
Speeding Up Hoeffding-Based Regression Trees with Options

Elena Ikonomovska elena.ikonomovska@ijs.si

Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

João Gama jgama@liaad.up.pt

LIAAD/INESC - Porto and Faculty of Economics - University of Porto

Bernard Ženko bernard.zenko@ijs.si

Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

Sašo Džeroski saso.dzeroski@ijs.si

Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

Abstract

Data streams are ubiquitous and have in
the last two decades become an important
research topic. For their predictive non-
parametric analysis, Hoeffding-based trees
are often a method of choice, offering a possi-
bility of any-time predictions. However, one
of their main problems is the delay in learning
progress due to the existence of equally dis-
criminative attributes. Options are a natural
way to deal with this problem. Option trees
build upon regular trees by adding splitting
options in the internal nodes. As such they
are known to improve accuracy, stability and
reduce ambiguity. In this paper, we present
on-line option trees for faster learning on nu-
merical data streams. Our results show that
options improve the any-time performance of
ordinary on-line regression trees, while pre-
serving the interpretable structure of trees
and without significantly increasing the com-
putational complexity of the algorithm.

1. Introduction

Numerical data streams can be found in many real-
world problem domains. Meteorological and financial
data, computer and sensor networks, web applications,
are just a few of the most representative ones. In all
these situations, the data flows continuously and dy-

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.

Copyright 2011 by the author(s)/owner(s).

namically at high speed, which demands efficient solu-
tions for any-time learning.

Algorithms for incremental learning of classification
(Domingos & Hulten, 2000; Gama et al., 2003; 2004),
regression and model trees (Potts & Sammut, 2005;
Ikonomovska et al., 2010) represent a well established
line of research on any-time prediction. Although the
main idea behind these approaches is that splitting de-
cisions can be derived on a subsample rather than on
the whole training dataset at each tree level, they dif-
fer in their computation complexity. Hoeffding-based
tree learners (Domingos & Hulten, 2000) have been
recognized as the most efficient in terms of processing
speed per example, although their learning might be
slow, which results in lower any-time accuracy at the
beginning.

The Hoeffding-based trees tend to be less accurate
in situations where several attributes appear to be
equally discriminative. In such tie-situations, the split
selection method based on the Hoeffding bound might
never decide, which attribute is significantly better.
To solve this problem, Hoeffding-based tree learners
typically use a tie-breaking mechanism based on a
user-defined threshold, which implicitly specifies the
amount of data that has to be observed in order to de-
cide on one of the competitive attributes. Setting this
threshold requires knowledge of the problem domain.
An additional side effect is that the splitting decision
will be significantly delayed, which results in a lower
any-time accuracy during this delay.

We propose to solve this problem using option trees,
which can include option nodes (options) in addition
to ordinary split nodes. The main motivation is that



Speeding Up Hoeffding-Based Regression Trees with Options

introducing option nodes removes the need for select-
ing the best splitting attribute. As a result, the greedy
search that uses only one step look-ahead and makes
decision trees unstable learners is replaced with a more
robust search procedure1. The introduction of op-
tion nodes does not significantly increase the computa-
tional complexity of Hoeffding-based algorithms, and
option trees are shown to outperform regular trees in
terms of prediction accuracy (Kohavi & Kunz, 1997).

Improving the accuracy of Hoeffding trees was the
main motivation for the work of Pfahringer et al.
(2007) who propose an algorithm for adding options
to Hoeffding-based classification trees. Their results
show that the additional structure improves the ac-
curacy in almost all the datasets used. What distin-
guishes their work from ours, besides their trees being
classification ones and our regression ones, is that their
method for adding options is employed after a split has
already been chosen. On the other hand, we opt for a
faster improvement of the any-time accuracy, which is
a very important property of predictive algorithms for
real-time dynamic systems.

Our main idea is to introduce options only when split-
ting decisions are ambiguous, which will avoid exces-
sive and unnecessary tree growth and reduce memory
consumption. Our experimental results support the
ideas presented above and show an improvement of the
any-time accuracy of Hoefding-based regression trees.
Our analysis also confirms previously obtained conclu-
sions for batch learners (Kohavi & Kunz, 1997), which
show that option nodes are most useful near the root
of the tree and act as a method for variance reduc-
tion (in terms of a bias-variance decomposition of the
error).

