
Boosting on a Budget: Sampling for Feature-Efficient Prediction

Lev Reyzin lreyzin@cc.gatech.edu

Georgia Institute of Technology, 266 Ferst Drive, Atlanta, GA 30332, USA

Abstract

In this paper, we tackle the problem of
feature-efficient prediction: classification us-
ing a limited number of features per test ex-
ample. We show that modifying an ensem-
ble classifier such as AdaBoost, by sampling
hypotheses from its final weighted predictor,
is well-suited for this task. We further con-
sider an extension of this problem, where the
costs of examining the various features can
differ from one another, and we give an algo-
rithm for this more general setting. We prove
the correctness of our algorithms and derive
bounds for the number of samples needed for
given error rates. We also experimentally
verify the effectiveness of our methods.

1. Introduction

Oftentimes, while a learning algorithm has ample time
and resources to build a good predictor in the train-
ing phase, accessing the features of a new example at
test time can be costly. This problem often arises in
medical diagnosis, where we can think of looking at a
new feature as performing a new test on the patient.
Tests can be expensive, take valuable time, and be in-
convenient or possibly dangerous to the patients; thus,
it is important to be able to diagnose as well as possi-
ble without performing unnecessary tests. This is the
problem we address herein.

More precisely, we consider the setting where a learn-
ing algorithm is given a limit on the number of features
it may observe on a given example in the test phase,
and subject to this constraint, must try to predict as
accurately as possible. We call this problem feature-
efficient prediction. In this model, the learner may
look at arbitrarily many features during training and
is only limited in test time.

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

In this paper, we propose a technique for sampling
an ensemble predictor for tackling this problem. En-
semble predictors classify new examples by taking a
weighted vote of many base learners, each of which
can be a simple predictor that looks at only a few fea-
tures. Specifically, we modify the boosting algorithm
AdaBoost to obtain a feature-efficient algorithm. Our
method, however, is sufficiently general as to be appli-
cable to any ensemble method, e.g. boosting, bagging,
and even linear predictors, whose classification is sim-
ply a weighted vote of feature values.

The idea behind our modification is simple but pow-
erful: to train an entire ensemble classifier, and then,
for each new example, to predict by sampling the base
learners’ votes using a distribution induced by their
weights. In this paper, we show that using base learn-
ers that use only a few features and sampling a lim-
ited number of hypotheses can still provide nearly the
accuracy of the full ensemble predictor, and yet use
significantly fewer features in the process.

We consider two versions of the problem: the uni-
form cost version, where the cost of examining each
feature is the same and the arbitrary cost version,
where the cost of examining each feature is arbitrary.
We give algorithms for both these versions above and
demonstrate the effectiveness of our approach in the-
ory and experiment.

2. Background

2.1. Past Work

Work on various forms of feature efficiency has taken
many forms – here, we give a brief overview of some
relevant literature.

In the area of sequential analysis, Wald (1947) began
a line of research considering the problem of running a
clinical trial sequentially, only testing future patients
if the validity of the hypothesis in question is still suffi-
ciently uncertain. A thorough treatment of sequential
analysis is given in (Chernoff, 1972).

In learning theory, a variant of our problem was stud-

Boosting on a Budget: Sampling for Feature-Efficient Prediction

ied by Ben-David and Dichterman (1993), who exam-
ined the theory behind learning using random partial
information from examples and discussed conditions
for learning in their model.

Greiner et al. (2002) considered the problem of feature-
efficient prediction, where a classifier must choose
which features to examine before predicting. They
showed that a variant of PAC-learnability is still pos-
sible even without access to the full feature set.

The problem of predicting quickly and efficiently has
also received interest due to its relevance in internet-
scale applications. In that vein, Globerson and
Roweis (2006) looked at building robust predictors
that are resilient to corrupted or missing features.

Recently, Cesa-Bianchi et al. (2010) studied how to
efficiently learn a linear predictor, in the setting where
the learner can access only a few features per example.
Their work tackles a problem similar to our own, but
is confined to learning linear predictors.

In another related recent work, Pelossof et al. (2010)
analyzed how to speed up margin-based learning al-
gorithms by stopping evaluation when the outcome is
close to certain. In our setting, we know in advance
when we need to stop evaluation and try to optimize
accordingly. In their setting, they try to achieve a cer-
tain accuracy, and subject to that, determine when
they can stop the evaluation.

