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Abstract

We present Infinite SVM (iSVM), a Dirichlet
process mixture of large-margin kernel ma-
chines for multi-way classification. An iSVM
enjoys the advantages of both Bayesian non-
parametrics in handling the unknown num-
ber of mixing components, and large-margin
kernel machines in robustly capturing local
nonlinearity of complex data. We develop
an efficient variational learning algorithm for
posterior inference of iSVM, and we demon-
strate the advantages of iSVM over Dirichlet
process mixture of generalized linear models
and other benchmarks on both synthetic and
real Flickr image classification datasets.

1. Introduction

Large-margin methods such as SVMs are among the
most widely used approaches to learn classifiers. Their
power and popularity stem in part from the ability
to handle diverse forms of inputs (e.g., vectors and
strings) by using kernel functions (Schölkopf & Smola,
2001). However, learning a large-margin classifier us-
ing all the input data can be expensive and may also
be limited without considering the underlying (e.g.,
clustering) structures of complex data. To overcome
such limitations, recent progress has been made on
developing mixture-of-experts (Collobert et al., 2002;
Fu et al., 2010), which split the input space into a
number of subregions and learn an SVM classifier
within each region.

However, an open problem for finite mixture-of-
experts is how to choose the number of experts, which
is hard to be specified a priori. Classical remedies
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usually resort to post-processing procedures such as
cross-validation or likelihood ratio test (Liu & Shao,
2003). The recent success of nonparametric Bayesian
techniques such as the Dirichlet process (DP) mixtures
in dealing with similar challenges in clustering (i.e., un-
known number of clusters) and density estimation (i.e.,
unknown number of modalities), offers a promising di-
rection to bypass the model selection problem and au-
tomatically resolve the unknown number of experts.
Representative applications of DP mixture for predic-
tion (e.g., classification) include the infinite mixture
of Gaussian processes (Rasmussen & Ghahramani,
2001) and DP mixture of generalized linear mod-
els (GLMs) (Shahbaba & Neal, 2009; Hannah et al.,
2010). However, these methods are largely restricted
in two aspects. First, although mixture of lin-
ear experts can produce a globally nonlinear classi-
fier (Shahbaba & Neal, 2009), it would lead to the cre-
ation of unnecessary extra experts in order to capture
local nonlinearities underlying complex data. Second,
in order to perform Bayesian inference, a likelihood
model (e.g., GLMs) must be defined for response vari-
ables, which may involve a hard-to-compute partition
function that can substantially complicate posterior
inference. To the best of our knowledge, there has been
no successful attempt to integrate Bayesian nonpara-
metrics with large-margin kernel machines to obtain
an infinite mixture of nonlinear large-margin decision
surfaces, potentially more suitable for complex multi-
way classification of high dimensional data.

In this paper, we present Infinite SVM (iSVM), a
Dirichlet process mixture of large-margin kernel ma-
chines that conjoins the ideas of large-margin learn-
ing, kernel machine, and Bayesian nonparametrics.
iSVM models a mixture of classifiers in a similar way
as DP mixture models a mixture of density compo-
nents; and employs the maximum entropy discrimina-
tion (MED) (Jaakkola et al., 1999) framework to in-
tegrate the large-margin principle with Bayesian pos-
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Figure 1. An illustration of iSVM for binary classification. The two classes are denoted by “squares” and “stars”. We
show the decision boundaries in black lines of: (L) the global SVM using radial basis function (RBF) kernel; (M) iSVM
mixture of linear SVMs; and (R) iSVM mixture of SVMs using RBF kernels. Data points in red are support vectors.

terior inference. In such a way, iSVM combines the
advantages of Bayesian nonparametrics to resolve the
unknown number of mixing experts, and large-margin
kernel machines to capture local nonlinearity without
creating unnecessary experts, as well as handle rich
forms of inputs. In addition, by avoiding employ-
ing a normalized distribution of response variables,
iSVM can be learned efficiently based on existing high-
performance techniques for DP and SVM. Our work
represents the first attempt toward combining large-
margin kernel machines with Bayesian nonparamet-
rics, and our empirical results appear to verify the ex-
pected advantages inherited from both ideas.