The reminder of the paper is organized as follows. Sec-
tion 2 surveys the related work. Our algorithm for
learning on-line regression trees with options (ORTO)
is presented in Section 3. Section 4 describes the eval-
uation methodology, and Section 5 presents the exper-
imental results. The last section concludes and gives
some directions for future work.

2. Related Work

Option trees are similar to regular decision trees, but
can also contain option nodes (or options) in addition
to the standard splitting nodes (Buntine, 1992; Kohavi
& Kunz, 1997). In Figure 1, we give an example of a

1
The greedy split evaluation criterion typically used for

learning trees prefers attributes that score high in isolation.

As a result, it may overlook combinations of attributes,

leading to better solutions globally (Kohavi & Kunz, 1997).

�����������	
��
�������������������
���

���

��� ���

���������������
���

������ ���

������
����

�����������		��

���


�������������������
��	

��	���
���� ���

���������������� �������!��


������
�"�� ��"���
����

�����������#�#

�����������	
��


�������������������
��

��� ���

$�������������� �������	�

Figure 1. An option tree for the Wine Quality dataset.

partially constructed option tree for the Wine Qual-
ity data set from the UCI repository (Frank & Asun-
cion, 2010). The triangular nodes represent the option
nodes, which implement an OR function. As a result,
an example arriving at an option node follows all of its
branches, ending at multiple leaves.

2.1. Options for Any-time Decision Trees

The work of Pfahringer et al. (2007) is the first that
explores options as an extension to Hoeffding trees for
on-line classification. Their approach is somewhat dif-
ferent from the original (batch) option trees (Buntine,
1992), mainly because option nodes are not introduced
in the split selection process, but only at existing splits
as a re-evaluation step triggered on predefined time
intervals. A new option is introduced only if the best
unused attribute looks better than the current split.
Predictions of options are combined by averaging.

Following Pfahringer et al. (2007), another variant of
option trees on streams (Liu et al., 2009) is based on
the CVFDT algorithm (Hulten et al., 2001) in which
alternate trees are initiated every time a new splitting
test is found to be better than the existing one. The
main difference is that not all alternate trees are used
for prediction, only the most recent option that offers
the highest accuracy. An option thus reflects the most
recent and best performing knowledge.

The disadvantage of both above mentioned methods
is the way option nodes are introduced. To be able
to perform a re-evaluation, sufficient statistics must
be stored in all internal nodes, which implies an in-
crease in memory consumption and computation. In



Speeding Up Hoeffding-Based Regression Trees with Options

addition, because the Hoeffding bound is conservative,
the new sub-trees will be introduced with some delay,
which will at least temporarily decrease the accuracy
or delay the improvement. In our approach, on the
other hand, we introduce options before a split is con-
firmed and therefore eliminate the delay.

2.2. On-line Model Trees

Many sophisticated methods can be found in the lit-
erature for solving classification tasks on streams, but
only a few exist for regression tasks. To the best of
our knowledge, there exist only two algorithms for on-
line learning of regression and model trees. In the
algorithm of Potts & Sammut (2005) for incremental
learning of linear model trees the splitting decision is
formulated as hypothesis testing. The split least likely
to occur under the null hypothesis of non-splitting is
considered the best one. The linear models are com-
puted using the RLS (Recursive Least Square) algo-
rithm that has a complexity, which is quadratic in the
dimensionality of the problem. This complexity is then
multiplied with a user-defined number of possible splits
per numerical attribute for which a separate pair of lin-
ear models is updated with each training example and
evaluated.

In the second approach by Ikonomovska et al. (2010)
the authors propose an incremental algorithm FIMT-
DD for any-time model trees learning from evolving
data streams with drift detection. The FIMT-DD al-
gorithm is able to incrementally induce model trees
by processing each example only once, in the order of
their arrival. Splitting decisions are made using only
a small sample of the data stream observed at each
node, following the idea of Hoeffding trees.

