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Abstract

Laplacian embedding provides a low-
dimensional representation for the nodes of
a graph where the edge weights denote pair-
wise similarity among the node objects. It is
commonly assumed that the Laplacian embed-
ding results preserve the local topology of the
original data on the low-dimensional projected
subspacesj.e, for any pair of graph nodes
with large similarity, they should be embedded
closely in the embedded space. However, in
this paper, we will show that the Laplacian
embedding often cannot preserve local topology
well as we expected. To enhance the local topol-
ogy preserving property in graph embedding,
we propose a novel Cauchy graph embedding
which preserves the similarity relationships of
the original data in the embedded space via a
new objective. Consequentially the machine
learning tasks (such @sNearest Neighbor type
classifications) can be easily conducted on the
embedded data with better performance. The
experimental results on both synthetic and real
world benchmark data sets demonstrate the
usefulness of this new type of embedding.
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classify unsupervised embedding approaches into two cat-
egories. Approaches in the first category are to embed data
into a linear space via linear transformations, such as prin
ciple component analysis (PCA) (Jolliffe, 2002) and mul-
tidimensional scaling (MDS) (Cox & Cox, 2001). Both
PCA and MDS are eigenvector methods and can model lin-
ear variabilities in high-dimensional data. They have been
long known and widely used in many machine learning ap-
plications.

However, the underlying structure of real data is often
highly nonlinear and hence cannot be accurately approx-
imated by linear manifolds. The second category ap-
proaches embed data in a nonlinear manner based on differ-
ent purposes. Recently several promising nonlinear meth-
ods have been proposed, including IsoMAP (Tenenbaum
et al., 2000), Local Linear Embedding (LLE) (Roweis &
Saul, 2000), Local Tangent Space Alignment (Zhang &
Zha, 2004), Laplacian Embedding/Eigenmap (Hall, 1971,
Belkin & Niyogi, 2003; Luo et al., 2009), and Local Spline
Embedding (Xiang et al., 200@tc Typically, they set up

a quadratic objective derived from a neighborhood graph
and solve for its leading eigenvectors: Isomap takes eigen-
vectors associated with the largest eigenvalues; LLE and
Laplacian embedding use eigenvectors associated with the
smallest eigenvalues. Isomap tries to preserve the global
pairwise distances of the input data as measured along the
low-dimensional manifold; LLE and Laplacian embedding

1. Introduction try to preserve local geometric relationships of the data.

Unsupervised dimensionality reduction is an importantAs one of the most successful methods in transductive in-
procedure in various machine learning applications whicHerence (Belkin & Niyogi, 2004), spectral clustering (Shi
range from image classification (Turk & Pentland, 1991)& Malik, 2000; Simon, 1991; Ng et al., 2002; Ding et al.,
to genome-wide expression modeling (Alter et al., 2000).2001), and dimensionality reduction (Belkin & Niyogi,
Many high-dimensional real world data often intrinsically 2003), Laplacian embedding seeks a low-dimensional rep-
lie in a low-dimensional space, hence the dimensionality ofesentation of a set of data points with a matrix of pairwise
the data can be reduced without significant loss of infor-similarities {.e. a graph data) Laplacian embedding and the
mation. From the data embedding point of view, we canrelated usage of eigenvectors of graph Laplace matrix was
first developed in 1970s. It was callgdadratic placement
(Hall, 1971) of graph nodes in a space. The eigenvectors of
graph Laplace matrix were used fgraph partitioningand
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connectivity analysis (Fiedler, 1973). This approach be-The minimization ofzij (z; — z;)%w;; would getz; = 0
came popular in 1990s for circuit layout in VLSI commu- if there is no constraint on the magnitude of the veestor
nity (please see the review (Alpert & Kahng, 1995)), andTherefore, the normalizatiop", 22 = 1 is imposed. The
graph partitioning (Pothen et al., 1990) for domain decom-original objective function is invariant if we replaag by
position, a key problem in distributed-memory computing.x;+a wherea is a constant. Thus the solution is not unique.
A generalized version of graph Laplaciap-l(aplacian)  To fix this uncertainty, we can adjust the constant such that
was also developed for other graph partitioningifer & > x; = 0 (z; is centered around 0). With the centering
Hein, 2009; Luo et al., 2010). constraint;; have mixed signs. With these two constraints,

