
Multiclass Boosting with Hinge Loss based on Output Coding

Tianshi Gao tianshig@stanford.edu

Electrical Engineering Department, Stanford, CA 94305 USA

Daphne Koller koller@cs.stanford.edu

Computer Science Department, Stanford, CA 94305 USA

Abstract

Multiclass classification is an important and
fundamental problem in machine learning.
A popular family of multiclass classification
methods belongs to reducing multiclass to bi-
nary based on output coding. Several mul-
ticlass boosting algorithms have been pro-
posed to learn the coding matrix and the
associated binary classifiers in a problem-
dependent way. These algorithms can be uni-
fied under a sum-of-exponential loss function
defined in the domain of margins (Sun et al.,
2005). Instead, multiclass SVM uses an-
other type of loss function based on hinge
loss. In this paper, we present a new output-
coding-based multiclass boosting algorithm
using the multiclass hinge loss, which we call
HingeBoost.OC. HingeBoost.OC is tested on
various real world datasets and shows bet-
ter performance than the existing multiclass
boosting algorithm AdaBoost.ERP, one-vs-
one, one-vs-all, ECOC and multiclass SVM
in a majority of different cases.

1. Introduction

Multiclass classification is an important and fun-
damental problem in machine learning. Due to the
richness of concepts in many domains, a classifier is
often required to discriminate far more than two cate-
gories. For example, in visual recognition, the SUN
dataset (Xiao et al., 2010) contains 899 scene cate-
gories and ImageNet (Deng et al., 2009) has 15, 589
synsets. Many of the research efforts in machine learn-
ing have been devoted to the binary classification prob-
lem, so it is very useful and important to investigate
how to use well studied binary classification algorithms

Appearing in Proceedings of the 28
th International Con-

ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

to solve multiclass problems.

Output coding is a general framework to reduce a
multiclass problem into binary (Dietterich & Bakiri,
1995; Allwein et al., 2001). It unifies popular meth-
ods like one-vs-all and one-vs-one by viewing differ-
ent choices of sets of binary classifiers as induced by
a coding matrix. Given a K-class problem, the cod-
ing matrix has K rows each of which corresponds a
codeword assigned to a class. A binary classifier is
learned for each and every column of the matrix, on
instances that are relabeled by the column. Different
fixed coding matrices are compared in (Allwein et al.,
2001) on various datasets, but none is the best on all
datasets. The results in (Allwein et al., 2001) suggest
that learning a coding matrix with the associated bi-
nary classifiers in a problem-dependent way is better
than using a pre-defined coding matrix.

However, as shown by Crammer & Singer (2000),
simultaneously finding a whole coding matrix with a
set of binary classifiers is intractable. Alternatively,
multiclass boosting algorithms based on output cod-
ing, i.e., AdaBoost.OC and AdaBoost.ECC, have been
proposed by Schapire (1997) and Guruswami & Sahai
(1999), where each column and its binary classifier are
viewed as weak learners and are learned one at a time
in a stage-wise way. Sun et al. (2005) unified these two
methods by showing that both are actually performing
stage-wise functional gradient descent on a loss func-
tion defined in the domain of margins. To trade-off the
error-correcting property of the coding matrix and the
performance of the binary learner, Li (2006) proposed
to modify the coding matrix according to the learning
ability of the binary learner, resulting in an improved
boosting algorithm AdaBoost.ERP.

Most of previous output-coding-based multiclass
boosting algorithms are unified under a loss based
on the sum-of-exponential of the margins (Sun et al.,
2005). Another type of multiclass classification loss
used by multiclass SVM (Crammer & Singer, 2002)
puts a truncated linear penalty on the margins, which



Multiclass Boosting with Hinge Loss based on Output Coding

we refer to as multiclass hinge loss. There are several
other methods that are based on the multiclass hinge
loss and can be thought of as a relaxation of the dis-
crete coding matrix to real values. Both Rätsch et al.
(2003) and Amit et al. (2007) learn the real-valued
coding matrix and the embedding functions jointly
based on the hinge loss. The former used the alter-
nating method to optimize the bi-convex problem and
the latter proposed a convex reformulation. More gen-
erally, Zou et al. (2008) outlined a class of smooth con-
vex loss functions that are Fisher-consistent, including
logit loss, squared hinge loss, etc.

In this work, we propose a new output-coding-
based multiclass boosting algorithm using the mul-
ticlass hinge loss, which we call HingeBoost.OC.
HingeBoost.OC offers several advantages over previ-
ous methods. First, unlike previous output-coding-
based methods, we use the multiclass hinge loss which
is more robust than the traditional sum-of-exponential
loss when there is noise/outlier (Hastie et al., 2009).
Second, our framework naturally allows kernelization
(some methods like (Zou et al., 2008) cannot do so),
which can usually boost the performance significantly.
Third, our framework can admit any user-defined
cost functions, while many previous methods are not
cost-sensitive. Finally, instead of requiring the weak
learner to predict a single label from the entire label
space (Zou et al., 2008), our framework focuses on re-
ducing multiclass to binary, so we can take advantage
of existing highly optimized binary models/softwares.