2.2. Boosting

Our idea is to exploit the power of ensemble predictors,
focusing on AdaBoost – here we give a short introduc-
tion to boosting and the related concepts we rely on.

Boosting algorithms combine moderately inaccurate
prediction rules and make a weighted majority vote
to form a single classifier. On each round, a boost-
ing algorithm generates a new prediction rule, or base
learner, to use and then places more weight on the
examples classified incorrectly. Hence, boosting con-
stantly focuses on correctly classifying the hardest
examples. A nice overview of boosting appears in
Schapire (2003).

In this paper, we will make use of AdaBoost (Freund
& Schapire, 1997), the most ubiquitous of the boost-
ing algorithms, yet our results hold for any ensemble
predictor. The AdaBoost algorithm is given in Algo-
rithm 1.

Soon after its appearance, it was observed that
AdaBoost tends not to overfit training data with more
rounds of boosting, despite that the combined classi-
fier’s complexity increases with every round. For more

Algorithm 1 AdaBoost (Freund & Schapire, 1997)

Given: (x1, y1), . . . , (xm, ym)
where xi ∈ X, yi ∈ Y = {−1,+1}.

Initialize D1(i) = 1/m.

for t = 1, . . . , T do
Train base learner using distribution Dt.
Get base classifier ht : X → {−1,+1}.
Let γt =

∑
iDt(i)yiht(xi).

Choose αt = 1
2 ln 1+γt

1−γt .
Update:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt
,

where Zt is a normalization factor (chosen so that
Dt+1 will be a distribution).

end for

Output the final classifier:

H(x) = sign

(
T∑
t=1

αtht(x)

)
.

detail, we refer the reader to the rich amount of work in
this area (Grove & Schuurmans, 1998; Schapire et al.,
1998; Mason et al., 1998; Reyzin & Schapire, 2006).

An important part of the history of trying to account
for AdaBoost’s performance is Schapire et al.’s (1998)
explanation of AdaBoost’s tendency not to overfit in
terms of the margins of the training examples, where
the margin is a quantity that can be interpreted as
measuring the confidence and correctness in the pre-
diction of the combined classifier on the training ex-
amples.

The power of the margin bound is that it depends
only on the margins distribution and not on the num-
ber of rounds of boosting, and it turns out that the
margins distribution AdaBoost generates generally im-
proves with more rounds (Schapire et al., 1998) –
this motivates our specific choice of AdaBoost for the
boosting algorithm. As we shall see in Section 3.2, the
work of Schapire et al. (1998) drives our analysis of
Algorithm 2.

3. Algorithm and Analysis for Uniform
Costs

In this section we present and analyze our algorithm
for feature-efficient prediction in the uniform cost set-

Boosting on a Budget: Sampling for Feature-Efficient Prediction

ting. The goal is to predict as accurately as possible,
while examining at most B > 0 features on any given
test example.

3.1. Algorithm

We propose Algorithm 2 which we call AdaBoostRS

(for AdaBoost, Randomly Sampled), for feature-
efficient prediction. AdaBoostRS uses AdaBoost in
training and then samples from AdaBoost’s hypoth-
esis distribution. AdaBoostRS samples anew for each
test example to avoid correlating their errors. We as-
sume the budget limit B is greater than the number of
(relevant) features; otherwise, the full AdaBoost vote
can simply be used.

For each hypothesis h we denote by n(h) the number
of features required for evaluating the hypothesis. For
example, a decision stump h has n(h) = 1.

Algorithm 2 AdaBoostRS

Given: (x1, y1), . . . , (xm, ym)
where xi ∈ X, yi ∈ Y = {−1,+1}.
Generate (α1, h1), . . . , (αT , hT) using Algorithm 1.

Given: test example x, a bound B.
Initialize:

p(i) =
αi∑T
i=1 αt

and k = 0, F = ∅, τ = 0, and v0(x) = 0.

while
k + max

1≤i≤T
n(hi) < B

do
choose hi according to p(i)
let Fhi be the set of features used by hi
let l = |Fhi \ F |
k = k + l
F = F ∪ Fhi
if hi(x) = 1 then
vτ+1(x) = vτ (x) + 1,

else
vτ+1(x) = vτ (x)− 1.

end if
increment τ by 1.

end while

Predict: f(x) = sign(vτ).

