
OptiML: An Implicitly Parallel Domain-Specific Language for
Machine Learning

Arvind K. Sujeeth asujeeth@stanford.edu
HyoukJoong Lee hyouklee@stanford.edu
Kevin J. Brown kjbrown@stanford.edu
Hassan Chafi hchafi@stanford.edu
Michael Wu mikemwu@stanford.edu
Anand R. Atreya aatreya@stanford.edu
Kunle Olukotun kunle@stanford.edu
Stanford University, 353 Serra St., Stanford, CA 94305 USA

Tiark Rompf tiark.rompf@epfl.ch
Martin Odersky martin.odersky@epfl.ch
École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Abstract
As the size of datasets continues to grow,
machine learning applications are becom-
ing increasingly limited by the amount of
available computational power. Taking ad-
vantage of modern hardware requires using
multiple parallel programming models tar-
geted at different devices (e.g. CPUs and
GPUs). However, programming these de-
vices to run efficiently and correctly is dif-
ficult, error-prone, and results in software
that is harder to read and maintain. We
present OptiML, a domain-specific language
(DSL) for machine learning. OptiML is an
implicitly parallel, expressive and high per-
formance alternative to MATLAB and C++.
OptiML performs domain-specific analyses
and optimizations and automatically gener-
ates CUDA code for GPUs. We show that
OptiML outperforms explicitly parallelized
MATLAB code in nearly all cases.

1. Introduction

Modern machine learning (ML) applications are char-
acterized by large datasets with time-bound compu-
tations which require significant amounts of compu-
tational power. Recent computer systems featuring

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

a combination of general and specialized processors,
so-called “heterogeneous hardware” (AMD, 2008), of-
fer unprecedented computational power and so are
well-suited to benefit ML applications. However, tak-
ing advantage of these heterogeneous systems is diffi-
cult (Sutter, 2005).

To take advantage of all the capabilities of a mod-
ern heterogeneous parallel system, machine learning
researchers must have expert knowledge in different
programming models each aimed at a specific compo-
nent of modern computing systems: a message pass-
ing library for clusters (e.g. MPI), a threaded library
to take advantage of parallelism available in a single
compute node (e.g. OpenMP) and a data parallel pro-
gramming model (e.g. CUDA and OpenCL) to take
advantage of the GPU. Multiple programming models
are needed because no single model is the right choice
for all situations. Furthermore, a significant analysis
effort is required to match the various parts of the
application to the different programming models, and
a mix of programming models is required to achieve
peak performance (Lee, 2010).

Ideally, ML researchers could leverage these hetero-
geneous parallel machines with a programming lan-
guage that is general, productive and results in high-
performance execution. However, no such language
exists, as generality, productivity and performance are
goals that are often at odds. A way to achieve perfor-
mance and productivity is to give up generality and fo-
cus on a particular domain (Chafi et al., 2010). In this
paper, we present OptiML, a DSL for developing ma-

OptiML: An Implicitly Parallel Domain-Specific Language for Machine Learning

chine learning algorithms and applications. The goal
of OptiML is to bridge the gap between ML algorithms
and heterogeneous hardware to provide a productive
and high performance programming environment.

The main contributions of this paper are:

• OptiML, a new DSL designed to enable machine
learning algorithms to easily take advantage of
heterogeneous parallelism.

• We show that applications written using domain-
specific abstractions can be highly expressive
without sacrificing performance.

• We demonstrate ML-specific analyses, optimiza-
tions and code generation that are not feasible
with a general purpose compiler.

• We show that OptiML without any explicit paral-
lelization outperforms parallel MATLAB and Ac-
celerEyes’ Jacket by an average of 3.52x on 8 cores
and 3.98x with a GPU.

2. Design

The OptiML language focuses on describing what an
operation should do, rather than how it should do it,
deferring the how to the language implementation and
runtime. OptiML describes ML operations using re-
stricted semantics and data structures that generate
efficient parallel and heterogeneous code. In this sec-
tion, we describe the design and the key features of
OptiML.