Itis generally considered that Laplacian embedding has thtehe embedding problem becomes:

local topology preservingroperty: a pair of graph nodes minz(% _ xj)zwij’ st Zlf -1, le =0. (2)
with high mutual similarities are embedded nearby in the * = ; 7

embedding space, whereas a pair of graph nodes with small i ) ) .
mutual similarities are embedded far-way in the embedding N€ Solution of this embedding problem can be easily ob-

space. Local topology preserving property provides a bat@ined, because

sis for utilizing the quadratic embedding objective fuonti ~ 7x) — 9 Z 2i(D— W)z, =2xT(D—W)x,  (3)
asregularization in many applications (Zhou et al., 2003;
Zhu et al., 2003; Nie et al., 2010). Such assumption was
considered as a desirable property of Laplacian embedding/here D = diag(dy, - -+, dn), di = 32, Wi;. The ma-
and many previous research work used it as the regularizalix (D — W) is called as the graph Laplacian and the em-
tion term to embed the graph data with preserving |ocap¢dd|ng soluupn of minimizing the embedding objective is
topology (Weinberger et al.; Ando & Zhang). given by the eigenvectors of

]

In this paper, we point out the perceived local topology (D= W)x = Ax. 4

preserving property of Laplacian _embedding dogs not hc’Iq_aplacian embedding has been widely used in machine
in many applications. More precisely, we first give a pre'Iearning, and often asgegularization for embedding the

cise definition of the local topology preserving property, - :
and then show Laplacian embedding often gives an emgraph nodes with preserving local topology.

bedding without preserving local topology in the sense that .
node pairs with large mutual similarities are not embeddedd- 1he Local T0p0_|09y Preserving Property of
nearby in the embedding space. After that, we will propose Graph Embedding

a novel Cauchy embedding method that not only has nice

nonlinear embedding properties as Laplacian embeddind',q this paper, we study th? local topology preserv_ing_ prop-
but also successively preserves the local topology egistinerty of the graph embedding. We first provide definition of

in original data. Moreover, we introduce Exponential andIOCaI topology preserving, and show that in contrary to the

Gaussian embedding approaches that further emphasize twédely accre]ptled cloncep;tion, I_fapl_ac_:iaT gmbgdd:]ng mag r('jOt
data points with large similarities to have small distarines preserve the local topology of original data in the embed-

embedding space. Our empirical studies on both synthetiged space for many cases.
data and real world benchmark data sets demonstrate the

promising results of our proposed methods. 3.1. Local Topology Preserving
We first provide a definition olocal topology preserving
2. Laplacian Embedding Given a symmetric (undirected) graph with edge weights

) o ) ) W = (w;;), and a corresponding embeddifyg, - - - , x,,)

ding/Eigenmap. The input data is a matfix of pairwise  preserves local topology if the following condition holds
similarities amongu data objects. We viewW/ as the edge

weights on a graph with nodes. The task is to embed if wi; > wyq, then (z; — ;) < (z, — 24)*, Vi, j.p.q.
the nodes of the graph intb-D space with coordinates ()
(z1,---,x,). The objective is that if, j are similar {e, Roughly speaking, this definition says that for any pair of
wy; is large), they should be adjacent in embedded spac&odes(i, j), the more similar they are (the bigger the edge
i.e., (z; — ;)% should be small. This can be achieved by Weightw;; is), the closer they should be embedded together

minimizing (Hall, 1971; Belkin & Niyogi, 2003) (the smallefiz; — z;| should be).
Laplacian embedding has been widely used in machine
min J(x) = Z(xi — ;) %w;. (1) learning with a perceived notion of preserving local topol-

x 7 ogy. As a contribution of this paper, we point out here that
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this perceived notion of local topology preserving is intfaces e 09
false in many cases. N ooot&bdd,

Our finding has two aspects. First, at large distance (sm:"”
similarity): "

0|

02|

The quadratic function of the Laplacian embed-
dingemphasizeghelarge distancepairs, which
enforces node pai:, j) with smallw;; to be sep-
arated far-away.

-0.4]
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Second, at small distance (large similarity):

The quadratic function of the Laplacian embed- o4
ding de-emphasizeghe small distance pairs, s
leading to many violations of local topology pre- o
serving at small distance pairs.