Fig. 1 offers a direct illustration of these ideas using
binary data whose features are sampled from a mixture
of two Gaussians. Unlike the global SVM that learns a
single nonlinear classifier on all the data (Left), iSVM
automatically identifies the two components and learns
a local large-margin classifier within each component
(Middle and Right). For a particular data point, the
final prediction is a weighted voting according to the
mixing distributions over the components. As shown
in Fig. 1 (and Table 2), the global RBF-SVM usually
has more support vectors (SVs) than the component
classifiers in RBF-iSVM or even more SVs than the
entire RBF-iSVM. Fewer SVs will lead to more efficient
testing for kernel methods. Finally, the mixture-of-
linear-experts model (Middle) apparently needs extra
(more than two in total) experts in order to capture
the local nonlinearity within each component.

2. Infinite Large-margin Machines

We begin with a brief introduction of the MED large-
margin machines and DP mixtures; followed by the
iSVM which builds on these two lines of thoughts.

2.1. MED and Finite Mixture of SVMs

Let x ∈ RM be an input feature vector. We con-
sider the general multi-way classification, where the
response variable Y takes values from a finite set
{1, · · · , L}. Let F (y,x; η) be a discriminant function
parameterized by η. Unlike standard SVMs, which

perform point-estimate of η and typically lack a direct
probabilistic interpretation, MED (Jaakkola et al.,
1999) learns a distribution q(η) by solving an entropic
regularized risk minimization problem with prior p0(η)

min
q(η)

KL(q(η)∥p0(η)) + C1R(q(η)), (1)

where C1 is a positive constant and KL(p∥q)
is the Kullback-Leibler divergence; R(q(η)) =∑

dmaxy(ℓ
∆
d (y)+Eq(η)[F (y,xd; η)−F (yd,xd; η)]) is the

hinge-loss that captures the large-margin principle
underlying the MED prediction rule

y∗ = argmax
y

Eq(η)[F (y,x; η)] (2)

on training data D = {(xd, yd)}Dd=1; and ℓ∆d (y) mea-
sures how y differs from the true label yd.

Due to the Bayesian-style formulation, MED provides
an elegant way to integrate the ideas of large-margin
learning, kernel machines, and Bayesian generative
modeling. In fact, MED subsumes SVM as a special
case, and it has been extended to incorporate latent
variables (Lewis et al., 2006) and perform structured
output prediction (Zhu & Xing, 2009). However, as
we have stated, learning a single global SVM/MED
classifier with all the data could be expensive because
the complexity scales with the training-set size, and
it may also be limited without considering underly-
ing data structures. Finite mixture of SVM tries to
address this problem by splitting the input data into
several subgroups a priori or using some heuristics and
learning a simpler SVM/MED classifier within each
group (Collobert et al., 2002; Fu et al., 2010).

The Infinite SVM (iSVM) is a novel extension of MED
by using Bayesian nonparametric techniques to resolve
the unknown number of experts in mixture models.
Unlike existing DP mixtures, iSVM inherits the ad-
vantages of large-margin learning and kernel methods.

2.2. Dirichlet Process Mixtures

Ferguson (1973) first introduced the Dirichlet pro-
cess (DP), and Sethuraman (1994) provided a
stick-breaking representation, that is, the random
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measure G distributed according to a Dirichlet
process DP(G0, α) with base distribution G0 and
concentration parameter α can be written as

G =

∞∑
i=1

πi(v)δθ,θi , πi(v)=vi

i−1∏
j=1

(1−vj)

where θi ∼ G0, vi ∼ Beta(1, α), and δa,b is the Kro-
necker delta function (i.e., δa,b = 1 if a = b; otherwise
0). It is clear from this formulation that G is discrete
almost surely (Blackwell & MacQueen, 1973), that is,
the support of G consists of a countably infinite set of
atoms, which are drawn independently from G0.

Antoniak (1974) first introduced the idea of using a
DP as the prior for the mixing proportions of simple
distributions (e.g., Gaussian). Due to the fact that
the distributions sampled from a DP are discrete al-
most surely, data generated from a DP mixture can be
partitioned according to the distinct values of the sam-
pled distributions. Therefore, DP mixture is a flexible
mixture model, in which the number of components is
random and grows as new data are observed.

2.3. Infinite Large-margin Machines

Now, we formally present iSVM, which consists of a
DP mixture of large-margin classifiers on Y and a DP
mixture of input features X.