3. On-line Regression/Model Trees
with Options (ORTO)

We begin with a brief description of the ORTO al-
gorithm and then discuss the relevant points in more
detail. The pseudo code is given in Algorithm 1.

The algorithm starts with an empty leaf and reads ex-
amples from the stream in the order of their arrival.
Each example is traversed to a leaf where the neces-
sary statistics are maintained, such as

�
yk,

�
y2k per

splitting point. For each numerical attribute we use
an extended binary search tree, which enables sorting
unique values on the fly as well as efficient one-pass
computation of the variance reduction for every possi-
ble split point (Ikonomovska et al., 2010).

Newly arriving examples are passed down the corre-
sponding branch of a decision node given the outcome

Algorithm 1 Pseudo code for the ORTO algorithm.

1: ORTO (nmin)
2: Begin with an empty Leaf (Root)
3: repeat

4: Read the next example
5: Traverse the example to a Leaf
6: Update statistics in the Leaf
7: if (Examples seen in a Leaf = nmin) then
8: Find the best split per attribute
9: Rank the attributes

10: if (!Ambiguity and !Prepruning) then
11: Make a split on the best attribute
12: else

13: k ← CountCompetitiveSplits(Leaf)
14: Make k splits
15: end if

16: end if

17: until End of the stream.

of the splitting test. At an option node, newly arriv-
ing examples are passed down along all the options.
The procedure repeats recursively until the end of the
stream.

The most important parts of the algorithm are the cri-
terion for introducing option nodes and the prediction
rule, which we discuss in more detail below.

3.1. The criterion for evaluating ambiguity

Let A1, A2, A3, . . ., Ad be the attribute ranking ob-
tained at line 9 of Algorithm 1. Attributes are ranked
according to the variance reduction estimated for the
best possible splitting point for each attribute.

Let us further consider the ratio of the variance reduc-
tion VR(·) values of any attribute from the set A2, A3,
. . ., Ad and the best one A1 (e.g., VR(A2)/VR(A1)) as
a real-valued random variable r with range R ∈ [0, 1].
The Hoeffding bound can be used to obtain high
confidence intervals for the true average (rtrue), i.e.,
r − ε ≤ rtrue < r + ε, where r = 1

n

�n
i=1 ri and

ε is the value of the Hoeffding bound, calculated as

ε =
�

R2ln(1/δ)
2n . If, after observing nmin examples,

the inequality r + ε < 1 holds, then rtrue < 1, mean-
ing that the best attribute observed over a portion of
the stream is truly the best attribute over the entire
stream.

The described procedure is the splitting criterion of the
FIMT-DD algorithm (Ikonomovska et al., 2010). To
allow the introduction of option nodes we make the
following modification: if, after observing nmin exam-
ples, the inequality r + ε < 1 holds, a normal split



Speeding Up Hoeffding-Based Regression Trees with Options

is performed, otherwise, an option node is introduced
with splits on all the attributes (Ai) for which the in-
equality VR(Ai)/VR(A1) > 1− ε is satisfied.

In other words, when inequality r + ε < 1 does not
hold, it means that the observed best attribute A1

is approximately equally discriminative as the second
best A2 and will not necessarily remain the best if more
examples are observed. In general, it competes with
one or several other attributes that rank high enough.
Therefore, instead of waiting for more evidence to be
observed, we broaden the greedy search, soften the cri-
terion and accept all competitive attributes as promis-
ing directions for the search procedure.

To choose a more sensible threshold that will not allow
excessive tree growth, instead of a multiplicative op-
tion factor (Kohavi & Kunz, 1997) (where the options
are the attributes that rate at least a multiplicative
factor of say 0.7 of the VR(A1)) we use the Hoeffding
bound and make the following assumption: All the at-
tributes for which the inequality r + ε < 1 does not
hold are approximately equally discriminative on the
observed sample of data. The fact that this inequality
does not hold expresses the lack of the necessary con-
fidence for discarding those attributes as non-useful.