2. Analysis of Multiclass Loss Functions

In this section, we analyze and compare multiclass
loss functions. For binary classification, many algo-
rithms are formulated to minimize some loss functions
over margins. For example, boosting uses an exponen-
tial loss over the margin and SVM adopts the hinge
loss. The concept of margins can be naturally gen-
eralized to the multiclass setting. Given a function
f(x, y) : X × Y → R, with the decision made by
ŷ = argmaxy f(x, y), the margin of an instance xi with
respect to a label y is defined as (Sun et al., 2005; Li,
2006)

ρf (xi, y) = f(xi, yi) − f(xi, y) (1)

where yi is the true label of xi. Note that
ρf (xi, yi) = 0. The existing multiclass boosting al-
gorithms based on output coding (Schapire, 1997;
Guruswami & Sahai, 1999; Sun et al., 2005; Li, 2006)
are understood as a stage-wise optimization procedure
to minimize a loss defined over the multiclass margins.
This common loss is defined as

Lexp(f) =
1

N(K − 1)

N
∑

i=1

∑

y:y 6=yi

e−ρf (xi,y) (2)

where K is the number of classes. Another type
of multiclass classification loss used by the multiclass
SVM (Crammer & Singer, 2002) is given as

Lhinge(f) =
1

N

N
∑

i=1

max
y

{1 − ρf (xi, y) − δyi,y} (3)

where δyi,y = 1, if yi = y, otherwise 0. Note that
Lhinge(f) ≥ 0, since 1 − ρf (xi, yi) − δyi,yi

= 0. Fur-
thermore, the classification error is denoted as

L(f) =
1

N

N
∑

i=1

(1 − δyi,ŷi
) (4)

where ŷi = argmaxy f(xi, y).

½2

½3

½0f (x)

¢½

dp(½
0

f (x); S
¤)

= dp(½f (x); S
¤)

d1(½f(x); S
¤

hinge)

1
½f(x)

S¤hinge

S¤

1

Figure 1. Illustration of the margin domain for a 3-class
problem. We assume the true label of x is 1, so ρ1 is
always 0, which we don’t show. Please refer to the text for
more details.

We present a simple geometric interpretation of
these losses on the domain of margins. Con-
sider a dataset with one instance x, and without
loss of generality we assume its true label is 1.
Then given some f , the margin vector is ρf (x) =

(0, ρf (x, 2), . . . , ρf (x,K))T . Define S∗ = {ρ|ρ1 =
0, ρk > 0, k = 2, . . . ,K,ρ ∈ R

K}. Obviously, if
ρf (x) ∈ S∗, then L(f) = 0, otherwise L(f) = 1.
Therefore, S∗ is the optimal set on the margin domain
which induces zero mis-classification error. Intuitively,
to minimize L(f), we want the learning algorithm to
search the space of f to minimize the distance be-
tween the margin vector ρf (x) and the optimal set
S∗, i.e., minf dp(ρf (x), S∗), where dp(ρf (x), S∗) =
minρ∈S∗ ‖ ρf (x)−ρ ‖p for some chosen norm ℓp. Fig-
ure 1 shows the margin domain for K = 3 (ignoring
the dimension of ρ1, since it’s always 0). The light
blue region corresponds to S∗.

For the hinge loss, let S∗
hinge = {ρ|ρ1 = 0, ρk −

1 ≥ 0, k = 2, . . . ,K,ρ ∈ R
K}, then Lhinge(f) =

0 if and only if ρf (x) ∈ S∗
hinge. The dark blue

region in Figure 1 corresponds to S∗
hinge. One

can show that Lhinge(f) = d∞(ρf (x), S∗
hinge), where



Multiclass Boosting with Hinge Loss based on Output Coding

d∞(ρf (x), S∗
hinge) = minρ∈S∗

hinge
‖ ρf (x) − ρ ‖∞.

Therefore, minimizing the hinge loss is equivalent to
minimizing the distance (with infinity norm) between
the margin vector ρf (x) and the optimal set S∗

hinge.
Furthermore, if ρf (x) /∈ S∗, then it’s easy to show
that d∞(ρf (x), S∗) = d∞(ρf (x), S∗

hinge)− 1. This im-
plies that the margin vector gets closer to the optimal
set S∗ of mis-classification error if we decrease Lhinge.

However, decreasing Lexp(f) does not necessarily
make ρf (x) closer to S∗. Consider the point ρf (x)
in Figure 1. If we take a step ∆f such that ∆ρ =
(0, 0, α), where α > 0, then Lexp(f + ∆f) < Lexp(f)

(since ρ′f (x, 3) > ρf (x, 3) ⇒ e−ρ′

f (x,3) < e−ρf (x,3),
where ρ

′
f (x) = ρf (x) + ∆ρ). However, dp(ρf , S∗) =

dp(ρ
′
f , S∗) for ℓp with different choices of p.