DP mixture of large-margin classifiers: We de-
fine the DP mixture of large-margin classifiers as the
MED that uses a Dirichlet process prior, that is, the
prior in problem (1) follows a DP

p0(η) ∼ DP(G0, α).

Due to the discrete nature of DP, there is a positive
probability that the sampled ηi ∼ p0(η) have identical
values. Therefore, we can assign data samples to dif-
ferent classifiers for training or testing. We formalize
this idea using the stick-breaking representation. Let
Z be an assignment variable of the component with
which data x is associated. The process of determining
which classifier from a countably infinite set of can-
didates is used to classify a sample can be described as

1. draw Vi|α ∼ Beta(1, α), i ∈ {1, 2, · · · }.
2. draw ηi|G0 ∼ G0, i ∈ {1, 2, · · · }.
3. for the dth data point:

(a) draw Zd|{v1, v2, · · · } ∼ Mult(π(v))

Once Z has been given, we define the component-wise
discriminant function

F (y,x; z,η) = η⊤
z f(y,x) =

∞∑
i=1

δz,iη
⊤
i f(y,x), (3)

where f(y,x) is a ML-dim vector stacking L sub-
vectors of which the yth is x and all the other

Figure 2. Graphical model representation of iSVM.

subvectors are zero. As in MED, we consider learning
a distribution of η for each component classifier and
take the average over all possible η according to the
learned distribution. Since Z is a latent variable, we
define the overall discriminant function

F (y,x) = Eq(z,η)[F (y,x; z,η)] = Eq(z,η)[ηz]
⊤f(y,x)

=

∞∑
i=1

q(z = i)Eq[ηi]
⊤f(y,x), (4)

where the expectation is taken over the posterior
distribution (or its approximation) of Z and η. Then,
a natural prediction rule for classification is

y∗ = argmax
y

F (y,x). (5)

Now, we need to devise an appropriate loss function
of the prediction rule (5) to learn an optimal posterior
distribution p(z,η|D) (or an approximation), where
z denotes the component assignment of all samples.
Following the large-margin idea, we can show that

R(q(z,η)) =
∑
d

max
y

(ℓ∆d (y) + F (y,xd)− F (yd,xd))

is an upper bound of the training error of rule (5) on D
for any distribution q(z,η). Then, similar as in MED,
we define the learning problem as to find the optimal
distribution q(z,η) by solving the entropic regularized
risk minimization problem

min
q(z,η)

KL(q(z,η)∥p0(z,η)) + C1R(q(z,η)). (6)

From the generating process, it is clear that the prior
p0(z,η) =

∏
d p(zd|α)

∏
i p(ηi|G0), where p(z|α) =∫

v
p(z|v)p(v|α).

We have defined problem (6) as an extension of the
MED principle to the flexible DP mixtures. No-
tice that our formulation is fundamentally different
from the work (Lewis et al., 2006) that performs large-
margin learning of finite mixture models by defining
the discriminant function as the log-likelihood ratio,
which is highly nonlinear and hard to deal with.

DP mixture of input features: for the observed
features, they can be described as arising from a
similar generative process as above. Let γ be the set
of all γi ∼ G0. Once Zd has been sampled, the ob-
served features are generated as Xd|zd,γ ∼ p(xd|γzd).
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Similar as in (Blei & Jordan, 2006), we consider the
broad exponential family of distributions for x

p(x|z,γ) =
∞∏
i=1

(h(x) exp{γ⊤
i x−A(γi)})δz,i ,

where A is the log-partition function, and the base
distribution for γ is the corresponding conjugate prior

p0(γ|λ) =
∞∏
i=1

h(γi) exp{λ⊤
1 γi + λ2(−A(γi))−A(λ)}.

Hybrid learning and inference: As illustrated
graphically in Fig. 2, the two parts of iSVM as in “red”
and “blue” boxes are closely coupled by sharing the
same Z and the same infinite mixing proportion vec-
tor π(v). Now, we need to devise a hybrid objective to
learn an optimal distribution q(z,η) for the DP mix-
ture of large-margin classifiers and infer p(z,γ,v|D)
(or an approximation) for the DP mixture of input
features to uncover the underlying structures.