2.1. Domain Model

OptiML is designed to handle iterative statistical in-
ference problems, in particular those that can be ex-
pressed by the Statistical Query Model (Kearns, 1998)
which has been shown to cover a large subset of ML al-
gorithms (Chu et al., 2007). These algorithms usually
exhibit a combination of regular and irregular data
parallelism at varying granularities. OptiML allows
these problems to be expressed as dense or sparse
linear algebra operations, or as first-class operations
on Graph-based data structures. The majority of
operations in this model are summation-based (e.g.
dot product) and can be parallelized using compos-
able map-reduce operators. However, because ML al-
gorithms typically have many fine-grained operations
with low arithmetic intensity, efficiency is more im-
portant than in other domains where map-reduce has
been traditionally used.

Table 1. Example domain-specific data structures
 Sub-type Semantics

M
a

tr
ix

 Image Iteration can access pixels within a window

Training Set
Only streaming (next, prev) access.

Can be file-backed and larger than memory

V
ec

to
r

Indices Can be used to index vectors and matrices

Vertices Iteration can access neighboring vertices

Edges Iteration can access connected vertices

View
A view of a contiguous section of a matrix

Updates propagate to the underlying matrix

2.2. Language Overview

All OptiML programs use data types derived from
three fundamental base types: Vector, Matrix, and
Graph. These data types are polymorphic and flexi-
ble. If they are used with scalar values they will be
efficient and leverage BLAS and GPU support for ap-
plicable operations. However, they can also be used
with other types (e.g. a vector of vectors). Vector,
in particular, can be thought of as an array-like con-
tainer that takes on its mathematical meaning when
used with data types that support arithmetic opera-
tions. Vector and Matrix support all of the standard
linear algebra operations used in most ML algorithms.
They also provide a wide range of convenient collec-
tion operators, such as map, count, and filter. Sub-
types support even richer type-specific operations (e.g.
histogram on Image). Finally, the Graph type allows
machine learning algorithms based around networks
and graphical models (such as belief propagation) to
be naturally expressed through iteration over vertices
and edges.

For convenience, OptiML data types can be used in
a normal imperative way (e.g. using a ‘while’ loop
and assigning each index to a value), but this will re-
sult in suboptimal parallel performance. Instead, Op-
tiML encourages the use of the domain-specific control
and data structures listed in Listing 1 and Table 1.
These structures provide the OptiML compiler with
additional semantic information while also restricting
the operations they support (illegal use of operations
will cause a compiler error). By supporting domain-
specific access patterns, OptiML can efficiently encode
common operations without the performance sacrifices
associated with rare and expensive cases. For example,
OptiML only allows neighboring vertices in a Graph
to be accessed in a bulk operation (e.g. foreach) and
automatically synchronizes accesses to these elements
while running the operation in parallel. In contrast, a
general purpose compiler has to be conservative, be-
cause it is unaware of the data structures being used
and allows arbitrary memory access patterns to be ex-
pressed.

OptiML: An Implicitly Parallel Domain-Specific Language for Machine Learning

/* the following structures are restricted to
accessing elements with provided index i only: */

// sum: implemented as a parallel tree-reduce
val ans = sum(begin, end){ i =>

<ith value to sum> }

// aggregate: returns a concatenated list of results
// implemented as a parallel tree-reduce
val ans = aggregate(v) { i =>

<ith value to append to buffer> }

// vector construction: implemented as a parallel map
val my_vector = (0::end) { i =>

<ith value of my_vector> }

// matrix construction: implemented as a parallel map
val my_matrix = (0::endRow, 0::endCol) { (i,j) =>

<(i,j)th value of my_matrix> }

/* this structure has type-specific restrictions: */

// unordered iteration over elements:
// implemented as a parallel foreach
for (e <- object) { .. }

/* these structures have no indexing restrictions: */

// untilconverged: implemented sequentially, but can
// be parallelized dynamically using optimizations
untilconverged(x, threshold) { x =>

<new value of x> }

// sequential
while(condition) { .. }

Listing 1. Pseudocode snippets demonstrating OptiML
control structures.