3.2. Margin Bound

Schapire et al. (1998) derived a bound on the general-
ization error of a voting classifier based on its training

margins. The margin of example (x, y) depends on the
votes ht(x) with weights αt of all the hypotheses:

margin(x, y) =
y
∑
t αtht(x)∑
t αt

.

The magnitude of the margin represents the strength
of agreement of the base classifiers, and its sign in-
dicates whether the combined vote produces a correct
prediction. Then, using the distribution of the margins
on training examples, one can bound the generaliza-
tion error of an ensemble predictor as follows.

Theorem 1 (margin bound (Schapire et al., 1998)).
Let D be a distribution over X×{−1,+1} and let S be
a sample of m examples chosen independently at ran-
dom according to D. Suppose the base classier space
H has VC-dimension d, and let δ ∈ (0, 1]. Then with
probability at least 1− δ over the random sample1, ev-
ery function f taking a weighted average over hypothe-
ses in H satisfies the following bound for all θ > 0,

PD[yf(x) ≤ 0] ≤ PS [yf(x) ≤ θ] + Õ

(√
d

mθ2

)
.

We notice that this margin bound depends most heav-
ily on the margins near the bottom of the distribution,
since having generally high smallest margins allows θ

to be large, and therefore the quantity Õ

(√
d

mθ2

)
to

be small, without PS [yf(x) ≤ θ] getting too large.

Before getting to a consequence of Theorem 1, we will
need the following bound.

Theorem 2 (Hoeffding’s inequality (1963)). Let
X1, . . . , Xn be independent real-valued random vari-
ables such that each Xi ∈ [ai, bi] and let S =

∑n
i=1Xi.

Then for every t > 0,

P [|S −E[S]| > t] ≤ exp

(
− 2t2∑n

i=1 (bi − ai)2

)
.

Next we present a corollary of Theorem 1, a version
of which also appears within the margin bound proof
in (Schapire et al., 1998).

Corollary 3. Under conditions of Theorem 1, if Al-
gorithm 2 is run, taking B samples of hypotheses to
produce a vote f(x), with probability at least 1− δ, for
all θ,

PD[yf(x) ≤ 0] ≤ PS [yf(x) ≤ θ] + Õ

(√
d

mθ2

)
+e−Bθ

2/8.

1The dependence on δ in the bound is hidden in the Õ.

Boosting on a Budget: Sampling for Feature-Efficient Prediction

Proof. We examine the probability the sampling pro-
cedure in Algorithm 2 will yield a margin of θ/2 on a
training instance whose margin in the full vote is θ.

Each hypothesis gives a binary vote and each weighted
sampling is a random variable in X ∈ {−1,+1}, of

mean θ. Let Xi be the ith vote, and let U =
∑B
i=1Xi.

Hence, E[U] = Bθ.

The probability their unweighted average is ≤ θ/2 can
be bounded by Hoeffding’s inequality.

P

[
|U −E[U]| ≥ Bθ

2

]
≤ e−

2(Bθ/2)2

4B

= e−Bθ
2/8.

Combining the above with Theorem 1 and replacing θ
for θ/2 in the bound (this difference is hidden inside
the Õ) gives the additional error and completes the
proof.

In general, given the margins, this technique can be
used to bound the number of disagreements in predic-
tion between AdaBoost and AdaBoostRS. We see that
B = Θ

(
1
θ2

)
is sufficient for the guarantee in Theo-

rem 1.

This gives the following proposition.

Proposition 4. We observe that in the limit of the
number of samples taken, the resulting classification
of AdaBoostRS is equal to the vote of its underlying
boosting algorithm, as in: let vτ (x) be the vote gener-
ated by AdaBoostRS as defined in Algorithm 2, then
with probability 1,

lim
τ→∞

sign(vτ (x)) = sign

(
T∑
t=1

αtht(x)

)
.

When Algorithm 2 runs with decision stumps as the
base hypotheses, we can be more concrete about the
analysis. A decision stump is a one-node decision tree,
which is a base learner that uses only one feature to
make its prediction. If an example x has n binary fea-
tures, then there are 2n possible decision stumps, one
for the presence and absence of each feature. There,
we can replace d with ln(n) in the margin bound –
and also know that the number of samples we can take
bounds the number of features that can be examined.

We also note the existence of similar (and sometimes
stronger) margin bounds (see (Breiman, 1999; Lang-
ford et al., 2001; Wang et al., 2008)). These carry
similar forms and use many of the same techniques
as (Schapire et al., 1998) – Corollary 3 could be modi-
fied to give bounds for AdaBoostRS in terms of different
properties of the margins.