In the following, we will show examples to support our .
finding. One consequence of the finding is thkaNear-
est Neighbor KNN) type classification approach will per-
form poorly because they rely on the local topology prop-Figure 1.Embedding results comparison. A C-shape and S-shape
erty. After that, we propose a new type of graph embed-manifold dataset are visualized in both figures. After performing
ding method which emphasizes the small distance (largéaplacian embedding (left) and Cauchy embedding (right), we

similarity) data pairs and thus enforces the local topology-S€ the numbers 1, 2; - to indicate the ordering of data points
preserving in embedded space. on the flattened manifold. For the visualization purpose, we use

the blue lines to connect the data points which are neighboring in
the embedded space.

-1 -08 06 -04 0.2 0 02 04 06 08 1 -1 -08 06 -04 0.2 0 02 04 06 08 1

3.2. Experimental Evidences

Following the work of Isomap (Tenenbaum et al., 2000)
and LLE (Roweis & Saul, 2000), we do experiments ON Jiher shapes of manifolds, such as, “M", the Cauchy em-

two simple “manifold” data (C-shape and S-shape). Forthebedding gives perfectly local topology preserving results

manifold data in Figure 1, if the embe_dding pres?""’?ﬂ' while the Laplacian embedding leads to disordering on the
topology we expect the 1D embeddirigresults will sim- original manifold. For both Figures 1 and @,; is com-

ply flatten (unroll) the manifold. In the Laplacian embed- uted asw;; — exp (— ||z; — 2|2 /d2) whered is the av-
ding results, the flattened manifold consists of data point rage Euéiidean distanz:e ar]nong all the data poirgs
ordered asry,xo, 23, -+ , %56, T57. This is not a simple d= (S, s —2;])/(n(n — 1)) '
unrolling of the original manifold. The Cauchy embedding g e '
(seet4) results are a simple unrolling of the original mani-

fold — indicating alocal topology preservingmbedding. 1 1
For the visualization purpose, we use the blue lines to coos 08 08
nect the data points which are neighboring in the embeddes 08 0s
Space. 0.4 0.4 0.4
We also apply Laplacian embedding and Cauchy embe ! — Lok — Lok — || == |
ding to some manifolds which have a little more com‘ol 0: D: o D:
plicated structures, see Figure 2. The manifolds lie Q. . . .
four letters “I”, “C”, “M”, “L". Each letter consists of N N f\\ / N
150 2D data points. One can see that Cauchy embe, 02 o2 X o2
ding results (bottom row of Figure 2) preserve more lo, = L P 3 ==

cal topology than Laplacian embedding (top row). No- -
tice .that (_:aUChy embedding and Laplacian embedding g!Vﬁigure 2. Embedding the “I”, “C”, “M”, “L” manifolds 2D data

the identical result for the latter “L”. Because the mani- points using Laplacian embedding (top) and Cauchy embedding
fold of the “L" shape is originally smooth. However, for (bottom). The ordering scheme is the same as in Figure 1.

1The 1D embedding is identical to an ordering of graph nodes.
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4. Cauchy Embedding Laplacian embedding can be formulated as

In this paper, we propose a new graph embedding approach . 2 L N2T0, 8
that emphasizes short distance, and ensure that localy, th oy Z[(m’ %)+ s = vi) s, ®

o . . ij
more similar two nodes are, the closer they will be in the

embedding space. st. x> =1,e"x =0, 9)
: - N Iyl*=1,e"y =0, (10)

We motivate our approach as the following. Starting with T

the Laplacian embedding. The key idea is that for a pair x'y =0, (11)

(4,7) with largew;;, (z; — x;)* should be small such that B T N P s

the objective function is m|n|m|zed Now, ffr; — ;)% = wheree = (1,--- , 1) . The constraink 'y = 0 is impor

tant, because without it, the optimization obtains its -opti

T — is small, i
1(Jz; — x;]) is small, so is mal value atx = y.