2.3. Using OptiML

We demonstrate OptiML syntax and control struc-
tures by showing how the k-means clustering algorithm
is written in OptiML:

untilconverged(mu, tol){ mu =>

// calculate distances to current centroids
val c = (0::m){i =>

val allDistances = mu mapRows { centroid =>
// distance from sample x(i) to centroid
((x(i)-centroid)*(x(i)-centroid)).sum

}
allDistances.minIndex

}

// move each cluster centroid to the
// mean of the points assigned to it
val newMu = (0::k,*) { i =>

val (weightedpoints, points) = sum(0,m) { j =>
if (c(i) == j){

(x(i),1)
}

}

if (points == 0) Vector.zeros(n)
else weightedpoints / points

}

newMu
}

This example highlights the usage of four OptiML
control structures: untilconverged{..}, vector construc-
tor (0::m){..}, matrix constructor (0::k,*){..}, and
sum{..}. Unlike MATLAB functions, each of these
control structures accepts any user-defined function
that meets the requirements listed in Listing 1. The
syntax “x => y” represents a function that takes a
value x and returns a value y. untilconverged iterates
until the difference between mu and newMu falls below a
provided tolerance tol. vector constructor computes
each value of the new c vector, which represents the
closest cluster for each training sample. matrix con-
structor computes a new k × n Matrix by computing
a new vector for each new cluster location.

These abstractions represent commonly occuring oper-
ations in machine learning; in future sections, we will
show how we use them to generate high-performance
parallel code. This example also shows that vectors
(e.g. x(i)) and matrices can be used with normal arith-
metic syntax. The mapRows function is used to per-
form an operation on every row of a matrix in a concise
way. Together, these features allow for programs that
resemble pseudocode or scripts. This can be extremely
useful during algorithm prototyping, when one wishes
to focus on algorithm description rather than imple-
mentation details. In the following section, we explore
in more detail how OptiML can be used to write more
productive code.

3. Productivity

To demonstrate how OptiML’s machine learning ab-
stractions can increase programmer productivity and
application readability, we compare an OptiML ap-
plication to a corresponding C++ version. The ap-
plication we will explore is used for visual object de-
tection on the Willow Garage PR2 robot. The algo-
rithm searches across an image for matches against a
database of binary gradient templates and produces
a list of object detections and their locations in the
image (Bradski & Muja, 2010). The snippet below is
used to filter image gradients via non-max suppression:

C++:

void gradMorphology(Mat &gradient, Mat &clnGradient) {
int rows = gradient.rows;
int cols = gradient.cols;
// zero out borders

OptiML: An Implicitly Parallel Domain-Specific Language for Machine Learning

uchar *bptrTop = gradient.ptr<uchar>(0);
uchar *bptrBot = gradient.ptr<uchar>(rows - 1);
for(int x = 0; x < cols; ++x, ++bptrTop, ++bptrBot)

*bptrTop = 0; *bptrBot = 0;
for(int y = 1; y < rows - 1; ++y) {

uchar *bptr = gradient.ptr<uchar>(y);

*bptr = 0; *(bptr + cols - 1) = 0;
}
// ... 23 lines omitted
for(int y = 0; y < rows - 2; ++y) {

// ... 5 lines omitted
uchar *c = clnGradient.ptr<uchar>(y+1);
// ... 6 lines omitted
for(int x = 0; x < cols - 2; ++x, ++c) {

// ... 3 lines omitted
int maxindx = 1; int maxcnt = counts[1];
for(int j = 2; j < 9; ++j) {

if(counts[j] > maxcnt)
maxindx = j; maxcnt = counts[j];

}
if(maxcnt > 1) { *c = maxindx; }
// ... 3 lines omitted

}
}

}

OptiML:

def gradMorphology(gradient: GrayscaleImage) = {
// zero out borders
gradient.top(1) = 0; gradient.bottom(1) = 0
gradient.left(1) = 0; gradient.right(1) = 0