Finally, this algorithm is easy to run online by using
an online boosting algorithm instead of AdaBoost.

3.3. Balls and Bins

Another advantage of this method is that often a hy-
pothesis will be selected that can be evaluated by look-
ing at features that have already been examined. If we
take k samples uniformly at random from n features,
then the probability a given feature is not sampled is(

1− 1

n

)k
=

(
1− 1

n

)nk/n
≤
(

1

e

)k/n
.

Therefore, the expected number of unsampled features

is bounded by n
(
1
e

)k/n
. Thus, even if we draw k = n

samples, we still are expected to have left a constant
fraction of the features unsampled.

Substituting k = Θ
(

1
θ2

)
, we get a bound of n

(
1
e

)1/nθ2
,

which means that if θ is fixed, even as we have more
features, we need to sample a vanishing fraction to
meet the full margin bound results.

Of course, the α distribution is normally not uniform
on the decision stumps, and therefore on the features
as well. This only improves the situation, as it is not
hard to see that the uniform distribution on features
is the most pessimistic case for our analysis. We shall
see in Section 5 that empirical results suggest that the
number of features left unexamined is significantly bet-
ter than this bound.

3.4. Observations

We observe that Algorithm 2 has some other nice prop-
erties. For one, it does not need to know the limit on
number of features in advance. In the medical setting,
it gives a procedure for running tests until the patient
refuses any more or until time runs out. Then, the
final vote will consist of the classifiers sampled until
that point.

One advantage of AdaBoostRS over the work of Cesa-
Bianchi et al. (2010) is that it, like AdaBoost, can be
a non-linear predictor if, say, decision trees are used
as the base classifier. Assuming the trees are of small
depth, the algorithm should remain feature-efficient
and still be able to exploit the power of non-linearity.

4. Non-Uniform Costs

We now consider extending the model to the case
where different features impose different costs to the
budget. To define our notation, we denote the ith
example xi = {x1i , . . . , xni }, where each xji is the jth
feature of example xi.

Boosting on a Budget: Sampling for Feature-Efficient Prediction

We now assume that each feature j incurs cost of cj ≥
1. If Fh(x) is the set of features hypothesis h examines
in predicting example x, we say that the cost of using
these features is

c(h(x)) =
∑

xj∈Fh(x)

cj ,

and we want to impose the constraint that the incurred
cost for predicting any example is

c(h(x)) ≤ B.

If the costs are equal, then c(h(x)) = n(h(x)). We
assume that maxj cj ≤ B, as in no feature alone will
bring us over budget. We can again assume the budget
us low enough such that we cannot simply take the full
vote of AdaBoost.

We notice that for this task, we could simply use
AdaBoostRS in the following manner: we can disregard
the costs in our sampling procedure, and only consider
(the new, non-uniform) feature costs when deciding
when we’ve gone over-budget. This only changes the
number of samples allowed to be taken, but not the
correctness of the algorithm.

However, for this more general task, we present Algo-
rithm 3, which we call AdaBoostRSAC (for AdaBoostRS,
Arbitrary Cost version). The main idea behind
AdaBoostRSAC is to sample from the the αs distribu-
tion according to each hypotheses weight divided by
its cost. In this way, we increase the probability of
sampling from low-cost hypotheses (and decrease the
probability of sampling high-cost ones), so that the al-
gorithm could have the opportunity to take more sam-
ples. To correct for the bias this creates, we use the
technique of importance sampling to properly take
feature costs into account when taking the weighted
vote. Sutton and Barto (1998) describe this method
in detail.

Herein we will prove some of its properties, and then in
Section 5.4, we experimentally show its effectiveness.
We note that if all costs are equal, then AdaBoostRSAC
becomes AdaBoostRS.

The following theorem shows that AdaBoostRSAC pro-
duces an unbiased estimate of the full AdaBoost vote,
regardless of now many samples it uses.

Theorem 5. Let vτ (x) be the vote generated by
AdaBoostRSAC as defined in Algorithm 3, then for all
number of samples τ > 0,

sign (E[(vτ (x))]) = sign

(
T∑
t=1

αtht(x)

)
.