A possible shortcoming of the described criterion is an
excessive growth of the tree. For this reason, it is cru-
cial to have some form of a restriction on the number of
options or the number of trees, which will control tree
growth and the memory allocation. Kohavi & Kunz
(1997) show that option nodes are most useful near
the root of the tree. For that reason we follow their
approach and reduce the number of options with the
depth of the tree as o = k ·ylevel, where k is the option
factor equal to the number of competitive attributes
chosen using the inequality VR(Ai)/VR(A1) > 1 − ε,
and y is a decay factor. The root is at level 0. Thus,
o will in this case represent a decaying option factor,
which will be used as an alternative to the basic algo-
rithm (with option factor k).

Due to the use of a probability bound in the split selec-
tion process, incremental trees are less unstable than
batch trees. However, our experience is that this ap-
proach introduces a significant delay in the growth of
the tree, which in effect affects the accuracy and the
speed of learning. With the modified splitting crite-
rion, the tree is allowed to grow faster while at the
same time, multiple options can overcome the one-step
look-ahead problem of standard greedy search.

The prediction rule. Having option nodes in the
tree structure results in multiple paths and thus multi-
ple predictions for examples that pass through option

nodes. The standard prediction rule for regression is
to average all the possible predictions. The example is
traversed to an option node where the average predic-
tion will be computed from all of its options.

We have further examined an additional alternative by
using the prediction from the currently best tree. This
requires a definition of the notion of a best tree at a
given time point t. To be able to obtain a fast pre-
diction we assume that the best tree at time t is com-
posed from the options that have the smallest weighted
prequential mean-squared error wPreqMSE(Ti, t) ob-
served at time point t.

The weighted prequential error wPreqMSE(Ti, t) is
an improved variant of the prequential error originally
proposed by Dawid (1984) and using a fading factor as
proposed by Gama et al. (2009). This measure gives an
estimate on the most recent accuracy of the trees. It
is computed by an incremental test-then-train proce-
dure for every alternative at an option node, i.e., every
example is first used for testing and then for training.
The error is accumulated at each time step.

The formula for computing the weighted1 prequential
mean squared error wPreqMSE(Ti, t) of a tree Ti at a
time point t is given below:

wPreqMSE (Ti , t) =
wPreqSE (Ti , t)

wNum(Ti , t)
=

=
f · wPreqSE (Ti , t − 1 ) + SqErr(t)

f · wNum(Ti , t − 1 ) + 1
(1)

where f is the fading factor, wPreqSE(Ti, t) is the
weighted prequential squared error and wNum(Ti, t)
is the weighted number of examples.

Whenever a new option node is introduced, the
sums are initialized to wPreqSE(Ti, 0) = 0 and
wNum(Ti, 0) = 0 for all the alternatives. The squared
error SqErr(t) is computed simply as:

SqErr(t) = (yt − Pred(Ti , t))
2 , (2)

where yt is the true value for the example seen at time
point t and Pred(Ti, t) is the prediction by the tree
alternative i using the BestTree prediction rule.

To make a distinction between the two prediction rules
of ORTO we will use the following acronyms: ORTO-
A (by averaging), and ORTO-BT (the best tree con-
structed from the option tree).

1
The term weighted is used due to the use of a fad-

ing factor f. Namely, if we recursively substitute the right

hand-side member of the equation using the same formula,

we will get the sum of weighted squared errors. The weight

for the oldest one will be f t. The value of f should be

around 0.9997 (< 1).



Speeding Up Hoeffding-Based Regression Trees with Options

4. Experimental Setup

The following section explains how we designed the ex-
periments to evaluate the above described algorithm.

Evaluation methodology. The any-time accuracy
is measured trough a test-then-train interleaved eval-
uation procedure in which we use the weighted pre-
quential mean squared error (Equation 1). To get re-
liable estimates on the final mean squared error, we
use the ten-fold cross-validation procedure for all of
the stationary real-world datasets. We measure trees’
complexity in terms of number of leaves, and option
nodes (for ORTO-A and ORTO-BT). We further per-
form a comparison of all the algorithms in terms of the
allocated memory (in MB) and the learning time (in
seconds).

To obtain a bias-variance profile of the different meth-
ods, we use the standard bias-variance decomposition
of the squared loss (Domingos, 2000). As proposed by
Bouckaert (2008), we use the ten-fold cross-validation
sampling procedure for estimating the decomposed
mean squared error, which has been reported to pro-
vide the most reliable estimates. Instead of sampling
from the folds, we use all the samples in order to obtain
larger training sets.

