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Abstract

In multi-task learning (MTL), multiple tasks
are learnt jointly. A major assumption
for this paradigm is that all those tasks
are indeed related so that the joint train-
ing is appropriate and beneficial. In this
paper, we study the problem of multi-task
learning of shared feature representations
among tasks, while simultaneously determin-
ing “with whom” each task should share. We
formulate the problem as a mixed integer pro-
gramming and provide an alternating mini-
mization technique to solve the optimization
problem of jointly identifying grouping struc-
tures and parameters. The algorithm mono-
tonically decreases the objective function and
converges to a local optimum. Compared to
the standard MTL paradigm where all tasks
are in a single group, our algorithm improves
its performance with statistical significance
for three out of the four datasets we have
studied. We also demonstrate its advantage
over other task grouping techniques investi-
gated in literature.

1. Introduction

Multi-task learning (MTL) is a learning paradigm
where multiple tasks are jointly learnt (Caruana,
1997; Thrun & Pratt, 1998). The basic notion is
that learning one task would benefit from learning
other tasks, if they are related. Multi-task learn-
ing has been applied to many problems, includ-
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ing those in computer vision (Torralba et al., 2007;
Loeff & Farhadi, 2008; Quattoni et al., 2008), natural
language processing (Ando & Zhang, 2005), and ge-
nomics (Obozinski et al., 2009).

There have been two main ways to define task re-
latedness. The first one is to assume that the pa-
rameters used by all tasks are close to each other,
either measured in the Frobenius norms of their dif-
ferences (Evgeniou & Pontil, 2004; Liu et al., 2009;
Zhang & Yeung, 2010; Parameswaran & Weinberger,
2010), or sharing a common prior (Yu et al., 2005;
Lee et al., 2007; Daumé, 2009).

The other way to model task relatedness is to as-
sume that all tasks share a common yet latent feature
representation (Caruana, 1997; Ando & Zhang, 2005).
Argyriou et al. proposed a framework to learn shared
features with convex optimization (Argyriou et al.,
2008a). Concretely, by forming a parameter matrix
with all the parameters of the tasks, their formula-
tion minimizes empirical risk of all tasks, but balanced
with a trace-norm based regularizer on the parameter
matrix. The trace norm formulation is closely con-
nected to group LASSO (Meier et al., 2008), where
the goal is to discover groups of variables that are
relevant to prediction tasks only when they are used
jointly. In fact, It has been shown that joint covari-
ate selection and subspace selection, a special case of
group LASSO, converges to the trace-norm regular-
ization even though the former uses /; > norm on the
parameter matrix (Obozinski et al., 2009).

Being orthogonal to how to define relatedness, another
important assumption made by most MTL techniques
is that all the tasks are indeed related and appropri-
ate for joint training (or, at least, that an expert using
the method can determine those that are). When this
assumption does not hold, negative transfer occurs,
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where learning jointly with dissimilar or outlier tasks
results in worsened performance. Though a crucial is-
sue in applying MTL, very few has considered how to
address it. Jacob et al. consider the problem of au-
tomatically clustering tasks, where tasks in the same
cluster are more related to each other than to tasksin a
different cluster. In their work, the task relatedness is
modeled as similarity in parameters. Dissimilar tasks
are then placed in different clusters and learnt inde-
pendently from each other. Similar ideas were also ex-
plored in an earlier work (Thrun & O’Sullivan, 1998),
where the similarity between two tasks is quantified by
“fitness” — how well one task’s parameters perform in
the other task.

In this paper, we study the problem of clustering task
in the distinct setting where relatedness is modeled as
learning shared features among the tasks. The goal is
for the algorithm to simultaneously determine “with
whom” each task should share features, while also op-
timizing the model parameters for all tasks per group.
Central to our strategy is the observation that sim-
ilarity among classes does not imply that successful
sharing can occur between them; rather, the grouping
we seek should directly account for the discriminative
task of interest.

We formulates the problem as a mixed integer pro-
gramming problem where binary indicator variables
are used to assign tasks to groups. Within each group,
the tasks share a common feature representation and
the parameters are jointly learnt and regularized with
trace norms. We provide an alternating minimization
technique to solve the optimization problem of jointly
identifying grouping structures and parameters. The
algorithm monotonically decreases the objective func-
tion and converges to a local optimum.