Algorithm 3 AdaBoostRSAC (Arbitrary Cost)

Given: (x1, y1), . . . , (xm, ym)
where xi ∈ X, yi ∈ Y = {−1,+1}.
Given feature costs: ci, . . . , cn ≥ 1.
Generate (α1, h1), . . . , (αT , hT) using Algorithm 1.

Given: test example x, a bound B.
Initialize:

p(i) =
αi

c(hi)
∑T
i=1 (αt/c(ht))

and k = 0, F = ∅, τ = 0 and v0(x) = 0.

while
k + max

1≤i≤T
c(hi) < B

do
choose hi according to p(i)
let Fhi be the set of features used by hi
let l = Fhi \ F
k = k +

∑
xj∈l cj

F = F ∪ Fhi
if hi(x) = 1 then
vτ+1(x) = vτ (x) + c(hi)

else
vτ+1(x) = vτ (x)− c(hi).

end if
increment τ by 1

end while

Predict: sign(vτ).

Proof. By definition

E[(vτ (x))] =
∑
τ

∑
i

p(i)c(hi)hi(x)

=
∑
τ

(∑
i

αic(hi)hi(x)

c(hi)
∑T
i=1 (αt/c(ht))

)

=
τ
∑T
t=1 αtht(x)∑T

i=1 (αt/c(ht))
.

So we have

sign (E[(vτ (x))]) = sign

(
τ
∑T
t=1 αtht(x)∑T

i=1 (αt/c(ht))

)
.

Observing that

τ∑T
i=1 (αt/c(ht))

> 0

completes the proof.

Boosting on a Budget: Sampling for Feature-Efficient Prediction

We conclude this section with a proposition similar to
Proposition 4.

Proposition 6. In the limit of the number of samples
taken, the resulting classification of AdaBoostRSAC is
equal to the vote of its underlying boosting algorithm,
as in: let vτ (x) be the vote generated by AdaBoostRSAC
as defined in Algorithm 3, then with probability 1,

lim
τ→∞

sign(vτ (x)) = sign

(
T∑
t=1

αtht(x)

)
.

5. Experimental Results

In this section we experimentally test AdaBoostRS and
AdaBoostRSAC.

5.1. Data

We considered the following datasets: census, splice,
ocr17, and ocr49, all available from the UCI repository.
The splice dataset was modified to collapse the two
splice categories into one to create binary-labeled data.

Table 1. Dataset sizes, and numbers of features, for train-
ing and test.

census splice ocr 17 ocr 49
training 1000 1000 1000 1000

test 5000 2175 5000 5000
num features 130 239 402 402

Also, ocr17 and ocr49 contain randomly chosen subsets
of the NIST database of handwritten digits consisting
only of the digits 1 and 7, and 4 and 9 (respectively); in
addition, the images have been scaled down to 14×14
pixels, each with only four intensity levels. Table 1
shows the number of training and test examples used
in each.

5.2. Error Rates of AdaBoost

Because AdaBoostRS and AdaBoostRSAC both use
AdaBoost as the underlying algorithm, in Table 2 we
give the error rate of AdaBoost, with decision stumps
as a base learner, using its full vote, when run for 500
rounds, which the number of rounds used in all our
experiments. This table is meant to place the results
in the following sections in context.

5.3. Results for AdaBoostRS

In this section, we experimentally test AdaBoostRS.

Corollary 3 predicts that the error rate of AdaBoostRS
should fall exponentially in the number of samples it

Table 2. Error rates (in percent) of AdaBoost, run for 500
rounds with decision stumps as the base learner.

census splice ocr 17 ocr 49
AdaBoost 18.3 8.1 0.8 6.5

0

5

10

15

20

25

30

35

40

1 17

33

49

65

81

97

11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

30
5

32
1

33
7

35
3

36
9

38
5

40
1

error rate of AdaBoost

error rate of AdaBoostRS

percent features used by AdaBoostRS

Figure 1. A graph of the error rate of AdaBoostRS on
the ocr17 dataset and the percent of features it is using.
The horizontal axis is the number of samples drawn by
AdaBoostRS.

uses. This prediction is confirmed in Figures 1 and 2
(log plot).

Figure 1 also makes clear that AdaBoostRS’s error rate
quickly asymptotes to the error rate of AdaBoost. Fur-
thermore, we can also see that the number of features
used does not rise as quickly as the number of samples
taken. This is behavior that we would expect from our
analysis in Section 3.3, as features get resampled and
only contribute to the budget upon their first exami-
nation.