Another important difference is how sensitive the
loss is to the noise/outlier. For Lexp, it puts exponen-
tial penalty on the violated margins, while Lhinge uses
a linear penalty. This implies that if a high level of
noise/outlier presents, Lhinge should be more robust
than Lexp (Hastie et al., 2009).

In some domains, the 0-1 type loss (4) does not cap-
ture some intrinsic distance measures between classes.
For example, in visual recognition, classifying a cat
into a dog should be more tolerable than classifying a
cat into a car. Therefore, we introduce a cost matrix
C(y, y′) specifying the cost of classifying an instance
from class y into y′. In fact, (3) is a special case
where C(y, y′) = 1 − δy,y′ . An example of a multi-
class cost matrix can be found in (Deng et al., 2009),
where a cost matrix is defined with the help of a vi-
sual hierarchy. Given a cost matrix C, the empirical
mis-classification cost becomes

LC(f) =
1

N

N
∑

i=1

C(yi, ŷi) (5)

Furthermore, we define a cost-sensitive hinge loss as

LC
hinge(f) =

1

N

N
∑

i=1

max
y

{C(yi, y) − ρf (xi, y)} (6)

It can be shown that LC
hinge is an upper bound on LC .

3. Multiclass Boosting based on Output

Coding

Given the loss defined in the previous section, the
goal of learning is to search in a function space to
minimize the loss. As shown by Sun et al. (2005), the
output-coding-based multiclass boosting algorithms
are actually performing stage-wise functional gradi-
ent descent to minimize (2). In the following, we
briefly introduce the general framework of multiclass
boosting based on output coding. Given a set of

training instances {(xi, yi)}
N
i=1, where yi ∈ Y =

{1, 2, . . . ,K}, the goal is to learn a discriminative func-
tion f(x, y) : X × Y → R with the decision made
as ŷ = argmaxy f(x, y). In the boosting framework,
f is a weighted average of multiple weak learners,
i.e., f(x, y) =

∑T
t=1 αtht(x, y), where ht(x, y) : X ×

Y → R. In the case of output-coding-based multiclass
boosting (Schapire, 1997; Guruswami & Sahai, 1999;
Sun et al., 2005; Li, 2006), the form of the weak learner
is ht(x, y) = µt(y)gt(x), where µt : Y → {−1, 0,+1} is
a coloring function inducing a set of negative classes
S− = {(xi, yi)|µt(yi) = −1} and a set of positive
classes S+ = {(xi, yi)|µt(yi) = +1}, and gt(x) is a
binary classifier trained to separate S− and S+. Usu-
ally, M = [µ1, µ2, . . . , µT ] ∈ {−1, 0,+1}K×T is called
the codebook or coding matrix. The boosting algo-
rithms usually start with an empty codebook M , and
use a stage-wise way to learn a single column µt and
its binary classifier gt(x) at a time.

4. Multiclass Boosting with Hinge Loss

Under the general framework of output-coding-
based multiclass boosting, we introduce our new
boosting algorithm based on multiclass hinge loss
(HingeBoost.OC). We assume the binary classifier is
gt(x) = w

T
t φ(x) + bt, where φ(x) : X → R

D is a fea-
ture mapping given explicitly or implicitly (as shown
later). Since our weak classifier outputs a real value,
the role of αt is absorbed into the parameters wt and
bt , therefore, our final discriminative function is given
as f(x, y) =

∑T
t=1 ht(x, y) =

∑T
t=1 µt(y)gt(x), where

µt : Y → {−1,+1}. We will first define a regularized
objective based on the multiclass hinge loss, and opti-
mize it in a stage-wise way, i.e., one ht(x, y) at a time.
To optimize over ht(x, y) = µt(y)gt(x) at each round,
we iteratively optimize over µt(y) or gt(x) with the
other fixed. As we will show, optimizing over gt(x)
is a margin-rescaled binary SVM problem with the
number of constraints independent of the number of
classes. To optimize over µt(y) we use a greedy de-
scent method. Both steps can be solved efficiently.

4.1. Objective

Our goal is to minimize the cost sensitive multiclass
hinge loss on f with a regularization term on the model
parameters. Our objective is given as:

min
1

2

T
∑

t=1

‖wt‖
2+

C

N

N
∑

i=1

max
y

{f(xi, y)−f(xi, yi)+C(yi, y)}

(7)

where C is a parameter trading off between the regu-
larization and loss. One can use other types of norms
on wt (e.g., ℓ1 for sparsity/feature selection) without
changing the optimization procedure below.



