the T image classes are manifested across the
M images.

Summarizing the generative process thus far, for im-
age m we draw a latent r,, € {1,..., T}, this defining
the image class. For each of the image patches {&,,; }
in this image we draw an associated object type or
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Figure 1. The graphical representation of the model.
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topic, with probability of topics defined by v, . La-
tent hp; € {1,...,J} defines which object/topic is
associated with patch ¢ in image m, defined by @,y,;.
Finally, the vector of probabilities 7}, . defines the as-
sociated probabilities with which columns of D (“im-
age words”) are used.

2.3. Handling words/annotations

If annotations are available for at least a subset of the
M images, it is desirable to leverage the information
they provide. For each image classt € {1,...,T} there
is a unique distribution over the L words, and therefore
the observed count of words for image m (when words
are available) is drawn

Mult(w,. , Npm)
Dir(a, /L, -+ , o, /L) (3)

/
Ym o~

Wi

where ¥/, = y,,Nm/|Y,,| and |y,,,| represents the total
number of words associated with image m. Recall that
rm 18 the topic/class associated with image m.

Note that we have scaled the observed count of words
Y,, to produce y/ ., and the total number of words
used in y,, equals N,,, the number of image patches
used in the analysis of image m. This has been found
important in our numerical studies, as it places the im-
age features and words on equal footing, when words
are present. Typically |y,,| < N, and therefore if
this rescaling is not performed the contribution to the
likelihood from the image features far overwhelms the
likelihood contribution from the words. This rescaling
of the word count is equivalent to raising the multimo-
nial contribution to the likelihood function from y,,
by power Ny, /|y,.,|-

A graphical representation of the model is summarized
in Fig. 1, in which shaded and unshaded nodes indi-
cate observed and latent variables, respectively. An
arrow indicates dependence between variables. The
boxes denote repetition, with the number of repeti-
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tions indicated by the variables in the corner of boxes.

2.4. Discussion

While the hierarchical form of the model may appear
relatively complicated, we have found it to be robust
and relatively insensitive to parameter settings. There
has been no tuning performed for any hyperparameters
to achieve the results presented below, with parame-
ters set in a “standard” way for such models. Specif-
ically, the hyperparameters for the gamma distribu-
tions on the precisions were set as (107¢,107%). For
the hierarchical beta process we set ¢cg = 10, ng = 0.5
and ¢; = 1. The parameters on the Dirichlet distribu-
tions were set as a, =1, o, = 1 and o, = 1.

The manner in which annotations are handled in the
proposed model is more flexible than how such were
considered in (Du et al., 2009). Specifically, in the
latter paper a single word was associated with each
object class in the scene, and therefore the number of
objects J was required to be equal to the number of
words L. In our model J and L are in general different,
and the number of inferred objects need not be equal to
the number of words; this implies that multiple words
may be used to represent the same object type.

In the course of developing the proposed model, we
considered different details on the model construction.
For example, we considered a stick-breaking represen-
tation for the beta process, with (Teh et al., 2007)
e = Hle w; with u; ~ Beta(8,1). The advantage
of this construction is that it associates the important
(large) mx with small indices k. This is of interest par-
ticularly when truncating the beta process to K atoms,
as done here. We found that the model above worked
the same as when the stick-breaking form of the beta
process was employed, and therefore the former was
adopted for its simplicity.

Note that each image was above assumed associated
with a particular class, with an image class defined
by a distribution over topics, v;. This was done to
address the specific applications discussed below, of
image clustering. In this setting all images in class
rm share the same distribution over topics, v, . In
typical topic models (Blei et al., 2003) each image
has a unique distribution over topics, and this may
also be considered here if desired. In this case rather
than clustering images via the indicator r,,, each im-
age may have a unique distribution over topics, drawn
for example from a hierarchical Dirichlet process (Teh
et al., 2004). We also considered drawing the probabil-
ity vector u over image categories via a stick-breaking
representation (Sethuraman, 1994) rather than from
a Dirichlet distribution, with results similar to those

reported below.

3. Model Inference

Because all consecutive layers except for 7y, in the hier-
archical model are in the conjugate-exponential family,
we employ Gibbs sampling for each parameter except
Nk, for which slice sampling is utilized in (Zhou et al.,
2011). The inference equations for the dictionary D,
the binary sparse codes z and the real non-negative
sparse codes s are similar to that in (Zhou et al., 2009),
and are omitted for brevity.