Table 3. Number of samples needed to reach given relative
error rates to AdaBoost. The numbers inside the parenthe-
ses are the error rates of AdaBoost (using the full vote) on
the respective datasets.

100% 50% 25% 10%
census (18.3) 15 77 211 637
splice (8.1) 97 205 421 823
ocr17 (0.8) 178 244 339 505
ocr49 (6.5) 167 296 694 1020

In Table 3 we examine the number of samples needed
to achieve the given relative error rates compared to
AdaBoost. Table 6 shows the percent of the features
that were used to achieve the relative error rates of

Boosting on a Budget: Sampling for Feature-Efficient Prediction

0

5

10

15

20

25

30

35

40

45

50

1 10 100 1000

error rate of AdaBoostRS

Figure 2. A graph of the error rate of AdaBoostRS on the
splice dataset, as a function of the number of samples. The
horizontal axis is on a log scale.

Table 4. Percent of features used to reach given relative er-
ror rates to AdaBoost. The numbers inside the parentheses
are the error rates of AdaBoost (using the full vote) on the
respective datasets.

100% 50% 25% 10%
census (18.3) 10.0 29.2 40.8 48.5
splice (8.1) 26.8 38.9 52.7 61.5
ocr17 (0.8) 16.4 18.4 19.9 20.6
ocr49 (6.5) 21.6 26.4 31.3 32.3

AdaBoost. For these datasets, the α distribution is suf-
ficiently lumpy (far for uniform) as to give AdaBoostRS
good relative error rates to AdaBoost without using
too many features, even when taking many samples.

There results confirm the effectiveness of the sampling
procedure in AdaBoostRS.

5.4. Results for AdaBoostRSAC

We also experimentally test the algorithm
AdaBoostRSAC in the non-uniform cost setting.
In our experiments, we assign each feature a cost
chosen uniformly at random in the interval [0, 1].
We compare the performance of AdaBoostRSAC and
AdaBoostRS in the non-uniform costs setting and
show that our careful modification of the AdaBoostRS

(to make AdaBoostRSAC) yields practical improvement
in performance. The results appear in Table 5, and
we can clearly see that AdaBoostRSAC outperformes
AdaBoostRS for the two different budget values.

One explanation of AdaBoostRSAC’s superior perfor-
mance can be found in Table 6. If we examine the
number of samples taken, we note that the number

Table 5. Error rates (in percent), averaged over 50 trials,
of AdaBoostRSAC and AdaBoostRS using budgets of 10 and
20 when features have random costs drawn i.i.d. from [0, 1].
The underlying algorithm, AdaBoost, is run for 500 rounds.

AdaBoostRSAC AdaBoostRS

census (B = 11) 32.2 32.8
census (B = 21) 25.5 26.4
splice (B = 11) 25.7 27.0
splice (B = 21) 19.2 20.4
ocr17 (B = 11) 9.2 10.5
ocr17 (B = 21) 3.5 4.3
ocr49 (B = 11) 27.4 28.3
ocr49 (B = 21) 20.2 21.4

of samples AdaBoostRS (without taking costs into ac-
count) is expected to take is slightly less than twice the
budget. By not paying attention to feature costs, in
expectation, it adds 0.5 to the total cost used on each
round. AdaBoostRSAC, meanwhile, is designed to pay
attention to feature costs, and is therefore able to use
significantly more samples without going over budget.

Table 6. Number of samples taken (τ), averaged over 50
trials, of AdaBoostRSAC and AdaBoostRS using budgets of
11 and 21 when features have random costs drawn i.i.d.
from [0, 1]. The underlying algorithm, AdaBoost, is run for
500 rounds.

AdaBoostRSAC AdaBoostRS

census (B = 11) 26.2 20.7
census (B = 21) 45.7 41.3
splice (B = 11) 33.8 20.6
splice (B = 21) 56.2 40.0
ocr17 (B = 11) 29.4 20.6
ocr17 (B = 21) 49.3 40.5
ocr49 (B = 11) 33.6 21.1
ocr49 (B = 21) 55.7 40.3

6. Discussion

In this work, we examined a boosting approach to tack-
ling the feature-efficient learning problem. We leave
room for many interesting problems including:

• What is the best boosting algorithm to use given
this framework?