// returns a new Matrix of the same dimensions
gradient filter(3, 3) { window =>

val (max,maxIdx) = window.histogram.maxWithIndex
if (max > 1) maxIdx else 0

}
}

This part of the algorithm does a sliding window
computation (filter) over the image, computing a his-
togram for each window. The output of the filter is
the index of the largest histogram value within the
window, if the value is greater than 1 (otherwise the
output is 0). The C++ code consists of several nested
loops that compute the window efficiently, but the re-
sulting code is difficult to read and even harder to par-
allelize because it contains writes to shared data struc-
tures. In contrast, the OptiML code is succinct and
expresses only algorithmic intent. The filter operation
accepts any user-defined function that computes a re-
sult without writing to shared data structures. Thus,
it is more expressive than MATLAB’s fixed function
convolution operators, but still restrictive enough to
allow OptiML to generate efficient parallel or CUDA
code. This example shows how OptiML’s restricted se-
mantics lead programmers towards patterns that can
be naturally expressed and easily parallelized.

While both the C++ and OptiML versions of the pre-

vious example are written sequentially, the OptiML
code executes in parallel. It is important to note
that the OptiML code does not include implementa-
tion details for the target parallel architectures. The
same source code currently targets systems with CPUs
and/or GPUs, and will also compile to new parallel
hardware as support is added to the OptiML com-
piler. For example, we are currently working on adding
support for clusters, where each compute node con-
tains a combination of CMPs and GPUs; OptiML
programs will automatically inherit this support. In
contrast, with MATLAB a developer must choose up
front whether to write a loop to be run in parallel (us-
ing parfor), on a GPU (using gfor with Jacket), or in
its most efficient sequential form (using vectorization).
This decision is difficult or impossible to make stati-
cally, because the right choice depends on factors such
as data size, parallelization overhead, and the avail-
ability and characteristics of the target hardware.

4. Performance

OptiML uses domain-specific knowledge in order to
reason about programs at a higher level than a library
or a general purpose language, which enables it to pro-
vide superior parallel performance. At the heart of Op-
tiML’s ability to deliver high performance is its ability
to build, analyze, and optimize an intermediate repre-
sentation (IR) of the user program.

4.1. Building an IR

OptiML is a domain-specific language embedded in
Scala (Odersky, 2011), (Hudak, 1996), (Hofer et al.,
2008). This means that OptiML implements its com-
piler in Scala, and OptiML programs are also valid
Scala programs. Scala is a JVM-based language with
advanced features for DSL embedding. OptiML uses
a metaprogramming technique known as lightweight
modular staging (Rompf & Odersky, 2010) to build
an intermediate representation of a program. Instead
of directly executing the operations expressed by the
program, OptiML records a node representing the op-
eration and its dependencies (data and control). These
nodes encode both the domain-specific nature of the
operation (e.g. outer product, matrix transpose) and
multiple mappings to efficient parallel execution pat-
terns. Once the application is in this form, it becomes
amenable to analysis and optimization.

4.2. Analyses and Optimizations

OptiML performs several static and dynamic optimiza-
tions. Static optimizations are applied as transforma-
tions on the OptiML IR before code generation, while

OptiML: An Implicitly Parallel Domain-Specific Language for Machine Learning

dynamic optimizations are implemented as part of Op-
tiML data types or control structures.

Static domain-specific optimizations:

OptiML implements general and well-known static op-
timizations such as common subexpression elimina-
tion, dead code elimination, and loop hoisting. All
of these optimizations occur at the granularity of DSL
operations (e.g. vector plus). It also provides the fol-
lowing domain-specific optimizations:

Pattern rewriting: OptiML uses pattern match-
ing on the IR to optimize sequences of operations ac-
cording to standard linear algebra simplification rules.
For example, a simplification that can be exploited in
Gaussian Discriminant Analysis (GDA) is:∑n

i=0 ~xi ∗ ~yi →
∑n

i=0 X(:, i) ∗ Y (i, :) = X ∗ Y

This optimization converts a summation of outer prod-
ucts into a single matrix multiplication. We also use
pattern rewriting to identify sequences of operations
that should be generated differently depending on tar-
get device, consolidating them into a single IR node
that can be generated accordingly.