Sampling m;: p(mw;|—) = Beta(m;;11;,12;), where
Y1 = can + %%:1 Ni]i"{ (hmi = J)zmi and g; =
cr(L=m) + > ey 2ot 6(hmi = §)(1 — 2pmi)-

Sampling r,, and h,,;:

J N L
M S (hmi=7 !
plrm = t|=) o [[ v = Tt (@)
j=1 =1

K

p(hmi = ]|—) X Uy, H W;g”k(l — ﬂ-jk)lfzmz:k' (5)
k=1

Sampling v, wy, and p; @ The prior has p(v;|—) =
Dir(vyy, ..., v5y), plwul—) = Dir(wjy,...,w;) and
p(pe|—) = Dir(uj, ..., pu7), where Vt*j = % +
St [ 00mi = P)]orm = 1), wi = %+
ZyAr/L[:l O(rm = t)y;nlv py = O(TM + Z%:l §(rm =1).

4. Experimental Results

We test our model with one relatively simple but il-
lustrative dataset (MNIST handwritten digits) and
three real-world image data sets (MSRC, LabelMe
and UIUC-Sport); the latter three contain annota-
tions. For all experiments, we process patches from
each image. For the MNIST data we randomly select
50 partially overlapping patches in each image, with
15 x 15 patch size, and for the other three datasets we
collect all 32 x 32 x 3 non-overlapping patches from
the color image (we could also consider overlapping
patches in this case, but it was found unnecessary).
These patches are used to constitute the data ma-
trix X = [z, -+ ,xN], where z; € RY | with P the
number of pixels in each patch (P = 225 for MNIST,
and P = 3072 for the other three data); N is the
total number of patches in the dataset. The matrix
X is pre-whitened with principal component analy-
sis (PCA) and the first 200 principle components are
employed (200 keeps about 95% of the energy of the
original data, achieving a good balance between accu-
racy and complexity). To initialize the dictionary, we
can use random initialization or some fixed redundant
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bases, such as over-completed DCT. In this paper, we
use the covariate-dependent HBP (with the covariates
linked to the relative locations between data samples)
to learn an initial set of dictionary atoms, which are
found to match the local latent features (Zhou et al.,
2011).

In all experiments we set the truncation levels as
K =400, J = 100 and T = 30. Similar results were
found for larger truncations. Note that these trunca-
tion levels are upper bounds on the associated parame-
ter, while the model infers the number of components
needed. For each experiment, we run 1000 MCMC
iterations, and collect the last 500 samples.

4.1. MNIST Handwritten Digits

For the MNIST handwritten digit database, we ran-
domly choose 100 samples per digit (digits 0 through
9), and therefore 1000 samples are considered in total;
the original digit images are of size 28 x 28. In this
experiment annotations are not considered.

Each collection sample manifests a number of unique
image classes, and often more than 10 classes are in-
ferred, since some digits tend to occupy more than one
image class (as a consequence of different styles of writ-
ing the digits). Fig. 2 displays five random examples
associated with each image class inferred, at a typi-
cal collection sample. From Fig. 2 we see that there
is more than one way some digits may be expressed,
and the different writing styles constitute unique im-
age classes inferred by the model.

As seen from Fig. 2, the inferred clusters are readily
labeled in terms of truth, based upon the large fre-
quency with which a particular cluster is associated
with one digit. In Fig. 3(a) we present a confusion
matrix, which quantifies the probability that a given
digit is clustered “properly”, in the sense that it is in a
cluster dominated by the same digit type (this quanti-
fies the “purity” of the clusters, in the context of being
associated with the same image type). The average
clustering accuracy is 81.4%, and we note that this
performance is achieved with an unsupervised model,
with dictionary learning and clustering performed si-
multaneously.

4.2. Microsoft Data

The experiments with the MNIST data demonstrate
the ability of the model to cluster images accurately;
henceforth we do such in the presence of annotations,
considering natural images. We use the same settings
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Figure 2. Example images associated with 18 inferred
classes, with each column representing one unique class.
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(a) MNIST
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Figure 3. (a) Confusion matrix of MNIST data, with av-
erage accuracy of 81.04%. (b) Confusion matrix of MSRC
data, with average accuracy of 89.06%.

of images and annotations from the MSRC data' as
considered in (Du et al., 2009), to allow a direct com-
parison. We choose 320 images from 10 categories of
images with manual annotations available. The cat-
egories are “tree”, “building”, “cow”, “face”, “car”,
”sheep”, “Hower”, “sign”, “book” and “chair”. The
numbers of images are 45 and 35 in the “cow” and
“sheep” classes, respectively and 30 in all the other
classes. Each image has size 213 x 320 or 320 x 213.
For annotations, we remove all annotation-words that
occur less than 8 times (approximately 1% of them),
and obtain 15 unique annotation-words, thus L = 15.
For each category, we randomly choose 10 images,
and remove their annotations, treating them as non-
annotated images within the analysis.