For all of the performed experiments we set the com-
mon parameters to the following values. The confi-
dence parameter is set to δ = 10−6 and nmin = 200
(the minimal number of examples before a split evalua-
tion is done). The decay factor y is set to 0.9 according
to the results in (Kohavi & Kunz, 1997).

Datasets. In order to get a clear picture on the im-
provement of the any-time accuracy and evaluate the
speed-up obtained by using options we decided to use
the nine largest available “benchmark“ datasets from
the UCI Machine Learning Repository (Frank & Asun-
cion, 2010), the Delve Repository2 and the StatLib
System’s site3, on which no concept drift has been re-
ported.

5. Experimental results

In this section, we discuss the results obtained using
the above evaluation methodology.

5.1. Evaluation of the any-time accuracy

In Figure 2 we show the weighted prequential mean
squared error (upper plot) and the tree size (number

2
http://www.cs.toronto.edu/ delve/data/datasets.html

3
http://lib.stat.cmu.edu/index.php

� �
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�



	


�



�
�
�



�
�
�



�


�



�
�
�



�
�
�

�
	
�
�

�
�
�
�

�
�
�
�

	

�		

�			

��		


			


�		

��
���� ������� ������

��������

�
�
��
�


 
!

� �
�
�

�


�

�
�
	

�
�
�

�
�



�
�
�

�
�
�
�

�


�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�



�
	
	





�
�



�







�
�
�



�
�
�



�
	
�

�
	
�
�

�




�

�
�
�
�

	

�	


	

�	

�	

�	

�	

��������

��
�
"
�
�

Figure 2. Weighted prequential mean squared error and

number of leaves for FIMT-DD, ORTO-BT, and ORTO-A

over the first 3500 examples of the Pol dataset.

of leaves, lower plot) computed for the first 3500 ex-
amples over 10 folds of the Pol dataset. The behavior
of the algorithms is very similar for the rest of the
datasets. The upper plot shows that the prequential
mean squared error of the option trees, both with av-
eraging and best tree prediction rules, is lower than
that of the regular regression tree, especially in the
beginning of the learning. This was the exact pur-
pose of introducing the option nodes. This effect de-
creases as the learning proceeds, i.e., as the tree grows
and improves its approximation of the regression sur-
face. In the final stages of learning the errors of op-
tion trees ORTO-BT and ORTO-A are quite similar,
while FIMT-DD regression trees have larger error. In
general, for those problems for which the regression
surface can be modeled using the available number of
training examples, all three approaches give compara-
ble errors at the end.

Table 1 gives the results of a 10-fold cross-validation
on the stationary real-world datasets. If we com-
pare the tree of FIMT-DD and the best tree that can
be constructed from the non-constrained option tree
ORTO-BT, we can see that in 6 out of 10 datasets test
ORTO-BT has a smaller mean squared error and more
leaves, although this is not statistically significant by
the Friedman statistical test with the Bonferroni-Dunn
post-hoc test (at p=0.10). However, for those datasets



Speeding Up Hoeffding-Based Regression Trees with Options

Table 1. Results from 10-fold cross-validation on stationary real-world datasets. Comparison of FIMT-DD, ORTO-A, and

ORTO-BT. The final MSE and size (number of leaves/rules) of models are given. Results for which ORTO-A has smaller

MSE than FIMT-DD are given in red. Results for which ORTO-BT has smaller MSE than FIMT-DD are boldfaced.