• We noticed, in experiments, that deterministi-
cally using the top-weighted (by αi/ci) hypothe-
ses sometimes outperforms our approach, yet the
former method is not known to be mathemati-
cally justified. It would be interesting to develop
a better theoretical understanding that explains

Boosting on a Budget: Sampling for Feature-Efficient Prediction

precisely when our approach yields the best ad-
vantage over naive methods (and when it doesn’t).

• Can we explicitly take feature costs into account
in training?

• How can we modify other popular learning algo-
rithms to make them more feature-efficient?

We conclude by noting that ever since the appearance
of the margin bounds in (Schapire et al., 1998), it
has been a natural question how well a hypothesis-
sampling algorithm would perform. Our work ad-
dresses this question.

Acknowledgments

A preliminary version of this paper appeared in the
ICML 2010 Budgeted Learning Workshop (Reyzin,
2010).

The author thanks Dana Angluin and Rob Schapire
for helpful discussions and the anonymous reviewers
of both this version and the workshop paper for useful
suggestions. The author especially thanks a reviewer
for catching a bug in one of the proofs in this paper.

This work is funded in part by a Simons Founda-
tion Postdoctoral Fellowship. Parts of this work were
done while the author was at Yahoo! Research, New
York; the author also acknowledges that this material
is based upon work supported by the National Science
Foundation under Grant #0937060 to the Computing
Research Association for the Computing Innovation
Fellowship program.

References

Ben-David, Shai and Dichterman, Eli. Learning with
restricted focus of attention. In COLT, pp. 287–296,
New York, NY, USA, 1993. ACM.

Breiman, Leo. Prediction games and arcing classifiers.
Neural Computation, 11(7):1493–1517, 1999.

Cesa-Bianchi, Nicolò, Shalev-Shwartz, Shai, and
Shamir, Ohad. Efficient learning with partially ob-
served attributes. CoRR, abs/1004.4421, 2010.

Chernoff, Herman. Sequential Analysis and Optimal
Design. SIAM, 1972.

Freund, Yoav and Schapire, Robert E. A decision-
theoretic generalization of on-line learning and an
application to boosting. J. Comput. Syst. Sci., 55
(1):119–139, 1997.

Globerson, Amir and Roweis, Sam T. Nightmare at
test time: robust learning by feature deletion. In
ICML, pp. 353–360, 2006.

Greiner, Russell, Grove, Adam J., and Roth, Dan.
Learning cost-sensitive active classifiers. Artif. In-
tell., 139(2):137–174, 2002.

Grove, Adam J. and Schuurmans, Dale. Boosting in
the limit: Maximizing the margin of learned ensem-
bles. In AAAI/IAAI, pp. 692–699, 1998.

Hoeffding, Wassily. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58:13–30, 1963.

Langford, John, Seeger, Matthias, and Megiddo, Nim-
rod. An improved predictive accuracy bound for
averaging classifiers. In ICML, pp. 290–297, 2001.

Mason, Llew, Bartlett, Peter L., and Baxter,
Jonathan. Direct optimization of margins improves
generalization in combined classifiers. In NIPS, pp.
288–294, 1998.

Pelossof, Raphael, Jones, Michael, and Ying,
Zhiliyang. Speeding-up margin based learning via
stochastic curtailment. In ICML/COLT Budgeted
Learning Workshop, Haifa, Israel, June 25 2010.

Reyzin, Lev. Boosting on a feature budget. In
ICML/COLT Budgeted Learning Workshop, Haifa,
Israel, June 25 2010.

Reyzin, Lev and Schapire, Robert E. How boosting
the margin can also boost classifier complexity. In
ICML, pp. 753–760, 2006.

Schapire, Robert E. The boosting approach to ma-
chine learning: An overview. In Nonlinear Estima-
tion and Classification. Springer, 2003.

Schapire, Robert E., Freund, Yoav, Bartlett, Peter,
and Lee, Wee Sun. Boosting the margin: A new
explanation for the effectiveness of voting methods.
the Annals of Statistics, 26(5):1651–1686, 1998.

Sutton, Richard S. and Barto, Andrew G. Reinforce-
ment Learning: An Introduction. MIT Press, 1998.

Wald, Abraham. Sequential Analysis. Wiley, 1947.

Wang, Liwei, Sugiyama, Masashi, Yang, Cheng, Zhou,
Zhi-Hua, and Feng, Jufu. On the margin explana-
tion of boosting algorithms. In COLT, pp. 479–490,
2008.