We validate our approach empirically with one syn-
thetic and three realistic datasets. Though it is not
guaranteed that learning task grouping structures will
always improve the baseline approach (i.e., where all
tasks are in a single group), our algorithm improves
the performance with statistical significance for three
out of the four datasets. In addition, we demonstrate
its advantage over several existing task clustering tech-
niques. In particular, we contrast our work to a recent
technique proposed in (Argyriou et al., 2008b), where
the problem of inferring task clusters is cast as learning
a set of kernel functions, one for each group.

We also show how our method can incorporate group-
ing structures from previously learned tasks into
new tasks with potentially different grouping struc-
tures, and demonstrate empirically that exploiting
“old structures” can help accuracy on new tasks.

The paper is organized as follows. In section 2, we
describe the standard framework of multi-task feature
learning. In section 3, we describe our formulation
and optimization techniques for jointly inferring opti-
mal task grouping structures and parameters of all the
tasks. We present results from the empirical studies
in section 4. We conclude and discuss future research
directions in section 5.

2. Multi-task Feature Learning

In what follows, we describe briefly the framework of
multi-task feature learning (MTFL) (Argyriou et al.,
2008a). Our work builds directly on their work and
will be described in section 3.

We assume that there are T supervised learning tasks.
Let £(Dy; w;) stand for the loss function of the t-th task
on its training data D, and w; be the corresponding
model parameter vector. We assume that all tasks
use the same feature space, with the feature vector
denoted by & € X C RP. In the standard learning
paradigm, the tasks are learned independently, sharing
no information among them,

w* :argminzé(pt;wt)‘i"YHWH% (1)
t

where the parameter matrix W is composed of {w;} as
column vectors. ||W % denotes the squared Frobenius
form and decomposes into the familiar ¢ regulariza-
tion on each wy: |W||% =3, [[we|3.

In MTFL, we assume that there is a shared feature
subspace U on which all tasks perform well. One goal
of MTFL is to identify this subspace. In the simplest
setting, the feature subspace is a linear transforma-
tion of the original “raw” feature vector: u,, = U'x,,
where U € RP*P is an orthogonal matrix. Moreover,
we consider linear classifiers in the space of U, where
the discriminant function is given by

0 u, =0U"x, =w/z,. (2)

In other words, we aim to search for parameters wy
such that they are linear combinations of a common
set of basis w; = U6;. Such representation is certainly
not unique without further constraints. To this end,
MTFL enforces the low-rank constraint, that is, there
are only a few basis in U that are necessary in order
to compose all w;. This is achieved by regularizing @,
whose columns are 6, with (2, 1)-norm,

e0* U"= aurgmian(Dt;Hrtr UT) +7|\®|\§71 (3)
¢

2,1 = 25:1 V2 6‘(2115' An

The norm is given by ||©]
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important property of this norm is that it computes
the 2-norm of parameter values in each dimension
across tasks. Consequently, for any dimension d, the
regularization attains the minimum if and only if the
corresponding parameters are all zero: 84 = 0 for all £.
Therefore, the regularization would choose the ® with
the smallest number of non-zero rows. This is equiva-
lent to finding a subset of feature dimensions in U that
are useful for all tasks, namely, whose corresponding
parameters are nonzero.

The optimization algorithm for eq. (3) starts by iden-
tifying it with the following equivalent form

w* Q= argminZE(Dt;wt)
t
T-1 —1 (4)
+’wat Q7w + ye Trace(Q ),

t

where © € RP*P is constrained to be a positive
definite matrix with bounded trace Trace(2) < 1.
€ < 1is a smoothing parameter for numerical stability
and benign convergence properties (cf. Theorem 3 in
(Argyriou et al., 2008a)).

When € is zero, minimizing € first leads to a closed
form solution in W (Argyriou et al., 2008a). The op-
timization problem is then reformulated as

W* =argmin » (D wy) +4|W|Z,  (5)
t

where |[|[W ||, is the trace norm of the parameter ma-
trix. Since trace norm is the convex envelope of ma-
trix rank, minimizing the trace-norm regularizer has
the effect of preferring a low-rank solution of W.

The above framework of MTFL can also be extended
to nonlinear classifiers where the input feature x is
mapped to a kernel feature space ¢(x). Details can
be found in (Argyriou et al., 2008a).