FIMT-DD ORTO-A ORTO-BT
Dataset MSE Size MSE Size MSE Size

Abalone 7.45 ± 1.25 7.80 6.27 ± 0.85 255.0 6.41 ± 0.79 14.2
Cal Housing 5.09e+9 ± 0.42e+9 50.0 4.69e+9 ± 0.26e+9 810.0 4.66e+9 ± 0.23e+9 66.19
Elevators 25.0e-6 ± 2.0e-6 23.10 18.0e-6 ± 1.0e-6 850.7 20.0e-6 ± 1.0e-6 54.20
House 8L 1.24e+9 ± 0.16e+9 51.5 1.23e+9 ± 0.14e+9 964.29 1.26e+9 ± 0.14e+9 429.29
House 16H 1.68e+9 ± 0.22e+9 46.7 1.60e+9 ± 0.17e+9 927.09 1.64e+9 ± 0.19e+9 76.50
Mv Delve 3.66 ± 0.49 111.30 2.31 ± 0.47 505.89 2.76 ± 0.27 132.80
Pol 224.17 ± 105.72 27.40 123.81 ± 19.24 926.29 140.08 ± 15.20 38.09
Wind 45.44 ± 1.75 18.7 44.51 ± 1.53 104.59 45.02 ± 1.44 21.10
Winequality 0.59 ± 0.07 11.70 0.57 ± 0.06 147.6 0.59 ± 0.06 16.4

Table 2. Results from 10-fold cross-validation on stationary real-world datasets for ORTO-BT
5
, and ORTO-BT

3
. The

final MSE, number of models and size (number of leaves/rules) of models are given.

ORTO-BT5 ORTO-BT3

Dataset Models MSE Size Models MSE Size

Abalone 63.20 6.49 ± 0.89 12.5 20.88 6.58 ± 0.97 11.7
Cal Housing 8.1 4.88e+9 ± 0.34e+9 57.29 3.2 4.89e+9 ± 0.37e+9 66.19
Elevators 94.7 19.9e-6 ± 1.29e-6 35.90 94.7 19.9e-6 ± 1.29e-6 35.90
House 8L 26.50 1.27e+9 ± 0.13e+9 59.20 14.4 1.27e+9 ± 0.14e+9 54.6
House 16H 36.50 1.64e+9 ± 0.16e+9 52.79 12.70 1.66e+9 ± 0.19e+9 47.70
Mv Delve 2.90 3.55 ± 0.39 112.80 2 3.68 ± 0.54 111.00
Pol 8.90 148.99 ± 18.72 35.50 5.2 158.38 ± 28.19 33.00
Wind 1.6 45.19 ± 1.57 19.00 1.6 45.43 ± 1.91 19.3
Winequality 15.00 0.60 ± 0.06 16.79 8.3 0.58 ± 0.06 14.2

the option nodes enable faster growing and efficient
resolution of the tie-situations. As a result the learned
trees are larger in size and more accurate.

Although an option tree can have a significantly larger
number of leaves, if we transcribe it into a single ordi-
nary tree by considering only the best options, such a
tree will be of a comparable size as the ordinary tree.

A statistically significant reduction of error is also ob-
tained by averaging the predictions. In this sense,
ORTO-A smooths the crisp boundaries between the
leaves and reduces the variance. To investigate and
confirm this hypothesis we performed a bias-variance
analysis of the error for all of the algorithms.

5.2. Bias-variance profile

In Figure 3 we show a separate comparison of the bias
and the variance components of the error per dataset.
The datasets are sorted by the size of the option trees
in a decreasing order. To be able to make a compar-
ison across all the datasets we normalized the error
components with corresponding error components of
the ordinary regression trees (FIMT-DD).

The results suggest that in comparison to regular re-
gression trees, option trees with averaging mainly re-
duce the variance component of the error. However,
on the left plot we can see that ORTO-A and espe-
cially ORTO-BT trees have smaller bias component of
the error as well. Furthermore, the ORTO-BT trees
(obtained by transcribing an option tree into a sin-
gle ordinary tree by considering only the best options)
have an increased variance component of the error for
most of the datasets. This can be explained having in
mind that the best options are evaluated incrementally
using estimates of the squared error obtained over the
training data observed so far. However, further analy-
sis is required to examine the situation in more detail.