(; —x;)* The 2D Cauchy is motivated with the following optimiza-
(2 — ;)2 + 02 = Do(|zi — 2;1). tion
. . . . . — ;)% +
Furthermore, functiorl’;(-) is monotonic as is function mlnz ] T b ) i 3 Wij (12)
T (+). Therefore, instead of minimizing the quadratic func- ij gi

tion of Eq. (2), we minimize . . o
a2 with the same constraints Eqgs. (8-11). This is simplified to

Xr; — X5 2 ij
min Z %wij, (6) n,:([a}u,x Z ) (13)

* i Fi T +o0? > ;i —x5)* + (yi — yj)* + 0?
s.t., Ix]> =1,e'x = 0.
In general, thep-dimensional Cauchy embedding o =
The function involved can be simplified, since (ry,---,r,) € NP is obtained by optimizing
(s — ;)2 o2 max J(R) = Z J2 35 (14)
—1- . R — |Ir; —r;* +
(i — ;) + 02 (i — ;) + 02 “
st. RRT =1, Re=0. (15)
Thus the optimization for the new embedding is
4.2. Exponential and Gaussian Embedding
max Z Wy , @) . . .
x (x; —xj)? + o2 In Cauchy embedding the short distance pairs are empha-
sized more than large distance pairs, in comparison to
s.1. Z r; =1, sz =0. Laplacian embedding. We can further emphasize the short

distance pairs ande-emphasize large distance pairs by

the following Gaussian embeddin
We call this new embeddlng as Cauchy embedding because wingGaussi N9

f(x) = 1/(z* + 0?) is the usual Cauchy distribution. . )2

) ) o maXZeXp { : } wij, (16)
The most important difference between the objective func-
tion of Cauchy embedding [Eq. (6) or Eq. (7)] vs. the Ix|2 =1, eTx = 0 a7)

objective function of Laplacian embedding [Eq. (1)] is
the following. For Laplacian embedding, large distance

or theexponential embeddin
(z; — z;)? terms contribute more because of the quadratic P g

form, whereas for Cauchy embedding, small distange- _ x7|

xj)Q terms contribute more. This key difference ensures maXZeXP { } Wij, (18)
Cauchy embedding exhibits stronger local topology pre-

serving property. s.t., x> =1, e"x =0, (19)
4.1. Multi-dimensional Cauchy Embedding In general, we may introduce ttaecay function I'(d;;)

) o _ ) and write the three embedding objective as
For representation simplicity and clarity, we consider 2D

embedding first. For 2D embedding, each neds em- maxzp(m — zj)wi, st x]2 =1, eTx = 0, (20)
bedded in 2D space with coordinates;, y;). The usual ‘

ij
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Here is a list of decay functions: Proof. SinceJ(R) is Lipschitz continuous with constant
L, from (Nesterov, 2003), we have
Laplacian embed:  'igpiacddij) = —d;7  (21)

J(X) < JY)+ (X -Y,vJ(X))+ §||X —Y|%,VX,Y

Cauchy embed:  T'cauchy(dij) (22)

- d3; +o?

Gaussian embed: Toaussiadds;) — % /0" (23) By apply this inequality, we further obtain

Exponential embed: - Toq(d;y) = ™"/ (4 y() < (") +(R— R, VI (R)+ 2| B—R*[13, @7)
Linear embed:  Tineal(dsj) = —di; (25) 2
By definition of R*, we have
Notice that linear embed here is equivalent to the

Laplacian whemp — 1 (Buhler & Hein, 2009). Itis easy to |IR* — (R + le(]?)) %

generalize to other decay functions. We discuss two prop- L

erties for decay functions. < > 5 1 5 2 1 B (12
- —v = —|v

(1) There is one requirement on decay functidhil) must < IR (R + V@B ) = VIR

be a monotonically decreasing@screases. If this mono-
tonicity is violated, the embedding is not meaningful.

(2) A decay function is undefined up to a constdrg,, . = . = 1 ~ 1 ~
IR = R|% — 2(R* — R, - VJ(R)) + ﬁIIW(R)IIQF

I'(d;;) = T'(d;j) + ¢ leads to the same embedding for any L
constant. 1 .
| | < SlvI@)E,
One can see the different behaviors of these decay func-
tions as|T'(d)| vs d, which are shown in Figure 3. We see . =i . L1 -
that in T apiacd d) andTinear(d), large distance pairs dom- IR* — Rl +2(R — R, EVJ(R» <0, (28)
inate, whereas ii'exp(d), I'caussian aNAT cauchy(d), small
distance pairs dominate. By combining Eq. (27) and Eq. (28) and notice tliat 0,
we have
efd?j/a2 1 J(R*) > ‘](R)7
d?j +o0? which completes the proof.

e

il Further more, for Eq. (26), we have the following solution,

—d2.
dij Theorem 2 R* = VT is the optimal solution of Eq. (26),

whereUSVT = M(I — eel' /n), is the Singular Value
Decompotition (SVD) of (I — ee /n) and M = R +
1vJ(R).