We have defined the learning problem (6) for the
DP mixture of classifiers. For the other part of DP
mixture of inputs, exact inference for p(z,γ,v|D)
is generally intractable. Here, we choose to use
variational methods which will yield an optimization
problem that can be integrated with problem (6).
Specifically, we solve the following problem for the
optimal variational approximation q(z,γ,v)

min
q(z,γ,v)

KL(q(z,γ,v)∥p(z,γ,v|D)). (7)

Putting the two parts together, we define the hybrid
learning and inference problem as to find the optimal
distribution q(z,η,γ,v) by solving the problem

min
q∈Q

f(q(z,η)) + C2KL(q(z,γ,v)∥p(z,γ,v|D)),(8)

where f(q(z,η)) is the objective of problem (6); Q is
the family of the joint distribution q(z,η,γ,v); and
C2 is another non-negative constant.

By minimizing the hybrid learning and inference ob-
jective in problem (8), all the local experts are closely
coupled, and the prediction rule is also coupled with
the DP mixture of observed features. These strong
couplings will cause different components of iSVM to
cooperate nicely. Therefore, we can expect to learn a
DP mixture model that could discover the underlying
structures and can predict well on unseen data.

Notice that for the ease of understanding, we have
defined the component-wise discriminant function
F (y,x; z,η) as linear in terms of the parameters η.
However, this linearity is local, and the weighted pre-
diction rule (5) is nonlinear because of the data de-
pendent mixing weights q(Z). Moreover, using kernel
functions on x to learn nonlinear component-wise clas-
sifiers can be easily extended, as explained later.

3. Opt. with Coordinate Descent
To make the problem tractable, we make the mean
field assumption (Blei & Jordan, 2006) with truncated
stick-breaking representations, that is, q(z,η,γ,v) =∏D

d=1 q(zd)
∏T

t=1 q(ηt)
∏T

t=1 q(γt)
∏T−1

t=1 q(vt), where T
is a variational parameter that can be freely set and
q(vT = 1) = 1 meaning that for any t > T , πt(v) = 0.
Furthermore, we assume that q(zd) is a multinomial
distribution with parameter ϕd = (ϕ1d, · · · , ϕTd ) and
q(vt) = Beta(νt,1, νt,2) is a Beta distribution1.

Since the regularizer KL(q(z,η)∥p0(z,η|α, β)) is hard
to evaluate, we first relax it by using its upper bound

LKL(q(z,η,v)) = KL(q(η)∥p0(η|β)) + Eq(z)[log q(z)]

−Eq(z,v)[log p(z,v|α)− log q(v)].

Then, we solve problem (8) with the above relaxed
bound by using alternating minimization. Due to
space limitation, we omit the solutions for q(v) and
q(γ), which are in the same closed-form as in stan-
dard DP mixtures (Blei & Jordan, 2006). Below, we
briefly present how to solve for q(z) and q(η) and pro-
vide more insights of how iSVM works.

For q(z) and q(η), we solve the simplified problem

min
q(z,η)

LKL(q(z,η,v)) + C1R(q(z,η)) + C2L[q(z)],

where L[q(z)] = Eq(v)[log q(z)] − Eq(z,v)[log p(z|v)] −∑
dEq[log p(xd|zd,γ)]. Since the discriminant func-

tion F (y,x) is linear, this problem is convex over
q(z,η). We use the Lagrangian method to solve the
constrained re-formulation using slack variables ξ. By
introducing lagrange multipliers ωy

d , ∀d, y, we have the
Lagrangian functional L(q(z,η),ω, ξ).

Optimizing L over q(η), we have ∀1 ≤ t ≤ T :
q(ηt) ∝ p0(ηt|β) exp{η⊤t (

∑
d ϕ

t
d

∑
yω

y
df

∆
d (y))}, where

f∆d (y) = f(yd,xd) − f(y,xd). If we assume that the
base distribution for η is N (µ0,Σ0), we will have that
q(ηt) ∼ N (µt,Σ0) with shifted mean

µt = µ0 +Σ0(
∑
d

ϕt
d

∑
y

ωy
d f

∆
d (y)). (9)