5.3. Analysis of memory and time

requirements

A possible drawback of option trees is their size. In-
spired by the previous work on option trees (Kohavi
& Kunz, 1997) we tried to examine whether option
nodes are most useful near the root of the tree. If that
is true, by limiting the maximal level at which option
nodes can be introduced, we can significantly reduce
the size of the trees, the memory allocation, and at the



Speeding Up Hoeffding-Based Regression Trees with Options

������������
���������	
��

�������
���
���������

���������������
������������

�����������
���������������

��������

�

��

 �


�

��

	��

	��

!���

"#$"%� "#$"%!$

������������
���������	
��

�������
���
���������

���������������
������������

�����������
���������������

��������

�

&�

	��

	&�

���

�&�

'�����(�

"#$"%� "#$"%!$

Figure 3. Bias-variance decomposition of the mean squared error of ORTO-BT, and ORTO-A relative to their correspond-

ing counterparts for FIMT-DD.

same time not sacrifice much of their accuracy.

To evaluate this hypothesis we introduced a decaying
option factor (o = k · ylevel) and a restriction on the
level of the tree where an option node can be intro-
duced, first to maximum 3 levels (ORTO-BT3) and
later to maximum 5 levels (ORTO-BT5). The results
from the second part of the evaluation show that while
the size is substantially reduced, error increased only
slightly. By constraining the maximum level to 3, the
option trees were too restricted and rarely ever man-
aged to induce more than 5 models on average (number
of different trees compressed in the option tree). For
that reason we increased the maximum level to 5.

In Table 2 we present the results from the 10-fold
cross-validation on stationary real-world datasets for
ORTO-BT5 and ORTO-BT3. The results confirmed
that, by decaying the number of options with the tree
depth and using a restriction on the maximum level at
which option trees can be introduced, we can signifi-
cantly reduce the memory allocated while not suffering
a significant increase of the error.

We also performed the same type of bias-variance anal-
ysis of the error for the constrained versions of the op-
tion trees. The bias component of the error does not
increase or increases only slightly, but remains smaller
than for the FIMT-DD trees. On the other hand, the
best tree transcribed from the constrained option tree
has smaller variance than the best tree from the non-
constrained option tree for some of the datasets.

In Table 3 we present the results on memory alloca-
tion (in MB) for all analyzed algorithms. The required
memory depends on the number of leaves where the
sufficient statistics are being maintained, thus with a
decaying option factor the savings in memory are sig-
nificant, for some datasets in an order of magnitude.

The option tree has an increased processing time per
example due to the fact that each record from the

Table 3. Comparison of FIMT-DD, ORTO (basic version),

ORTO with a decaying factor and restricted to maximum 3

levels (ORTO
3
), and 5 levels (ORTO

5
) on memory (MB).

Data FIMT- ORTO ORTO3 ORTO5

Abalone 4.66 49.08 20.81 29.72
CalHous. 25.92 296.64 45.02 54.77
Elevat. 8.70 369.31 138.62 138.62
House8L 25.74 451.27 197.17 249.65
House16H 55.49 684.90 287.86 477.14
MvDelve 59.77 219.84 99.93 106.71
Pol 7.52 375.36 44.76 50.39
Wind 13.88 60.59 22.31 22.62
Wineq. 3.75 38.43 15.38 20.53

stream is used to update all the leaves in which it
may end up, thus all the options need to be visited
in a sequential manner. Therefore, the relative in-
crease of processing time depends on the number of
options nodes and their distribution in the tree struc-
ture. Maintaining smaller trees with options only at
the higher levels reduces the update time and saves
memory. On average, the processing time per exam-
ple of ORTO is 10 times higher than of FIRT-DD.

5.4. Linear models in the leaves

The above presented results correspond to the trees in
which no linear models were allowed in the leaves. We
placed the focus on regression trees instead of model
trees in order to obtain a clear evaluation of the ad-
vantages and disadvantages from introducing options,
and without the effect from the incremental process of
computing linear models in the leaves of the tree. Al-
though the criterion for introducing options does not
depend in any way on the presence of linear models, we
performed the same type of analyses described above
also for model trees. The results and conclusions are
in general very similar to the ones presented above on
regression trees.



Speeding Up Hoeffding-Based Regression Trees with Options

6. Conclusions

In this paper, we propose a novel method for on-line
learning regression trees with option nodes from data
streams. To the best of our knowledge, option trees
have not been studied in the context of regression, nei-
ther in the batch nor in the on-line setting.