Figure 3.Decay functions for 5 different embedding approaches: 5 5

—d2, for Laplacian embedding,/(d? + o) for Cauchy embed- Proof. — Let M = R + £VJ(R), by applying the La-
ding,efd?]/oj for Gaussian embedding; %+/* for Exponential grangian multipliers\ andy, we get following Lagrangian
embedding, and-d;; for linear embedding. function,

L=|R—-M|%+ (RR" —I,A) + " Re, (29)
4.3. Algorithms to Compute Cauchy Embedding

. ) . By taking the derivativev.r.t. R, and setting it to zero, we
Our algorithm is based on the following theorem. have

Theorem 1 If J(R) defined in Eq. (14) is Lipschitz contin- 2R — 2M + AR + pe’ =0, (30)
uous with constant. > 0, and
SinceRe = 0, ande’e = n, we haveu = 2Me/n, and
* . P, 1 P, 2
R —argménHR— (R—l—EVJ(R)) 15, (26) (I+ AR = M(I — ee” /n), (31)
st RRT =1 Re—0 SinceUSVT = M(I — ee”/n), we letR* = VT and
) ’ ’ A = US — I, then the KKT condition of the Lagrangian
thenJ(R*) > J(R). function is satisfied. Notice that the objective function of
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Eq. (26) is convexv.r.t R. ThusR* = V7 is the optimal
solution of Eq. (26).

From the above theorem, we use the following algorithm to

solve the Cauchy embedding problem.

Algorithm . Starting from an initial solution and an initial

between cityi andj, andd is the average pairwise distance
of all the selected 49 cities. Then standard Laplacian and
Cauchy embedding with default settings are employed.

For Laplacian Embedding, the cities are sorted by the sec-
ond eigenvector of graph Laplacian. Here we assume that
all cities lie in a 1-D manifold. The results are shown in

guess of Lipschitz continuous constdntwve iteratively up-
date the current solution until convergence. Each itematio
consists of the following steps:

(1) ComputeM,

Figure 5(a) and 5(b). In Figure 5(a), the terminal cities are
Olympiafrom west andAugustafrom east. Thus the path
has to be go though all other cities in the middle. Thus the
total path is long. However, Cauchy Embedding result cap-
tures the tight 1-D manifold structure, see Figure 5(b). The
terminal cities ard’hoenixin Arizona andSacramentan
California. And the resulting path goes through all cities i
an efficient order.

M« R+ %VJ(R) (32)

(2) Compute the SVD o/ (I —ee” /n): USVT = M(I—
ee’'/n),and set? «— VT,

(3) If Eq. (28) does not hold, increageby L « L. 5.3. Classification And Smoothness Comparisons

We use the Laplacian embedding results as the initial soluye yse five data sets to demonstrate the classification per-
tion for the gradient algorithm. formance in the embedded space of Exponential embed-
ding and Cauchy embedding algorithms, and compare them
to Laplacian embedding. The data sets include 9 UCI data
sets, AMLALL, CAR, Auto, Cars, Dermatology, Ecoli,
Iris, Prostate, and Zod, and two public image data set:

We are going to demonstrate the advantages of Cauchy ErHAFFE4- ATET®.

bEddlng USing two-dimensional visualization. We SeleCtThe classification accuracy is Computed by the nearest

four letters in BinAlpha data s&t(‘C”, “P”, “X”, “Z”) and neighbor classifier on the embedded spaee, using the

four digits from MNIST (Cun et al., 1998) (“0", “3", “6",  Euclidean distance on the embedding space to establish the
“9") and scale the data such that the average pairwise disyearest neighbor classifier. The embedded dimension and
tanceis 1. Algorlthm |@43 is run with the default Settings o in Lap|acian embedding are tuned such that the Lap|a_

mentioned above. The embedding results are drawn in Figcjan embedding method reaches its best classification ac-
ure 4(a) and 4(b). curacy wheres is the Gaussian similarity parameter to