3. Learning to Group Tasks

The multi-task learning framework described in the
previous section assumes that all tasks are related.
This leads to a single-term regularization on all the
parameters. In practice, this assumption could be too
restrictive, as illustrated by the following example.

Suppose the feature space is decomposed as the di-
rect sum of two orthogonal-complement subspaces U =
Uy ® Us. Associated with each subspace, there are a
group of tasks whose parameters depend only on the
basis of that subspace. In the previous notation of
ours (cf. eq. (2-3)), the parameter matrix © in the
feature space is thus block-diagonal. Thus, regulariz-
ing the matrix to have zero rows as much as possible

would not be suitable. Particularly, one possible dan-
ger would be forcing truly useful rows to be zero, thus
damaging the performance of the affected models.

Thus it is desirable to be able to cluster tasks auto-
matically into separate groups where task relatedness
is more prominent within each group. Regularization
should occur for tasks in the same group and should
not be imposed for tasks across groups. In the follow-
ing, we show how such inference can be achieved by
extending the previous work. We start by formulat-
ing the problem as an integer programming and then
describe optimization techniques for solving it.

3.1. Integer Programming

Let G denote the number of groups into which we want
to cluster our tasks. When G is unknown, as often in
practical applications, we use cross-validation to select
the optimal one. For the g-th group, let W, denote the
parameter matrix for the tasks in this group. These
tasks are to be learnt jointly but independently from
tasks in other groups. Given the group assignment
of tasks, analogous to eq. (5) where all tasks are in
a single group, we have the following for separately
grouped tasks,

W* =argmin » £(Dywe) +7 Y [WylZ.  (6)
t g

Let g4t € {0, 1} be a binary variable indicating whether
the t-th task is assigned to the group g. Let @ be the
group assignment matrix composed of g4+ as its ele-
ments. Let Q, € R™*T be the diagonal matrix whose
diagonal elements are qq¢. ||[Wyl|« is thus expressed as

/
IWQ,l. = Tace [W@, w@,)'] " (@)

To automatically infer the grouping, we seek both the
model parameters W and the group assignment ma-
trices @, that minimize

min Zg(pﬁwt) +”YZ||WQ9||i
¢ g

‘ 8
s.t. > Qg =TI with g € {0,1} )

where I stands for the identity matrix. The summa-
tion constraint ensures that each task is assigned to
one and only one group.

The framework of eq. (8) includes two special cases.
When G = 1, the framework reduces to the stan-
dard multitask feature learning discussed in the sec-
tion 2 where all tasks belong to a single group. When
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G =T — the number of tasks, the framework reduces
to standard supervised learning where tasks are inde-
pendently learnt from each other (cf. eq. (1) ).

Eq. (8) is a mixed integer programming problem,
where finding the global optimum is generally in-
tractable. We show how to solve it in the following.

3.2. Optimization

Our main approach is the technique of alternative min-
imization for eq. (8). When all Q, are fixed, eq. (8)
can be minimized over W in a similar way as eq. (5).
The challenge is to find the optimal Q4 while holding
W fixed. In this step, note that only the regularizer

R(Q) =3, [WQ,|? is relevant.

There are several strategies we have explored. We
have found the following one to be especially effec-
tive. Specifically, we use a different regularizer T(Q) =
> [W/Qq||?. For binary gy, the two regularizers
are precisely the same. However, with ¢, being re-
laxed to be continuous, the two have different compu-
tational properties. Specifically, T'(Q) is not a convex
function in gg. Nevertheless, the following theorem
reveals an interesting fact about T(Q).

Theorem 1. Let {Q}} be either the solution or a local
optimum to the following optimization,

min T(Q) =) IWVQ,l:

s.t D> Qg =T with0< gy <1
g

then either one of the following is true: i) {Q}} is
binary; i) there evists another binary {Qy} such that

7@ =TQ).

The proof is presented in the Supplementary Mate-
rial (Kang et al., 2011). While the theorem does not
provide a way to identify the binary Q' from a frac-
tional solution Q*, we encountered very infrequently
fractional solutions in our experiments with our non-
linear optimization algorithm to be described in the
following.