Our method for learning Hoeffding-based option trees
for regression addresses the problem of instability of
tree learning, commonly seen in the case of highly
correlated or equally discriminative attributes, i.e., in
tie situations. Hoeffding trees can suffer from a delay
in the learning process in such tie situations, because
they assume that the data is in abundance and will
never stop to stream in: Decisions on split selection
are postponed resulting in lower learning rates.

We show that option nodes are a natural and effec-
tive solution to the problem of dealing with multi-
ple equally discriminative attributes (the tie problem).
The additional structure of the option trees provides
interesting and useful information on the ambiguity of
the splits and thus on the existence of several equally
relevant attributes.

In future work, we would like to perform a more thor-
ough analysis of the overall performance of the pro-
posed system, including a comparison with ensemble
methods, such as on-line bagging and random forests
methods for regression. The latter would be of special
interest since the option trees with averaging can be
viewed also as an ensemble method. Finally, some of
the ideas explored in this paper would be also appli-
cable to Hoeffding trees for classification: Since they
have not been applied in that context, they deserve
further investigation.

Acknowledgments

This research work is supported by the grant
Knowledge Discovery from Ubiquitous Data Streams
(PTDC/EIA/098355/2008), the grant PHAGOSYS by
the European Commission, and the Slovenian Re-
search Agency.

References

Bouckaert, R. R. Practical bias variance decompo-
sition. In Proc. 21st Australasian Joint Conf. on
Artificial Intelligence, pp. 247–257. Springer, 2008.

Buntine, W. Learning classification trees. Statistics
and Computing, 2:63–73, 1992.

Dawid, P. Statistical theory: The prequential ap-

proach (with discussion). Journal of Royal Statisti-
cal Society A, 147:278–292, 1984.

Domingos, P. A unified bias-variance decomposition
for zero-one and squared loss. In Proc. 17th Na-
tional Conf. on Artificial Intelligence and 12th Conf.
on Innovative Applications of Artificial Intelligence,
pp. 564–569. AAAI Press/The MIT Press, 2000.

Domingos, P. and Hulten, G. Mining high-speed data
streams. In Proc. 6th ACM SIGKDD Intl. Conf. on
Knowledge Discovery and Data Mining, pp. 71–80,
2000.

Frank, A. and Asuncion, A. UCI machine learning
repository, 2010. URL http://archive.ics.uci.
edu/ml.

Gama, J., Rocha, R., and Medas, P. Accurate decision
trees for mining high-speed data streams. In Proc.
of 9th Int. Conf. on Knowledge Discovery and Data
Mining, pp. 523–528. ACM, 2003.

Gama, J., Medas, P., and Rocha, R. Forest trees for
on-line data. In Proc. 2004 ACM Symposium on
Applied Computing, pp. 632–636. ACM, 2004.

Gama, J., Sebastião, R., and Rodrigues, P. P. Issues in
evaluation of stream learning algorithms. In Proc.
15th Int. Conf. on Knowledge Discovery and Data
Mining, pp. 329–338. ACM, 2009.

Hulten, G., Spencer, L., and Domingos, P. Mining
time-changing data streams. In Proc. 7th ACM
SIGKDD Intl. Conf. on Knowledge Discovery and
Data Mining, pp. 97–106. ACM, 2001.

Ikonomovska, E., Gama, J., and Džeroski, S. Learn-
ing model trees from evolving data streams. Data
Mining and Knowledge Discovery, pp. 1–41, 2010.

Kohavi, R. and Kunz, C. Option decision trees with
majority votes. In Proc. 14th Intl. Conf. on Machine
Learning, pp. 161–169. Morgan Kaufmann Publish-
ers Inc., 1997.

Liu, J., Li, X., and Zhong, W. Ambiguous decision
trees for mining concept-drifting data streams. Pat-
tern Recognition Letters, 30(15):1347–1355, 2009.

Pfahringer, B., Holmes, G., and Kirkby, R. New op-
tions for hoeffding trees. In Proc. 20th Australian
Joint Conf. on Artificial Intelligence, pp. 90–99.
Springer, 2007.

Potts, D. and Sammut, C. Incremental learning of
linear model trees. Machine Learning, 61(1-3):5–48,
2005.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