Op fusing: OptiML classifies domain operations ac-
cording to their implementation semantics. For exam-
ple, it knows that a vector + vector operation is a Zip-
With operation, i.e. a simultaneous loop over the two
vectors that will build a new vector as a result. This
knowledge is then used to fuse adjacent operations; for
example, k loops that iterate over data structures of
the same size can be transformed into a single loop
that computes k results, thereby reducing the num-
ber of main memory accesses. As a practical example,
consider the following line from the SMO algorithm
(Platt, 1998) for SVM (*:* is a dot product):

val eta = (X(i)*:*X(j)*2) - (X(i)*:*X(i))
- (X(j)*:*X(j))

Here, OptiML automatically fuses all of the dot prod-
uct calculations into a single loop instead of 4 (3
for each dot product plus 1 for the scalar multipli-
cation). For the entire SMO algorithm, op fusing re-
duces 35 loops to 11. More importantly, fusing an op-
eration can eliminate allocations of intermediate data
structures. The *:* operator can be implemented as
(X(i) * X(j)).sum and op fusing will ensure that no in-
termediate vector will be allocated to hold the result
of X(i) * X(j).

Dynamic domain-specific optimizations:

Best-effort computing: because many ML algo-
rithms are iterative and probabilistic, they are of-

ten robust to minor variations in computation (Meng
et al., 2009). OptiML allows users to trade-off accu-
racy, if they choose, for better performance, by using
best effort data structures. These data structures drop
computations according to a policy, which can improve
single-threaded execution time and reduce sequential
bottlenecks, improving parallel scalability.

Relaxed dependencies: for the same reasons as
above, it is sometimes useful to allow ML algorithms
to intentionally race, which again can improve parallel
performance at the expense of strict consistency for
some operations. OptiML provides a version of the
untilconverged construct that allows some number of
iterations to be run in parallel. Recent work (Zinke-
vich et al., 2010) has shown the potential for this op-
timization.

4.3. Code Generation

OptiML generates code by translating IR nodes to
their corresponding implementation in the target lan-
guage. Currently, OptiML generates Scala, C++ and
CUDA code, although not all targets are generated
for every operation. There are some operations that
do not fit the CUDA programming model (e.g. op-
erations that dynamically allocate memory with un-
known sizes or use complex reference-based data struc-
tures); OptiML will only generate Scala or C++ code
for these. Along with generated code for each node, we
emit an execution graph describing the program’s op-
erations and dependencies. OptiML is built on top of
a common runtime, Delite (Chafi et al., 2011), that is
designed specifically for heterogeneous parallel DSLs.
An OptiML program is executed by invoking Delite
with the execution graph and generated code. Delite
schedules the OptiML operations on the underlying
hardware and provides synchronization and communi-
cation between kernels.

The restricted semantics of OptiML control structures
and the compiler’s knowledge of the possible data
structures being used are the key factors that enable
the OptiML compiler to target the same application
code to both CMPs and GPUs. Since OptiML knows
what data types an operation uses, it can transpar-
ently generate the required CUDA data structures and
memory transfers. The compiler is able to generate
code without extensive analysis because the restric-
tions of the constructs guarantee the transformation
is safe. Furthermore, OptiML is able to generate code
that is optimized for each device; for example, GPUs
prefer to stride column-wise through a row-major Ma-
trix as this maximizes the global memory bandwidth
utilization by coalescing the memory requests from

OptiML: An Implicitly Parallel Domain-Specific Language for Machine Learning

multiple threads, whereas CPUs prefer to stride row-
wise to maximize single-threaded locality. OptiML
generates the appropriate stride for both cases, maxi-
mizing performance per device.

OptiML’s heterogeneous code generation is essential to
providing a portable, productive programming model
with the best possible performance. Some operations
either do not fit the CUDA model or actually perform
worse on a GPU, and it is necessary to be able to
run these on a CPU. Since application programmers
do not specify any device-specific details, OptiML can
generate multiple versions and select the best one at
runtime. In contrast, with both MATLAB and Ac-
celerEyes’ GPU support, the programmer must spec-
ify which data structures should be resident on the
GPU device memory. Choosing which data structures
should go to the GPU and deciding when to bring the
data back to obtain the best performance is difficult.