Multiclass Boosting with Hinge Loss based on Output Coding

4.2. Forward stage-wise optimization

Like boosting, we use a stage-wise optimization pro-
cedure to minimize (7). Specifically, we define:

ft(x, y) =
∑

s≤t

hs(x, y) (8)

Then ft(x, y) = ft−1(x, y)+ht(x, y). At round t, we
consider a single weak learner ht(x, y) with ft−1(x, y)
fixed. We define the margin residual at t as

ρt(i, y) = C(yi, y) + ft−1(xi, y) − ft−1(xi, yi) (9)

Then the optimization problem at round t is:

min
1

2
‖wt‖

2+
C

N

N
∑

i=1

max
y

{ρt(i, y)+ht(xi, y)−ht(xi, yi)}

(10)

It is worth noting the connection between the mar-
gin residual ρt(i, y) and the distribution Dt(i, y) over
pairs of instances and labels in exponential loss based
boosting algorithms. Both ρt(i, y) and Dt(i, y) have
the property that for instance and label pair (xi, y)
with high error, their values are high and vice versa.
This property makes the weak learner at the current
round focus more on those instance/label pairs that
are not well classified by the current model.

Recall that ht(x, y) = µt(y)gt(x), which makes (10)
non-convex. We optimize (10) in a block coordinate
descent way. Specifically, we iterate over two steps
until convergence: optimizing over µt given gt and op-
timizing over gt given µt.

4.2.1. Initialization

To initialize the iterative algorithm, we need a
good starting point. Consider a pair of an instance
and a label, i.e., (i, y). There are two cases: (1) if
µt(yi) = µt(y), then ht(xi, y) = ht(xi, yi), which im-
plies the margin residual stays the same as ρt(i, y); (2)
if µt(yi) 6= µt(y), then the new margin residual be-
comes ρt(i, y) − 2µt(yi)gt(xi) (since µt(y) = −µt(yi)),
so we can learn a good gt(xi) to drive the margin resid-
ual down. Based on this observation, it would be a nice
goal to partition the classes such that high ρt(i, y) can
be pushed down. Formally, we want to maximize

N
∑

i=1

∑

y∈Y

ρt(i, y)1{µt(yi) 6= µt(y)} (11)

where 1{·} is an indicator function. After re-grouping
the terms, we get:

max
∑

(y,y′):y<y′

1{µt(y) 6= µt(y
′)} ·





∑

i:yi=y

ρt(i, y
′) +

∑

i:yi=y′

ρt(i, y)





(12)

(12) has an intuitive interpretation: for a pair of
classes (y, y′), we to partition them into two different
groups, if their inter-class margin residuals are high.
This a max-cut problem which we solve as an SDP.
Note that both Schapire (1997); Li (2006) found that
a random initialization might give better performance
due to a better tradeoff between the error-correcting
property of the partition and the hardness of the in-
duced binary problem. We also tried a version of the
random initialization, where we randomly generate n
µt’s, and choose the one with the highest value of (11).

4.2.2. Optimizing the binary classifier

With µt fixed, we reformulate (10) as:

min
1

2
‖wt‖

2 +
C

N

N
∑

i=1

ξt,i

s.t. ht(xi, yi) − ht(xi, y) ≥ ρt(i, y) − ξt,i, ∀(i, y)
(13)

Since ht(x, y) = µt(y)gt(x), for each instance and
label pair, there are two cases: (1) if µt(yi) = µt(y),
then ht(xi, yi) − ht(xi, y) = 0; (2) if µt(yi) 6= µt(y),
then ht(xi, yi) − ht(xi, y) = 2µt(yi)gt(xi). So we can
reformulate the above problem as (assume gt(x) =
wtφ(x) + bt, absorb 2 into wt, bt, and drop the sub-
script of t to avoid notation clutter):

min
1

2
‖w‖2 +

C

N

N
∑

i=1

ξi

s.t. ξi ≥ ρt(i, y), ∀(i, y) : µ(y) = µ(yi)

∀(i, y) : µ(y) 6= µ(yi)

µ(yi)(w
T φ(xi) + b) ≥ ρt(i, y) − ξi

(14)

There are N × K constraints in (14), but not all of
them are active. Denote ρ−i = maxy:µ(y) 6=µ(yi) ρt(i, y)

and ρ+
i = maxy:µ(y)=µ(yi) ρt(i, y). Note that ρ+

i ≥ 0,

since ρ(i, yi) = 0. We also define ξ′i = ξi−ρ+
i , then (14)

is equivalent to (ignoring a constant in the objective):

min
1

2
‖w‖2 +

C

N

N
∑

i=1

ξ′i

s.t. µ(yi)(w
T φ(xi) + b) ≥ (ρ−i − ρ+

i ) − ξ′i, ∀i

ξ′i ≥ 0, ∀i

(15)

Now, there are only 2N constraints, which is inde-
pendent of the number of classes. This is a margin
rescaling version of the binary SVM, and we modified
the highly optimized LIBSVM (Chang & Lin, 2001) to
solve it. The dual of (15) is as follows:



Multiclass Boosting with Hinge Loss based on Output Coding

max
∑

i

αi(ρ
−
i − ρ+

i )

−
1

2

∑

i

∑

j

αiαjµ(yi)µ(yj)φ(xi)
T φ(xj)

s.t.
∑

i

αiµ(yi) = 0 and 0 ≤ αi ≤
C

N
, ∀i

(16)

One can easily kernelize (16) by replacing
φ(xi)

T φ(xj) with a kernel function K(xi,xj).