Another choice of the base distribution is Laplace
distribution which is useful to identify important
explanatory factors of data (Raman et al., 2010;
Zhu & Xing, 2009). Here, we choose the standard
normal base distribution N (0, I). Substituting the
solution of q(ηt) = N (µt, I) into L, we get the dual
QP problem of a multi-way classification SVM

max
ω

−1

2

∑
t

µ⊤
t µt +

∑
d

∑
y

ωy
dℓ

∆
d (y)

s.t.. : 0 ≤
∑
y

ωy
d ≤ C1, ∀d. (10)

1We can infer q(ηt) and q(γt) without explicitly assum-
ing their parametric forms by using conjugate priors.
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Minimizing L over q(z) and letting ρ = C2

1+C2
, we have

ϕt
d∝ exp

{
(E[log vt]+

t−1∑
i=1

E[log(1−vi)]) (11)

+ρ(E[γt]⊤xd−E[A(γt)]) + (1−ρ)
∑
y

ωy
dµ

⊤
t f

∆
d (y)

}
,

where E[log vi]=ψ(νi,1)−ψ(νi,1+νi,2); E[log(1−vi)]=
ψ(νi,2)−ψ(νi,1+νi,2); and ψ is the digamma function.

From Eq. (11), we can see that the last term weighted
by (1− ρ) plays a role of regularizing the mixing pro-
portions ϕ. For those data points that are at the de-
cision boundary (i.e., support vectors) of the compo-
nent classifiers, this term biases them toward being
re-allocated into the components where they can re-
ceive better predictions. Moreover, since the predic-
tion rule (5) only relies on the expectation of η, which
has a linear form (9), and the QP problem (10) only
depends on the dot product of data points, the above
results can be directly generalized to nonlinear case
by using kernel functions on the input x. The same
extension applies to the following efficient relaxation.

3.1. An Efficient Relaxation

In the above formulation, all the component classifiers
are learned jointly by solving the dual problem (10)
or its primal form. Thus, all the training data are
involved in solving the QP problems and the number
of parameters will be very large if T is large. An
easier and more efficient formulation of iSVM is to
minimize the following upper bound of R
R(q(z,η)) ≤

∑
d

∑
t

ϕt
d

[
max

y
(ℓ∆d (y) + Eq[ηt]

⊤f∆d (y))
]
,

in problem (8), which will lead to the similar
optimization procedure as above. For the component-
wise classifiers, we are learning T cost-sensitive
SVMs (Morik et al., 1999)

min
µt,ξt

1

2
µ⊤
t µt + C1

∑
d

ϕt
dξ

t
d

s.t.. : µ⊤
t f

∆
d (y) ≥ ℓ∆d (y)− ξtd,∀d, y. (12)

Although T can be large, each component classifier
can be efficiently learned because on average only a
few data samples have large ϕtd in component t. If
ϕtd is small enough (e.g., less than 1e−10), the doc-
ument d can be safely discarded in learning compo-
nent classifier t. Another nice property of this error
bound is that it is linear of ϕ. Thus, we can easily
solve for ϕ in a closed-form. Finally, besides compu-
tational simplicity and efficiency, this relaxation al-
lows local experts to compete with each other to make
their individual predictions for a data point2, while

2In fact, the upper bound of R is the expected loss of a
stochastic predictor, which draws a component according
to q(Z) and predicts using the associated classifier.

the formulation with R encourages all the experts to
cooperate to make a final prediction. The competing
mechanism could potentially result in sparser mixing
proportions (Jacobs et al., 1991).

Finally, the SVMs (12) that uses multiple slack vari-
ables can be equivalently reformulated using a single
slack variable, which can be more efficiently learned us-
ing a cutting plane algorithm (Joachims et al., 2009).
In our experiments, we solve the so called 1-slack for-
mulation of SVMs under the above efficient relaxation.