We inferred 11 clusters, and found that the “chair”
image class is divided into two types. Using such la-
beling of clusters based on truth, we may constitute
a confusion matrix, defining the probability that an
image from a given class is associated with the ap-
propriate mixture component, as was done with the
MNIST data. The confusion matrix as computed form
the collection samples is depicted in Fig. 3(b). The
average accuracy is 89.06%, outperforming the results
in (Du et al., 2009) by 6.16% under the same test set-

Yhttp:/ /research.microsoft.com/en-
us/projects/objectclassrecognition/
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Figure 4. Example images inferred for each class. Each row
is for one category. The first three columns on the left show
3 examples of correctly inferred images, the last column on
the right shows an example of incorrectly recognized image.

tings (note that in (Du et al., 2009) predefined fea-
tures were extracted from super-pixels, and VQ was
employed). By contrast, the proposed model does im-
age clustering (topic modeling) and feature design si-
multaneously, without VQ. Fig. 4 shows three exam-
ple images correctly assigned to each of the clusters.
In Fig. 4 we observe that many of the “inaccurate”
classifications that cause errors in Fig. 3(b) actually
make a lot of sense. For example the “face” image
at the top-right in Fig. 4 is “incorrectly” assigned to
the “book” class, as a consequence of the books in the
background of the face picture. As another example,
sheep are misclassified as cows.

Each image class is characterized by a distribution over
objects, and these objects may be linked to words via
the annotation, when available. A good connection is
inferred between words and image classes (clusters),
with no further details here, for brevity. Below we
show detailed word associations for the UTUC-Sport
data.

For the above results, the dictionary is performed si-
multaneously with topic modeling, with the dictionary
learning performed directly on image patches (below
we refer to this as “online”). As comparisons, we con-
sider the following alternatives. In one test, the dic-
tionary atoms, initialized with the method discussed
in (Zhou et al., 2011), are fixed, and we use the dictio-
nary in the topic model as before (below we refer to
this as “offline”). This permits us to examine the ben-
efit of simultaneously doing dictionary learning and
topic modeling, which allows the dictionary atoms to
be matched to the topic-modeling objective. As an-
other example, topic modeling and dictionary learn-
ing are performed simultaneously, but the dictionary
learning is performed using SIFT features extracted
from the same local region patches used in the previ-
ous dictionary learning. Finally, we remove dictionary
learning altogether, and learn a codebook of dimen-
sion K = 400 (consistent with the dictionary-learning
truncation level), with VQ codebook design performed
directly on the image patches. The quantitative com-
parisons between these tests are summarized in Ta-
ble 1. It is observed that dictionary learning performed
directly on the patches yields best results, with an im-
provement manifested by the full online analysis (joint
topic modeling and dictionary learning). There is a
marked improvement in doing dictionary learning di-
rectly on the image patches, compared to doing such
on the SIFT features.

Table 1. Performance comparisons with different settings
of features and dictionary, for the MSRC data.

Feature

Dictionary setting Accuracy

Image patches Online learning 89.06%
Image patches Offline learning 87.50%
Image patches K-means 67.81%

SIFT Online learning 80.94%

4.3. LabelMe Data

We next consider the LabelMe dataset together with
annotations?. The LabelMe data contain 8 image
classes: “coast”, “forest”, “highway”, “inside city”,
“mountain”, “open country”, “street” and “tall build-
ing”. We use the same settings of images and annota-
tions as (Wang et al., 2009): we randomly select 200
images for each class, thus the total number of images
is 1600. Each image is resized to be 256 x 256 pixels.
For the annotations, we remove terms that occur less
than 3 times, and obtain a vocabulary of 186 unique
words, thus L = 186. There are 6 terms per annotation
in the LabelMe data on average. We then randomly

2hitp:/ /www. cs.princeton.edu/ chongw/
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coast

Figure 5. Results for the LabelMe data. (a) The inferred
dictionary with elements sorted in a decreasing order, (b)
confusion Matrix over the 800 non-annotated images, with
the average performance of 76.25%.

select 800 images, and remove their annotations treat-
ing them as non-annotated images, so that the total
set of images analyzed are partially annotated, as for
the MSRC example.