4.4. Implications for OptiML Users

The fact that OptiML is embedded in Scala and exe-
cuted on heterogeneous systems is ideally completely
transparent to the end user. From a syntactic and se-
mantic point of view, this illusion is maintained; Op-
tiML programs require no knowledge of the underlying
embedding implementation, no explicit parallelization,
and no explicit code for the lower level programming
models (e.g. CUDA). However, there are still some
issues that can make the underlying implementation
visible to OptiML programmers. The most important
issue is debugging; errors in generated code at run-
time can be tricky to capture and propagate back to
the user in a meaningful way. Similarly, Scala com-
pilation errors should be trapped and reported to the
OptiML user in a simplified way. We believe these is-
sues are technical rather than fundamental, and we are
addressing them in our current and future research.

5. Evaluation

This section presents performance results for a set of
machine learning applications written in OptiML and
compares them to reference implementations written
using existing alternative systems, including MAT-
LAB, GraphLab (Low et al., 2010), and C++. In
addition, we analyze the performance improvements
achievable due to OptiML’s static and dynamic opti-
mizations described in Section 4.2.

5.1. Methodology

For the first set of experiments, we compare our ap-
plications to multiple MATLAB implementations. We

used MATLAB 7.11 with its CPU parallelization and
GPU support, as well as GPU support from Accel-
erEyes’s Jacket (AccelerEyes, 2010). Each application
is algorithmically identical, but for the MATLAB ver-
sions we made a reasonable effort to vectorize and par-
allelize the CPU code, and make the best data locality
choices for the GPU. In cases where both vectorization
or parallelization was possible, we report the results for
the version that had the best performance at 8 CPUs.

We also present two ML applications that are not well
suited to MATLAB, and therefore chose an alternative
language to provide a performance baseline. We imple-
mented a version of loopy belief propagation (LBP) in
OptiML and compare it to a baseline implementation
in GraphLab, which is a C++ library for ML graph
applications. We also compare the binarized gradient
template matching (TM) algorithm described in sec-
tion 3 to a hand-optimized C++ baseline.

For each of the experiments we timed the computa-
tion component of the application, without initializa-
tion. We ran each application (with initialization) 10
times in order to warm up the JIT and smooth out
fluctuations due to garbage collection and other vari-
ables. We present here the averaged time of the last
five executions. We used a Dell Precision T7500n with
two quad-core Intel Xeon X5550 2.67 GHz processors,
24GB of RAM, and an NVidia Tesla C2050.

5.2. Performance Comparison

In Figure 1 we compare the performance of our ap-
plications to the MATLAB implementations. Execu-
tion time for each application is normalized to the
single-threaded OptiML version. The MATLAB par-
allel constructs use MPI, which adds significant over-
head, while the single-threaded OptiML version is gen-
erated without any parallelization overhead. We also
ran purely sequential MATLAB versions and found
OptiML to have equivalent or better performance for
each application. In most cases, OptiML performs bet-
ter because it is statically compiled and generates op-
timized code instead of being interpreted. In some
cases, such as deep belief learning with a Restricted
Boltzmann Machine (RBM), both OptiML and MAT-
LAB are predominantly calling native BLAS libraries
(e.g. matrix multiplication), and so achieve roughly
the same performance.

For some applications, offloading operations to the
GPU results in a significant performance improve-
ment, while for others it merely adds overhead, leading
to performance equivalent to the CPU (or sometimes
worse in MATLAB’s case). For GDA, OptiML’s sub-
stantially better GPU performance is due to its ability

OptiML: An Implicitly Parallel Domain-Specific Language for Machine Learning

1
.0

1
.7

3
.1

4
.9

0
.7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 CPU 2 CPU 4 CPU 8 CPU

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

TM

1
.0

1
.7

2
.5

3
.3

1
.2

1
.5

3
.5

5
.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 CPU 2 CPU 4 CPU 8 CPU

LBP

OptiML C++

Figure 2. Execution time of our applications compared to
C++, and normalized to single-threaded OptiML. Speedup
numbers are reported on top of each bar.

to analyze the application IR and generate a CUDA
kernel that minimizes memory accesses by exploiting
local GPU registers.