To handle the constraints in eq. (9) on gg4, we repa-
rameterize them with unconstrained variables

qgt = €79 /Qo, Qo = Ze%“- (10)
g

We then solve eq. (9) by the method of gradient-
descent on ag;. The key step is to compute the gradi-
ent of T(Q) with respect to Qg; the details are given
in the Supplementary Material (Kang et al., 2011).

Since T(Q) is not a convex function of ag, the
gradient-descent method could get trapped in local
optima. Thus, in practice, we initialize the gradient-
descent with 10 sets of random o+ and choose the set
that leads to the best (local) optimum. This heuristic
works well in our experiments. The algorithm listing in
Algorithm 1 illustrates crucial steps of solving eq. (8).
The iterative procedure is terminated when the algo-
rithm converges, when there is very little change of
either W or Q between two consecutive iterations.

Algorithm 1 Alternative Minimization of Eq. (8)

Input: step size 7 for gradient-descent
Output: W* Q~
1: Initialize W and Q
2: while not converged do
3: forg=1toGdo
4: Solve the following with the Algorithm 1 in
(Argyriou et al., 2008a)

min Z 0Dy we) + 7||Wy |12 (11)

tiqge=1
5:  end for
6: Fix Wy, identify the optimal Q

g < agr —n9T(Q)/Oag: (12)
7: end while

3.3. Other Extensions

Nonlinear feature space. The method we have de-
scribed so far can be easily extended to nonlinear ker-
nel classifiers. The following representer theorem is in
parallel to the Theorem 4 in (Argyriou et al., 2008a).

Theorem 2. Let ¢(x) denote the nonlinear feature
map by a reproducing kernel. Assume the linear dis-
criminant function wl¢(zx) for the t-th task. Then the
optimal solution of eq. (8) is given by

T N
w; = Z Z hstcinﬁb(msn)

s=1n=1
G
z : * %
hst = Qgs qgt
g=1

where ¢, is the linear combination coefficients for the
t-th task, combining total N x T training data xsy, .

The proof is straightforward and omitted. Note that
the binary variable hg can be interpreted as the ele-
ment of a kernel matrix, measuring the similarity be-
tween the t-th task and the s-th task. Thus, learning
the optimal grouping is equivalent to learning a kernel
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matrix for characterizing task relatedness, which was
explored previously in (Argyriou et al., 2008c).

Transferring to new tasks. Once the parameter
matrix W and the optimal groupings Q, are learnt,
they can be used as a “prior” to facilitate the learning
process of new tasks. In particular, the new tasks have
3 options: assigned to existing groups of old tasks,
clustered into new groups on their own, or a hybrid of
both. Our framework in eq. (8) can be readily adapted
for this purpose.

Concretely, we increase the number of columns in W
to accommodate the new tasks but hold previously
learnt parameters (from the “old tasks”) fixed. We
also increase the dimensions of Q4 to enable creating
new groups, but hold previously learnt group assign-
ments for the old tasks fixed. Since parameters of the
old tasks are not to be changed, we do not need to
include their associated loss functions or their training
data in eq. (8). This is often desirable as one might
not have access to training data of those tasks, for ex-
ample, in the scenario of online learning of visual cate-
gories. The adapted formulation for incorporating new
tasks requires only minor modification to the numer-
ical optimization techniques described in section 3.2.
In short, in the Algorithm 1, for parameters and group
assignment variables that are fixed due to their asso-
ciation with old tasks, we just set their gradients arti-
ficially as zeroes so that they are not updated.

4. Experiments

We present extensive empirical studies to evaluate our
approach. For reference, we consider several baselines:

e Single task: a baseline single-task learning ap-
proach, in which the tasks are learned separately,
denoted by G = T, where T is the number of tasks.

e No groups-MTL: the typical MTL approach
in which all tasks are learned jointly, indiscrim-
inately putting them into one group, i.e., G=1.

e Random groups-MTL: a naive grouping ap-
proach that simply randomly partitions the tasks
into groups.

e Similarity groups-MTL: a grouping approach
that partitions the tasks purely according to their
similarity in the original feature space. (We define
in more detail below.)

e Fitness groups-MTL: a grouping approach
that partitions the tasks according to their fit-
ness to each other, by measuring how well one

task’s parameters can be used directly on the
other task (Thrun & O’Sullivan, 1998).

e Kernel groups-MTL: a grouping approach that
assign tasks sequentially and greedily to clusters;
within each cluster, the tasks are jointly learnt
by using a common kernel function for all tasks’
data (Argyriou et al., 2008b). The resulting for-
mulation is similar to eq. (8) except that the trace-
norm instead of squared trace-norm is used for
regularization. Moreover, online stochastic gradi-
ent descent is used to learn the kernel functions
and the cluster assignments.