3.2. Testing with Variational Methods

When a new data example x comes in, we need to infer
the posterior distribution

p(z,η|x,D) = p(z|x,D,η)p(η|x,D)

in order to apply the prediction rule (5). We consider
the inductive setting3 and assume that the prediction
model (i.e., distribution of η) only depends on labeled
training data D, that is, p(η|x,D) = p(η|D) and
p(z|x,D,η) = p(z|x,D). We can use the variational
distribution q(η) as inferred in the training phase
to approximate p(η|D). For p(z|x,D), we again use
variational methods to approximate it, by solving

min
q(z)

KL(q(z)∥p(z|x,D)), (13)

where q(z) is a variational distribution. We further
relax the objective using its variational upper bound

Ltest(q(z)q(v,γ)) =−Eq(z)q(v,γ)[log p(z,x,v,γ|D)]

−H(q(z)q(v,γ)) + log p(x|D),

where q(v,γ) is an arbitrary distribution and H is the
entropy. We can solve this problem using alternating
minimization between q(v,γ) and q(z). Here, we ap-
proximate this procedure by using only one iteration,
that is, we fix q(v,γ) at the distribution that approxi-
mates p(v,γ|D) inferred at training phase and solving
problem (13) (using the upper bound) for q(z) only.

4. Experiments

In this section, we provide empirical studies on both
synthetic and real datasets.

4.1. Synthetic Data

We generate synthetic datasets in three different set-
tings. For each setting, we randomly generate 50
datasets. Similar as in (Shahbaba & Neal, 2009), each
dataset has 10000 samples, of which 100 samples are

3It is also interesting to investigate transductive infer-
ence (Joachims, 1999), in which both labeled and unlabeled
data are present to do joint inference.
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Table 1. (L) classification accuracies (%) and (R) F1 scores (%) for different models in three different synthetic situations.

Setting 1 Setting 2 Setting 3 Setting 1 Setting 2 Setting 3

MNL 71.4 ± 10.1 71.0 ± 8.8 62.0 ± 5.7 66.4 ± 12.3 65.5 ± 8.6 61.3 ± 6.2
linear-SVM 71.8 ± 9.9 71.8 ± 8.2 62.9 ± 5.4 65.1 ± 14.3 65.5 ± 9.9 62.2 ± 5.9
rbf-SVM 74.0 ± 8.7 75.5 ± 5.3 74.4 ± 4.2 69.0 ± 11.8 71.8 ± 5.7 72.3 ± 4.4
dpMNL 73.1 ± 9.9 76.3 ± 6.3 74.2 ± 5.5 68.8 ± 11.9 71.7 ± 8.0 71.1 ± 6.0
linear-iSVM 73.5 ± 8.8 76.9 ± 5.7 75.1 ± 4.7 68.9 ± 11.3 72.1 ± 7.7 72.2 ± 5.1
rbf-iSVM 74.7 ± 8.6 78.4 ± 5.2 76.8 ± 4.1 69.9 ± 11.7 74.0 ± 7.8 74.6 ± 4.2

training data and the rest are testing data. We use
Gaussian distributions for x. The three settings are:

Setting 1: the first test is on a binary classification
problem with 4 covariates. Data are generated from
two Gaussian components. The priors for the two
component parameters are µ1 ∼ N (1, 1) and µ2 ∼
N (2, 1); log(σ2

i )∼N (0, 22), i = 1, 2. We draw 5000
examples from each component and sample true labels
from a Bernoulli model with p(y = 1|x) = 1

1+e−ϑ and

ϑ = −a sin(x3
1 + 1.2)− x1 cos(bx2 + 0.7)− cx3 + 2,

where a, b and c are sampled from N (1, 0.52). Note
that the last covariate is not used in the Bernoulli
model, which could introduce additional complexity.

Setting 2: the second test is the same as the Simula-
tion 2 in (Shahbaba & Neal, 2009). Specifically, 10000
3-dimensional samples are sampled from uniform dis-
tributions in the cubic [0, 5]3 and the true labels are
sampled from a similar Bernoulli model as above, ex-
cept that the term x31 is replaced by x1.041 in order to
produce a balanced distribution on two classes.

Setting 3: the last synthetic test is on datasets gen-
erated from a two component mixture of uniform dis-
tributions in cubic [0, 5]3 and [−5, 0]3. The true la-
bels are sampled from a Bernoulli model which has
the same form as in Setting 2. We sample a, b and
c from N (1, 0.52) for the first component and from
N (−1, 0.52) for the second component.

We compare with multinomial logit (MNL), DP mix-
ture of MNL (dpMNL) (Shahbaba & Neal, 2009) and
SVMs. For SVM and iSVM, we compare their perfor-
mance using linear and RBF kernels. We set T = 20
in inference4. iSVM is insensitive to C2, and we fix it
at 64 in all experiments. We use standard normal base
distributions for η and γ. For each setting, we generate
a validation set for selecting the rest hyperparameters.