4.2.3. Optimizing the codebook column

The second step in our block coordinate descent pro-
cedure is to fix gt(x) and optimize µt(y). The intuition
is that the initial coloring might induce a hard binary
classification problem with high errors, and re-coloring
based on the learned binary classifier may give better
generalization error. Under the unified objective (10),
with gt(x) fixed, the objective can be rewritten as:

N
∑

i=1

max
y

{ρt(i, y)+µt(y)gt(xi)}−

K
∑

k=1

µt(k)
∑

i:yi=k

gt(xi)

(17)

Different µt(y)’s are coupled by the max function.
We use an ICM style descent procedure to get a local
optimal of this combinatorial problem. Specifically,
given some ordering of µt(y)’s, we change the value
of one µt(y) at a time, if the resulting objective value
is smaller, then we take this change, and move to the
next µt(y

′). This is repeated until no single change
of µt(y) can decrease the objective. We found that
due to the good initialization and strong gt(x), this
procedure often converges after one or two iterations.

The HingeBoost.OC algorithm is summarized in Al-
gorithm 1. At each round, we first solve (12) to get the
initialization of µt, and then iterate over learning the
binary classifier and the re-coloring until convergence
or a pre-specified number of iterations.

5. Experiments

Basic Setup. In the experiments, we compare
the performance of HingeBoost.OC to other popu-
lar methods based on reducing multiclass to binary:
one-vs-one, one-vs-all, ECOC (Dietterich & Bakiri,
1995; Allwein et al., 2001), AdaBoost.ERP 1 (Li,
2006) (a representative multiclass boosting algorithm
based on output coding and the sum-of-exponential
loss), and the single-machine method: multiclass
SVM (Crammer & Singer, 2002). For the ECOC
method, the coding matrix is chosen before see-
ing the data such that the minimum Hamming dis-
tance between any pair of codewords is maximized

1We used the code from the author to run experiments.

Algorithm 1 HingeBoost.OC

Input: A training set {(xi, yi)}
N
i=1; number of rounds

T ; regularization parameter C; a cost matrix
C(y, y′).

1: Initialize ∀(i, y), ρ1(i, y) = C(yi, y)
2: for t = 1 to T do

3: Initialize the column µt ∈ {−1,+1}K by maxi-
mizing (12).

4: repeat

5: ∀i, ρ−i = maxy:µt(y) 6=µ(yi) ρt(i, y)

6: ∀i, ρ+
i = maxy:µt(y)=µt(yi) ρt(i, y)

7: Fix µt, solve (15) to obtain gt(x)
8: Fix gt(x), solve (17) to obtain new µt

9: until convergence or some specified # of steps
10: ∀(i, y), ρt+1(i, y) = ρt(i, y) + µt(y)gt(xi) −

µt(yi)gt(xi)
11: end for

Return: M = [µ1, . . . µT ] and {gt(x)}T
t=1

Figure 2. A typical set of learning curves on the scene15
dataset with GIST feature, showing the training/testing
errors and the training hinge loss over rounds.

(good error-correcting property). For a K-class prob-
lem, if 3 ≤ K ≤ 7, we used the exhaustive
codes (Dietterich & Bakiri, 1995) with the codeword
length 2k−1 − 1. If K > 7, we used the dense random
codes from (Allwein et al., 2001). Specifically, the ran-
dom codes has ⌈10log2(K)⌉ columns. Each element in
the coding matrix is chosen at random from {−1,+1}.
We examined 10, 000 such random coding matrices and
chose the one that has the largest minimum pair-wise
Hamming distances between all pairs of codewords and
does not have any identical columns. Furthermore, we
tried both Hamming decoding and exponential-loss-
based decoding (Allwein et al., 2001), and found that
the latter is consistently better, so we report ECOC
performance using the loss-based decoding scheme.

For HingeBoost.OC, we fixed the maximum num-
ber of iterations of line 5-8 in Algorithm 1 to be 2,
and we found that in most cases, iteratively optimiz-



Multiclass Boosting with Hinge Loss based on Output Coding

Figure 3. Comparison of test errors over rounds using Ad-
aBoost.ERP and HingeBoost.OC on scene15 dataset based
on GIST and HOG2x2 features.

ing the column and the binary classifiers converges in
one or two steps due to the relatively strong weak
learner, i.e., margin-rescaled SVM. In addition, for
HingeBoost.OC, we tried two methods for the column
initialization. One is to use SDP to solve (12) and the
other is to randomly generate 1000 µt’s and choose the
one that gives the highest value of (11). We found em-
pirically that the latter is usually better (in terms of
the final classification performance) and faster, so we
used it as the initialization method in the experiment.
For all methods, the binary classifiers or weak learners
are SVMs. The SVM parameter C is chosen by cross
validation on the training set.