Figure 2 compares the performance of two applica-
tions written in OptiML to a baseline written in an
alternative environment. LBP is compared against an
equivalent implementation in GraphLab. The results
show that OptiML achieves performance and scaling
close to GraphLab, which is written in C++ and de-
signed specifically for Graph-based algorithms. TM is
compared to a baseline C++ implementation which
is single-threaded and designed for high performance
robotics. The OptiML version outperforms the C++
version while being significantly shorter and easier to
read. It also scales to 8 cores, while the C++ base-
line would require non-trivial manual parallelization to
achieve any parallel performance.

5.3. Impact of Optimizations

Section 4.2 described multiple static and dynamic
domain-specific optimizations. The performance re-
sults presented in Figures 1 and 2 included the static
optimizations of common subexpression elimination,
dead code elimination, code motion, and linear alge-
bra rewrites. We studied the benefits of op fusing
on the downsampling part of a bioinformatics applica-
tion. This part of the application streams over a large
dataset, performing multiple operations on each sam-
ple. Without optimization, the OptiML version is 3x
slower than a hand-optimized, manually-parallelized
C++ version, as shown in Figure 3. After fusing, the
OptiML version is approximately as fast as the C++
version.

We next look at the additional improvement from ap-
plying relaxed dependencies to SVM and best-effort
computation to k-means. The SMO implementation
of SVM contains inter-loop dependencies that prevent

OptiML No Fusing OptiML Fusing C++

0
.9

1
.8

3
.3

5
.6

1
.0

1
.9

3
.4

5
.8

0
.3

0
.6

0
.9

1
.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 CPU 2 CPU 4 CPU 8 CPU

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Downsampling

Figure 3. Normalized execution time of Downsampling in
C++ and OptiML with and without op-fusing optimiza-
tions. Speedup numbers are reported on top of each bar.

parallelization across iterations. In previous work we
have shown that relaxing dependencies between the
outer loop iterations, allowing iterations to sometimes
run in parallel, can increase performance by 1.8x with
less than 1% loss in classification accuracy (Chafi et al.,
2011). For k-means we demonstrated that a best-
effort convergence policy that drops distance calcula-
tions that have remained unchanged in the previous n
iterations creates a unique tradeoff between accuracy
and performance for different values of n. Specifically,
we observed speedups of 1.8x with a 1.2% loss in ac-
curacy, 4.9x with a 4.2% loss, and 12.7x with a 7.4%
loss in accuracy (Chafi et al., 2011).

6. Conclusion

Many useful machine learning algorithms and datasets
are facing computational challenges and will require
the use of state-of-the-art hardware. As the size of
datasets continues to grow and hardware becomes even
more parallel and heterogeneous, being able to exploit
these hardware features will become essential. OptiML
provides the link between ML applications and hetero-
geneous parallel hardware. We demonstrated the pro-
ductivity of OptiML code with an ML application for
robotics. We have shown that the OptiML compiler
can perform domain-specific optimizations and gen-
erate efficient parallel code for heterogeneous devices
without exposing any parallelism or device details to
OptiML users. Finally, we presented experimental re-
sults showing that OptiML code outperformed explic-
itly parallelized MATLAB code on a heterogeneous
system consisting of multicore CPUs and a GPU.

7. Acknowledgements

We would like to thank Andrew Saxe and Andrew
Ng for valuable discussions and comments about this

OptiML: An Implicitly Parallel Domain-Specific Language for Machine Learning

1
.0

1
.6

1
.8

1
.9

4
1

.3

0
.5

0
.9

1
.4

1
.6

2
.6

1
3

.2

0.0

0.5

1.0

1.5

2.0

2.5

1 CPU 2 CPU 4 CPU 8 CPU CPU +
GPU

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

GDA

1
.0

2
.1

4
.1

7
.1

 2
.3

0
.3

0
.4

0
.4

0
.4

0
.3

0
.3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 CPU 2 CPU 4 CPU 8 CPU CPU +
GPU

K-means

1
.0

1
.7

2
.7

3
.5

1
1

.0

1
.0

1
.9

3
.2

4
.7

8
.9

1
6

.1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 CPU 2 CPU 4 CPU 8 CPU CPU +
GPU