4Most datasets have 2 or 3 components with large ϕ
values. The results don’t change when T is set at a larger
value. Note that it’s hard to determine the true number
of components. Take Setting 1 as an example, since the
means and variances of two Gaussian components are ran-
domly generated, they can overlap much and the true num-
ber of components is larger or smaller than 2.

Table 2. Number of support vectors for RBF-SVM and
RBF-iSVM in three different synthetic situations.

Setting 1 Setting 2 Setting 3

rbf-SVM 16.3 ± 3.4 13.0 ± 1.6 16.5 ± 2.6
rbf-iSVM 8.5 ± 2.5 5.9 ± 0.8 7.5 ± 1.4

Table 1 shows the average accuracy and F1 scores
(Shahbaba & Neal, 2009) over all the datasets in each
setting, together with standard deviation. We can see
that in general linear methods such as MNL and lin-
ear SVM are insufficient in modeling the complex data
which are not linearly separable. In contrast, mixture
models can effectively improve the performance. Fur-
thermore, using large-margin learning and nonlinear
experts such as SVM with RBF kernels can potentially
further improve. The results in Setting 2 suggest that
even when we know that the data are generated from
a single cluster, the global classifiers (e.g., SVM with
a linear or RBF kernel) might still not be rich enough
to capture the complex nonlinearity.

Table 2 compares the average number of support vec-
tors (SVs) of the global RBF-SVM and the component
classifiers in RBF-iSVM. We can see that on average
the component classifier in iSVM has fewer SVs than
RBF-SVM. This suggests that the component classi-
fiers are simpler and more efficient in testing5. More-
over, the linear-iSVM, which can be very efficient in
training and testing (See Table 3), performs compara-
bly (a bit better) with the global RBF-SVM.

The reason for the large standard deviation of all the
tested models is that the randomly generated datasets
are very diverse. Fig. 3 compares the performance
between RBF-iSVM and dpMNL on all the 50 datasets
in Setting 2. We can see that on most datasets, iSVM
outperforms dpMNL. Considering the data diversity,
our improvements on average performance are quite
significant.

5In all experiments, we approximate the weighted pre-
diction rule (5) by using the single component classifier
with which an input is most likely associated. This ap-
proximation doesn’t affect the results because the inferred
ϕ usually has one element that is much larger than others.
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Figure 3. Performance comparison between RBF-iSVM
and dpMNL on the 50 datasets in Setting 2.

4.2. High-dimensional Real Data

Now, we study the empirical performance of iSVM on
the public dataset6, which is a subset of the large NUS-
WIDE dataset (Chua et al., 2009). It contains 3411
natural scene images downloaded from Flickr website.
The images are about 13 types of animals, including
tiger, cat and etc. Two types of features are considered
in (Chen et al., 2010) for multiview analysis, including
500-dimension SIFT bag-of-words and 634-dimension
real-valued features (e.g., color histogram, edge direc-
tion histogram, and block-wise color moments). We
consider the real-valued features in iSVM by using nor-
mal distributions for x.

4.2.1. Prediction Performance

We compare with MNL, dpMNL, SVM and the multi-
view method MMH (Chen et al., 2010) that uses both
SIFT and real-valued features. We also compare with
de-coupled approaches that use either KMeans or DP
mixtures to cluster the data and then learn a sepa-
rate linear SVM classifier for each cluster. We de-
note the de-coupled approaches as KMeans+SVM and
DPM+SVM, respectively. Since sampling methods
are usually slow, previous studies (Shahbaba & Neal,
2009; Hannah et al., 2010) are largely limited to low-
dimensional (e.g., tens of dimensions) datasets. For
this high-dimensional dataset, the sampling algo-
rithm7 for dpMNL doesn’t work properly on the orig-
inal features. To make dpMNL efficient and robust,
we project the original features into a low-dimensional
space. We try both PCA and exponential family har-
monium (EFH) (Welling et al., 2004) that uses nor-
mal distributions to model real-valued inputs. Similar
as in the synthetic experiments, we fix C2 and use
standard normal base distributions for η and γ. We
run 5-fold cross-validation on 2054 randomly sampled
training data to select the other hyperparameters.