Fig. 5(a) shows the inferred dictionary atoms, demon-
strating both color and texture features. The model in-
ferred 13 image classes, and 77 unique objects/topics.
Although the model is learned using both annotated
and non-annotated images, we focus on the confusion
matrix for the 800 non-annotated images in Fig. 5(b),
computed as above (each of the inferred image classes
may be unambiguously associated with one of the true
classes). In Table 2 we summarize average clustering
accuracy on the annotated and non-annotated images,
with results also summarized there for the UTUC-Sport
data we consider next. In Table 2 we also provide a
comparison to results from (Wang et al., 2009).

Table 2. Performance comparisons of confusion matrix.
‘annotated’ and ‘non-annotated’ separately denote the ac-
curacy of confusion matrix computed over the annotated
images and the non-annotated images. ‘Wang’ represents
the result reported in (Wang et al., 2009).

annotated non-annotated Wang
LabelMe 92.25% 76.25% 76%
UIUC-Sport 91.03% 69.11% 66%

4.4. UIUC-Sport Data

Finally we test our model on the UIUC-Sport
dataset. The UIUC-Sport dataset contains 8 types
of sports: “badminton” (200 images), “bocce” (137 im-
ages), “croquet” (236 images), “polo”(182 images),
“rock climbing” (194 images), “rowing” (250 images),
“sailing” (190 images), and “snow boarding” (190 im-
ages). The total number of images is 1579. With the

%,
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Figure 6. For the UTUC-Sport data, (a): The inferred dic-
tionary with elements sorted in a decreasing order of impor-
tance. (b): Confusion Matrix over the 688 non-annotated
images.

purpose of comparison, we use the same settings of
images as (Wang et al., 2009)%. Since the tags con-
tain too many arbitrarily noisy words, we first obtain
candidate tags belonging to ‘physical entity’ (Li et al.,
2009) by using WordNet synsets?, and then select the
30 most frequent words from these candidate tags; thus
L = 30. We evenly split each class and remove anno-
tations of half, treating them as non-annotated im-
ages. The inferred dictionary and confusion matrix is
shown in Fig. 6, with the average accuracy of 69.11%,
summarized in Table 2. Based on the learned poste-
rior word distribution w; for the tth image class, we
can further infer which words are most probable for
each image class (category). Fig. 7 shows the w; for
8 classes, with the five largest-probability words dis-
played. A good connection is manifested between the
words and image classes. The model clearly learns a
good statistical distribution over words, matched to
the latent image class/category. Further, the confu-
sion matrices demonstrate that the model can infer
the image class well. Therefore, the model performs
well in statistically annotating non-annotated images
(not further detailed, for brevity). The presence of the
annotations assists with the clustering of the images
into categories. Linkages are inferred between objects
in the images and associated words (when present),
and this assists clustering of images, even for those
images without annotations.

The experiments above have been performed in 64-
bit Matlab on a machine with 2.27 GHz CPU and
4Gbyte RAM. One MCMC run of the proposed model
takes around 5, 2, 11 and 10 minutes respectively

3The total number reported in the paper is 1792. Ac-

cording to the resources that also provided in the pa-
per (http://vision.stanford.edu/lijiali/ ), there are actually
1579 images available.

“hittp:/ /wordnet.princeton. edu/
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Figure 7. Inferred distributions over words for UIUC-Sport
data, as a function of inferred image category. Names on
the horizontal represents the annotation terms, the order
of which varies across the categories. The vertical axis
represents the distribution.

for the MNIST, MSRC, LabelMe and UIUC experi-
ments (in which we simultaneously analyzed respec-
tively 1000, 320, 1600, and 1579 total images). The
proposed model could also be implemented via varia-
tional Bayesian (VB) analysis, that may yield to effi-
ciency.

5. Conclusion

A new model has been developed to integrate topic
modeling and dictionary learning into a unified
Bayesian setting. In comparison with previous models,
based on image features which were carefully defined
(e.g., superpixels, SIFT, shape, texture, etc.), the pro-
posed model achieves performance as good or better
as existing published results. This is realized by exe-
cuting the dictionary-learning component of the model
directly on patches from the original image. The model
is therefore not specialized to imagery, and may be ap-
plied to other problems, for example annotated audio
signals. The research reported here was supported by
AFOSR, ARO, DOE, ONR and NGA.
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