RBM

1
.0

1
.9

3
.8

5
.8

1
.1

0
.1

0
.2

0
.2

0
.3

0
.1

0.0

2.0

4.0

6.0

8.0

10.0

1 CPU 2 CPU 4 CPU 8 CPU CPU +
GPU

0
.0

1

100.0

110.0

Naive Bayes

...
1

.0

1
.4

2
.0

2
.3

1
.6

0
.5

0
.9

1
.3

1
.1

0
.4

0
.3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 CPU 2 CPU 4 CPU 8 CPU CPU +
GPU

Linear Regression

1
.0

1
.9

3
.1

4
.2

1
.1

0
.9

1
.2

1
.4

1
.4

0.0

0.5

1.0

1.5

2.0

1 CPU 2 CPU 4 CPU 8 CPU CPU +
GPU

0
.1

7.0

15.0

SVM

...

0
.2

OptiML Parallelized MATLAB MATLAB + Jacket

Figure 1. Execution time of our applications compared to MATLAB, and normalized to single-threaded OptiML. Speedup
numbers are reported on top of each bar.

work. This research was sponsored by Army con-
tract AHPCRC W911NF-07-2-0027-1; DARPA con-
tract, Oracle order US1032821; the Stanford PPL af-
filiates program, Pervasive Parallelism Lab: NVIDIA,
Oracle/Sun, AMD, NEC, and Intel; and the following
Fellowship programs: SGF, SOE, and KFAS.

References
AccelerEyes. Jacket. http://www.accelereyes.com,

2010.

AMD. The Industry-Changing Impact of Accelerated Com-
puting. White Paper, 2008.

Bradski, G. and Muja, M. BiGG Detector. http://www.
ros.org/wiki/bigg_detector, 2010.

Chafi, H., DeVito, Z., Moors, A., Rompf, T., Sujeeth,
A. K., Hanrahan, P., Odersky, M., and Olukotun,
K. Language Virtualization for Heterogeneous Parallel
Computing. Onward!, 2010.

Chafi, H., Sujeeth, A. K., Brown, K. J., Lee, H., Atreya,
A. R., and Olukotun, K. A domain-specific approach
to heterogeneous parallelism. In Proceedings of the 16th
ACM symposium on Principles and practice of parallel
programming, PPoPP, 2011.

Chu, C., Kim, S., Lin, Y., Yu, Y., Bradski, G., Ng, A. Y.,
and Olukotun, K. Map-reduce for machine learning on
multicore. In Advances in Neural Information Processing
Systems 19. 2007.

Hofer, C., Ostermann, K., Rendel, T., and Moors, A. Poly-
morphic embedding of DSLs. GPCE, 2008.

Hudak, P. Building domain-specific embedded languages.
ACM Computing Surveys, 28, 1996. ISSN 0360-0300.

Kearns, M. Efficient noise-tolerant learning from statistical
queries. Joural of the ACM, 45:983–1006, 1998.

Lee, V. W. et al. Debunking the 100x gpu vs. cpu myth:
an evaluation of throughput computing on cpu and gpu.
In Proc. ISCA, 2010.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin,
C., and Hellerstein, J. M. GraphLab: A New Parallel
Framework for Machine Learning. In UAI, 2010.

Meng, J., Chakradhar, S., and Raghunathan, A. Best-
effort parallel execution framework for recognition and
mining applications. In Proc. of IPDPS, 2009.

Odersky, M. Scala. http://www.scala-lang.org,
2011.

Platt, J. C. Sequential minimal optimization: A fast algo-
rithm for training support vector machines, 1998.

Rompf, T. and Odersky, M. Lightweight modular staging:
a pragmatic approach to runtime code generation and
compiled dsls. GPCE, 2010.

Sutter, H. The free lunch is over: A fundamental turn
toward concurrency in software. Dr. Dobb’s Journal, 30
(3):202–210, 2005.

Zinkevich, M. A., Weimer, M., Smola, A., and Li, L. Paral-
lelized stochastic gradient descent. In Advances in Neu-
ral Information Processing Systems, December 2010.

http://www.accelereyes.com
http://www.ros.org/wiki/bigg_detector
http://www.ros.org/wiki/bigg_detector
http://www.scala-lang.org