In Laplacian embedding results, all images from differentCOMPUteW’ = wi; = exp (—|lz; — x;*/o®). Then we
groups collapse together, except some outligrg. in left ~ US€ the Lgplaman em_beddlng result as |n|t|aI|z§it|0n to run
panel of Figure 4(a), letters “C” and “P”, and “Z” are visu- EXPonential embedding and Cauchy embedding, respec-
ally difficult to be distinguished from each other. Thus, oneliVely. The results of classification accuracy on the embed-
image of letter “P” is far way from all other images. How- ded space of Laplacian, Gaussilan, Exponential and Cguchy
ever, in Cauchy embedding results, the distance among infl'€thods are recorded respectively, and are reported in Ta-
ages are balanced out with much more clear visualization®!€ 1. From the results we can see that Exponential embed-

By employing the minimum distance penalty, the objectsding and Cauchy embedding tend to outperform Laplacian
are distributed more evenly. embedding in terms of classification accuracy.

5. Experimental Results

5.1. Experiments on Image Embedding

We also evaluate the improvement of Eq.(5) as follows. We
find 50 pairs of data points with the greatéBf; and pick
p all possible pairs ofi, j), 2500 combinations in total,

In the previous sections, we provide insight analysis o S
the ordering capacity of Cauchy Embedding. here we emEo check how many of them conflict with Eq.(5). The num-

ploy our algorithm on the 49 cities in United State (cap-gerS c;‘f wolatrl]or&s for LalpIaC|an, G%u_ss_lrarg),l Eiponenudl an
itals of 48 states in US mainland plus Washington DC). auchy methods are also reported in Table 1.

In this experiment, we seek a path through all cities using
the first embedding directions of both Laplacian embed- “*http://kasrl.org/jaffe.html

ding and Cauchy embedding. For both method, we con- °http:/Awww.cl.cam.ac.uk/Research/DTG/attarchive/pub/data/
struct the map using the spherical distances among citieg{tfaces.tar.Z

wij = exp (—dfj/cfz) whered;; is the spherical distance

5.2. Embedding on US Map

Shttp://www.ics.uci.edu/ mlearn/MLRepository.html

2http:/www.cs.toronto.ede/roweis/data.html
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Figure 4.2D visualizations on two data sets for Laplacian Embedding (left), CaunityeBding (middle) and Cauchy Embedding with
minimum distance penalty (right) using Eq. 24.

(a) Laplacian Embedding result (b) Cauchy Embedding result

Figure 5.Cities ordering by Laplacian Embedding and Cauchy Embedding. Fdéatiap Embedding, the cities are sorted by the second
eigenvector of graph Laplacian.

6. Conclusion sets show Cauchy embedding achieve higher accuracy than
) ) Laplacing embedding.
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Table 1.Classification accuracy and number of violations of Eq.(5) (inside thenplaesis) in the embedded space of Laplacian, Gaus-

sian, Cauchy, and Exponential methods.

DATA LAPLACIAN CAUCHY GAUSSIAN  EXPONENTIAL
AMLALL 0.819 (496) 0.822(416) 0.819 (440) 0.819 (426)
CAR 0.639 (536) 0.657 (536) 0.656 (532) 0.633 (530)
AUTO 0.392 (388) 0.427(312) 0.425(324) 0.372 (328)
CARS 0.635(284) 0.705(272) 0.651 (284) 0.608 (372)
DERMATOLOGY 0.870 (540) 0.881(360) 0.880(376) 0.880 (396)
EcoLl 0.788 (564) 0.821(432) 0.821(396) 0.765 (436)
IRIS 0.888 (428) 0.887 (276) 0.889 (192) 0.884 (404)
JAFFE 0.897 (552) 0.899 (452) 0.899 (468) 0.885 (372)
AT&T 0.728 (596) 0.791(480) 0.788(516) 0.728 (500)
PROSTATE 0.875 (684) 0.882(580) 0.877 (500) 0.845 (472)
Z00 0.908 (436) 0.916 (336) 0.912(352) 0.914 (420)
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