Scene15 Dataset. The first dataset we used is the
scene15 dataset (Lazebnik et al., 2006). It is composed
of 9 outdoor scenes (tall building, inside city, etc.)
and 6 indoor scenes (office, kitchen, etc.). There are
4485 images in total, and 1500 are randomly sampled
(100 per class) for training and the remaining 2985 for
test. This is repeated 10 times, and the mean and
standard deviation of the test classification errors are
computed. We used two types of features: a weak one
called GIST (Oliva & Torralba, 2001) and a strong one
based on spatially distributed histogram of gradient,
denoted as HOG2x2 (Xiao et al., 2010).

First, we study how the hinge loss and training/test
errors change over rounds for HingeBoost.OC. As can
be seen from Figure 2: (1) HingeBoost.OC can success-
fully drive down the hinge loss and training/test errors
over rounds; (2) although the hinge loss and training
errors keep going down even beyond 200 rounds, the
test error converges around 100 rounds; (3) the test
error stays flat for a large number of rounds, which
suggests that HingeBoost.OC is robust to overfitting
when the number of rounds is large.

Second, we show in Figure 3 the test classification
errors over rounds for both AdaBoost.ERP and Hinge-

Boost.OC. Given a weak feature, i.e., GIST, Hinge-
Boost.OC achieves much better test errors than that
of AdaBoost.ERP. However, if a strong feature is used
(also meaning a stronger weak learner), this gap is re-
duced, but HingeBoost.OC still converges to a lower
error. If the weak learner is not strong, initializing
using a one-vs-all codebook helps the boosting algo-
rithm converge to a better solution. For example, us-
ing GIST feature, the test errors of AdaBoost.ERP
with and without one-vs-all codebook initialization are
35.54±0.93 and 36.46±1.27. For HingeBoost.OC, the
test errors with and without one-vs-all codebook ini-
tialization are 29.35±0.73 and 30.37±0.66 respectively.
In the experiments, we tried both configurations and
report the better one.

Last, we show the test errors on scene15 dataset for
different methods in Table 1. For both AdaBoost.ERP
and HingeBoost.OC, we fix the number of rounds to
be 200. As shown in Table 1, in cases of both weak
and strong features, HingeBoost.OC achieves the low-
est errors, but the performance gain is more significant
when the weak feature is used. Note that the overlap
between error bars are mainly due to inter-fold varia-
tions. For example, using the GIST feature, a paired
t-test between the score vectors from one-vs-one and
ours rejects the null hypothesis with the p value equal
to 8 × 10−5. It is worth noting that ECOC has the
worst performance on average, although the minimum
Hamming distance of the coding matrix used by ECOC
is 32 compared to 2 of the one-vs-all codebook.

UCI Dataset. We further tested different methods
on standard multiclass problems from the UCI ma-
chine learning repository (Newman et al., 1998). The
five datasets we used are: pendigits (pen-based recog-
nition of hand written digits), satimage (pixel-based
classification on satellite images), segment (multiclass
image segmentation), vehicle (object recognition) and
vowel (speech recognition). Following the same proto-
col used by Li (2006), for datasets with both training
and test sets, experiments were run 100 times and the
results were averaged (due to the randomness factor
in AdaBoost.ERP and HingeBoost.OC). Otherwise, a
10-fold cross-validation was repeated for 10 times for
each fold with a total of 100 runs. As before, we fixed
the number of rounds of both boosting algorithms to
be 200. We first conducted the experiments using
linear SVM as weak learner. The results are shown
in Table 2. In this case, HingeBoost.OC achieved the
best performance on two datasets while one-vs-one did
the best on the other three. Note that on those three
datasets where one-vs-one is the best, HingeBoost.OC
is consistently better than all the other methods.

Recall that HingeBoost.OC can be naturally ker-



Multiclass Boosting with Hinge Loss based on Output Coding

Table 1. Test errors (%) on scene15 dataset.

feature one-vs-one one-vs-all ECOC AdaBoost.ERP Multiclass SVM HingeBoost.OC
GIST 30.49 ± 1.00 32.16 ± 1.00 39.73 ± 0.16 35.54 ± 0.93 31.26 ± 0.50 29.35 ± 0.73

HOG2x2 24.24 ± 0.59 24.47 ± 0.68 28.03 ± 0.12 26.24 ± 0.55 26.08 ± 0.59 24.18 ± 0.66

Table 2. Test errors (%) on datasets from the UCI repository using linear SVM as base learner.