Table 3 shows the average performance of iSVM over
five runs with randomly initialized ϕ. Similarly, we
present the average performance for dpMNL with

6http://www.cs.cmu.edu/∼junzhu/subspace learning.htm
7We use the authors’ matlab code downloaded from:

http://www.ics.uci.edu/∼babaks/Homepage/Codes.html

Table 3. Classification accuracy (%), F1 score (%), and test
time (sec) for different models on the Flickr image dataset.
All methods except dpMNL are implemented in C.

Accuracy F1 score Test time

MNL 49.8 ± 0.0 48.4 ± 0.0 0.02 ± 0.00
MMH 51.7 ± 0.0 50.1 ± 0.0 0.33 ± 0.01
rbf-SVM 56.0 ± 0.0 52.8 ± 0.0 7.58 ± 0.06
dpMNL-efh70 51.2 ± 0.9 49.9 ± 0.8 42.1 ± 7.39
dpMNL-pca50 51.9 ± 0.7 49.9 ± 0.8 27.4 ± 2.08
dpm+SVM 54.9 ± 0.5 52.4 ± 1.0 0.21 ± 0.01
kmeans+SVM 54.1 ± 0.0 52.1 ± 0.0 0.02 ± 0.00
linear-iSVM 55.7 ± 0.1 53.7 ± 0.1 0.22 ± 0.01
rbf-iSVM 56.4 ± 0.5 53.5 ± 0.7 6.67 ± 0.05
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Figure 4. Representative images within different subgroups
discovered by iSVM using RBF kernels.

five runs of the stochastic sampling algorithm. For
dpMNL, we show the best results of using the low-
dimensional features produced by EFH and PCA8.
In general, we have similar observations as in the
synthetic experiments: 1) mixture-of-experts can im-
prove the performance; 2) de-coupled methods per-
form worse than joint methods; and 3) using large-
margin and nonlinear local experts can potentially fur-
ther improve. Finally, the linear-iSVM, which can be
very efficient in training (about 200 seconds) and test-
ing, obtains comparable results with the global RBF-
SVM, which is about 2 order of magnitude slower in
training and 1 order of magnitude slower in testing
because of expensive kernel computation. RBF-iSVM
has comparable training time with RBF-SVM.

4.2.2. Clustering Structures

Fig. 4 shows the sizes of the subgroups discovered on
Flickr data. For each cluster, we present several rep-
resentative images. We can see that the images in the
same cluster tend to have similar background color.
One possible reason is that color features are the main
features used. We also observe that some clusters (e.g.,
the 8th) tend to have a few images from a small num-
ber of categories while some clusters (e.g, the 1st) tend

8For PCA, the features are first-k principal components.
We tried k = 10, 20, · · · , 130 and reported the best results.
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to contain many images from different categories. In
general, a simple (but might be nonlinear) classifier is
likely to be sufficient to classify the images within each
cluster. Also, as explained in Sec 3, the error term in
problem (8) could bias an image to be allocated to a
cluster in which it can be well classified.

5. Conclusions and Future Work

We have presented Infinite SVM (iSVM), a Dirichlet
process (DP) mixture of large-margin kernel machines.
iSVM integrates the advantages of Bayesian nonpara-
metrics to resolve the unknown number of mixing ex-
perts and large-margin kernel methods to capture lo-
cal nonlinearities. Unlike existing DP mixtures, iSVM
learns local experts using large-margin principle with-
out requiring to define a normalized distribution of
response variables. We present a variational learning
algorithm and demonstrate the advantages of iSVM
over existing DP mixtures and other benchmarks on
both synthetic and Flickr image classification datasets.

For future work, we can incorporate advances in large-
margin kernel methods and Bayesian nonparamet-
rics to extend and improve iSVM. For example, we
can use efficient kernel methods (Fine & Scheinberg,
2001; Rahimi & Recht, 2007) to do large-scale appli-
cations, and combine multiple kernels (Lewis et al.,
2006; Dunson & Bhattacharya, 2010) to deal with
heterogenous data; and we can extend the basic
Dirichlet process mixtures to model structured inputs
(e.g., sequences with Markov property (Beal et al.,
2002)) and learn predictors with a structured output
space (Zhu et al., 2008).
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