dataset one-vs-one one-vs-all ECOC AdaBoost.ERP Multiclass SVM HingeBoost.OC
pendigits 4.61 10.18 17.89 8.18 ± 0.35 8.46 6.95 ± 0.20
satimage 14.22 16.75 19.4 16.99 ± 0.09 16.15 16.05 ± 0.14
segment 5.84 ± 0.15 10.61 ± 0.23 8.33 ± 0.16 6.16 ± 0.16 5.37 ± 0.18 5.11 ± 0.15

vowel 49.78 58.44 68.61 57.60 ± 0.33 67.53 52.90 ± 0.92
vehicle 21.40 ± 0.43 21.13 ± 0.44 21.16 ± 0.38 22.36 ± 0.40 21.43 ± 0.51 20.06 ± 0.40

nelized as shown in (16), so we also conducted ex-
periments on the UCI datasets using perceptron ker-
nel (Lin & Li, 2005). The choice of the kernel is for
direct comparison to the results reported in (Li, 2006)
(we also used the same fold partition generated by the
code from the author). Note that all binary classifiers
and weaker learners used by other methods are us-
ing the same kernel. For multiclass SVM, we found
empirically that this type of kernel does not work
well in the multiclass setting, so we used an RBF
kernel which is shown comparable to the perceptron
kernel in (Lin & Li, 2005). The γ parameter in the
RBF kernel is chosen from {0.1, 0.5, 1, 2, 4, 8, 16} by
cross validation. The test errors are shown in Ta-
ble 3 (the first and the third columns are from (Li,
2006)). First, with non-linear kernels, all methods
achieved better performance compared to linear ker-
nel. Second, with strong binary classifier, it seems that
no method is significantly better than others on all
datasets. HingeBoost.OC achieved the lowest errors
on two datasets while AdaBoost.ERP, one-vs-one and
multiclass SVM performed the best on the other three
respectively. AdaBoost.ERP and HingeBoost.OC did
best on harder datasets (the three with the highest
errors). Again, it is worth noting that with strong bi-
nary classifier, the performance gap between ECOC
and other methods are greatly reduced.

SUN Dataset. Finally, we conducted experiments
on a large-scale dataset, the SUN dataset (Xiao et al.,
2010). The SUN dataset is by far the largest scene
recognition dataset, and it contains 899 categories.
We used 397 well-sampled categories to run an exper-
iment. This subset contains 39, 700 images. We used
10-fold cross validation to test different methods. For
each fold, each class has 50 training images and 50
testing images. We used the strong feature HOG2x2
with linear SVM as the base learner. Since the Ad-
aBoost.ERP code from (Li, 2006) does not support
sparse data structure (dense data requires around 8GB
memory) and also it runs very slowly due to parameter
searching for each weak learner at each round, we do

not have the result of AdaBoost.ERP on this dataset.
For HingeBoost.OC, we fixed the number of rounds to
be 1000, and used the one-vs-all codebook as initial-
ization. The results are shown in Table 4. First, on
such a large and difficult dataset, the test errors of all
methods are high. Compared to the error of random
guessing 99.75% and the error of using GIST feature
with RBF kernel 83.7% in (Xiao et al., 2010), our re-
sults are reasonable. Second, different algorithms seem
to perform similarly, but HingeBoost.OC and multi-
class SVM are slightly better. The overlap between
the error bars of one-vs-one and ours is mainly due
to inter-fold variations. A paired t-test between the
score vectors from one-vs-one and ours rejects the null
hypothesis with the p value equal to 0.019.

Discussion. There are two metrics to evaluate a clas-
sification algorithm. The first one is the accuracy.
In our experiments, HingeBoost.OC achieved the best
classification accuracy on 7 cases out of 13 runs, and
one-vs-one is the best on 4 of them. However, in terms
of the testing speed, one-vs-one does not scale well
due to the quadratical growth of the complexity in the
number of classes. For example, on the SUN dataset,
one-vs-one requires 78, 606 classifier evaluations while
HingeBoost.OC only needs 1000 or less. Furthermore,
in case of linear weak learner, HingeBoost.OC can be
further reduced to K “classifier” evaluations for a K-
class problem, since

f(x, y) =
∑T

t=1 µt(y)wT
t φ(x) + µt(y)bt

= (
∑

t µt(y)wt)
T φ(x) +

∑

t µt(y)bt

(18)

where
∑

t µt(y)wt and
∑

t µt(y)bt can be pre-
computed, making the test time independent of the
number of rounds T . This implies that HingeBoost.OC
is as efficient as one-vs-all in the linear case, but is
much more accurate.

It is worth noting the comparison between the
multiclass hinge loss based methods, i.e., multiclass
SVM and HingeBoost.OC, and the sum-of-exponential
loss based method, i.e., AdaBoost.ERP. In our ex-
periments, multiclass SVM performs better than Ad-
aBoost.ERP on 7 out of 12 cases, and HingeBoost.OC



Multiclass Boosting with Hinge Loss based on Output Coding

Table 3. Test errors (%) on datasets from the UCI repository using SVM with perceptron kernel as base learner.

dataset min(one-vs-one,one-vs-all) ECOC AdaBoost.ERP Multiclass SVM HingeBoost.OC
pendigits 1.71 1.83 1.64 ± 0.02 1.55 1.83 ± 0.03
satimage 7.70 7.70 7.72 ± 0.05 7.85 7.40 ± 0.20

segment 2.09 ± 0.09 2.23 ± 0.10 2.16 ± 0.09 2.81 ± 0.11 2.39 ± 0.11
vowel 37.45 43.72 39.95 ± 0.19 35.30 34.85 ± 0.93

vehicle 17.89 ± 0.37 18.79 ± 0.40 17.67 ± 0.35 20.60 ± 0.32 18.30 ± 0.58

Table 4. Test errors (%) on the SUN dataset.

feature one-vs-one one-vs-all ECOC Multiclass SVM HingeBoost.OC
HOG2x2 82.41 ± 0.23 82.72 ± 0.32 93.56 ± 0.17 82.24 ± 0.38 82.16 ± 0.14

is better than AdaBoost.ERP on 9 out of 12 cases.
These empirical results are consistent with the analy-
sis of these two loss functions in Section 2.

It is also interesting to note the connections between
multiclass SVM and HingeBoost.OC. Both methods
are trying to find K hyperplanes in the feature space
explicitly or implicitly represented by the mapping
φ(x) : X → R

D. (18) shows why this is the case for
HingeBoost.OC. Although both methods use the same
loss, the regularization and the optimization procedure
are different. Empirically the stage-wise optimization
and regularization seems to give better performance,
which might be due to lower variance than that of the
single joint optimization by multiclass SVM.

Finally, it would be interesting to combine Hinge-
Boost.OC with one-vs-one by constructing a pool of
candidate columns based on all-pairs of classes. At
each round, HingeBoost.OC can choose a column from
this pool which will induce an easy binary problem
with good statistical performance.

6. Conclusion and Future Work

Multiclass classification problems are very natural
and important in many domains. Designing a multi-
class classification algorithm that can scale up to hun-
dreds of classes in terms of both high accuracy and low
computational complexity is very challenging. Future
works towards this direction include: (1) introducing
0 value in the partition to achieve better accuracy (ig-
noring some confusing classes will lead to an easier bi-
nary problem with better performance); (2) a dynamic
decision making scheme based on margins achieved by
evaluating a partial number of weak learners to avoid
going through all stages for all instances.

Acknowledgment. This work was supported by the
NSF under grant No. RI-0917151 and MURI con-
tract N000140710747 and N00014-10-10933. We thank
Yoram Singer, Koby Crammer, Cliff Chiung-Yu Lin
and the reviewers for helpful comments.

References
Allwein, E. L., Schapire, R. E., and Singer, Y. Reducing

multiclass to binary: a unifying approach for margin

classifiers. J. Mach. Learn. Res., 1:113–141, 2001.
Amit, Y., Fink, M., Srebro, N., and Ullman, S. Uncovering

shared structures in multiclass classification. In ICML,
2007.

Chang, C.C. and Lin, C.J. LIBSVM: a library for support
vector machines, 2001.

Crammer, K. and Singer, Y. On the learnability and design
of output codes for multiclass problems. In In Proc. of
the 13th Annual Conf. on COLT, 2000.

Crammer, K. and Singer, Y. On the algorithmic imple-
mentation of multiclass kernel-based vector machines.
J. Mach. Learn. Res., 2:265–292, 2002.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

Dietterich, T. G. and Bakiri, G. Solving multiclass learning
problems via error-correcting output codes. J. of A. I.
Res., 2:263–286, 1995.

Guruswami, V. and Sahai, A. Multiclass learning, boost-
ing, and error-correcting codes. In Proc. of the Twelfth
Annual Conf. on Computational Learning Theory, 1999.

Hastie, T., Tibshirani, R., and Friedman, J. H. The el-
ements of statistical learning: data mining, inference,
and prediction. Springer, 2009.

Lazebnik, S., Schmid, C., and Ponce, J. Beyond bags of
features: Spatial pyramid matching for recognizing nat-
ural scene categories. In CVPR06, 2006.

Li, Ling. Multiclass boosting with repartitioning. In In:
Proc. 23rd Int. Conf. Machine Learning, 2006.

Lin, H.T. and Li, L. Novel distance-based SVM kernels for
infinite ensemble learning. In ICNIP, 2005.

Newman, D.J., Hettich, S., Blake, C.L., and Merz, C.J.
Uci repository of machine learning databases, 1998.

Oliva, A. and Torralba, A. Modeling the shape of the scene:
A holistic representation of the spatial envelope. Int. J.
Comput. Vision, 42:145–175, 2001.

Rätsch, G., Smola, A.J., and Mika, S. Adapting codes and
embeddings for polychotomies. In NIPS, 2003.

Schapire, R.E. Using output codes to boost multiclass lear-
ing problems. In ICML, 1997.

Sun, Y., Todorovic, S., Li, J., and Wu, D. Unifying the
error-correcting and output-code adaboost within the
margin framework. In In: Proc. 22rd ICML, 2005.

Xiao, J.X., Hays, J., Ehinger, K.A., Oliva, A., and Tor-
ralba, A.B. Sun database: Large-scale scene recognition
from abbey to zoo. In CVPR10, 2010.

Zou, H., Zhu, J., and Hastie, T. New multicategory boost-
ing algorithms based on multicategory fisher-consistent
losses. Annals of Applied Statistics, 2:1290–1306, 2008.