Our goal is to demonstrate that our automatically in-
ferred groups can outperform these methods in many
cases. For completeness, we examine several datasets.
We start with toy synthetic data, for which task re-
latedness is well-defined and known a priori. Then we
present results on two handwritten digit recognition
datasets, USPS and MNIST (LeCun et al., 1998; Hull,
1994). Finally, we study the effectiveness of multi-
task learning on the Animals with Attributes image
dataset (Lampert et al., 2009), testing both our pri-
mary automatic grouping algorithm as well as the vari-
ant in which we incorporate new tasks.

4.1. Synthetic data

We evaluate on synthetic data as an illustrative sanity
check. Our synthetic data consists of 20-dimensional
feature vectors, three groups of tasks, and 15 training
points per task. Within each group, there are 10 tasks
whose parameter vectors are identical to each other up
to a scaling. These parameters are used in the model
of linear regression to generate training data (inputs
and target outputs).

Table 1 displays the root-mean-squared-error (RM-
SEs) for different numbers of groups, including two
of the special baseline cases: G = T denotes the case
where every single task is learnt separately, and G = 1
denotes the standard MTL approach where all 30 tasks
are clustered in a single group. G = 1 clearly outper-
forms independent learning, confirming the benefit of
multi-task learning. However, the best performance is
achieved when G = 3, precisely the number of groups
that we have used to create the tasks and data.

Fig. 1 displays the matrix  whose elements are gg:—
that is, each entry is an indicator variable for whether
the t-th task is assigned to the g-th group. The hor-
izontal axis is ¢, and the vertical axis is g. The tasks
are arranged according to their ground-truth groups
(which is information withheld from the learning algo-
rithm). We see that when the number of groups G is
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Table 1. RMSE when applying our algorithm on the syn-
thetic dataset, as a function of the number of groups G.

G T 1 2 3 4
RMSE | 0.97 | 0.48 | 0.45 | 0.42 | 0.47

set to be 3, our algorithm discovers the true grouping
structures of all tasks but one. In contrast, when too
few or too many groups are used, the structures either
merge or are overly-segmented.

4.2. Handwritten digit recognition

We next study the effectiveness of our approach on
handwritten digit recognition using two datasets. Here
we treat multi-way classification as a multi-task learn-
ing problem, where each task is a classification task of
one digit against all the others (Amit et al., 2007). In
all experiments in this section, we use logistic regres-
sion for the binary classification tasks.

To construct the Similarity groups-MTL baseline for
the digits dataset, we explore a couple options. For
the USPS data, we project the mean feature vectors
of each class into two dimensions, and form groupings
by visually examining the proximities of different digit
classes on the plane. For the MNIST data, we use the
t-SNE algorithm (van der Maaten & Hinton, 2008) to
project data into two dimensions, and form groupings
again by visually examining clustering and proximities
of different classes. This Similarity-groups baseline is
intended to serve as a simple but “intelligent” group-
ing strategy, that is, an educated guess of what classes
might share features based on their apparent similarity
(as compared to the naive Random grouping baseline).
The two options yield similar results on both datasets
and we report the best performing ones with the num-
ber of groups chosen using the validation data set.

4.2.1. USPS DIGITS DATASET

The first digit dataset is the USPS dataset (Hull,
1994). We preprocess the images with PCA, reduc-
ing dimensionality to 87 so as to retain ~ 95% of the
total variance. We extract 2000 samples, and use 1000,
500, and 500 samples for training, validation, and test
sets, respectively. The test samples are fixed, and we
conduct 5 random splits to obtain results across differ-
ent training and validation samples. We report 10-way
misclassification rates of recognizing digits. For all re-
sults, we automatically select the number of groups for
our approach using the validation set.

Table 2 (middle column) summarizes the results, com-
paring our method to the baselines defined above. The

G=3

Group ID (g)

5 10 15 20 25 30
Task ID (1)

5 10 15 20 25 30
Task ID (1)

5 10 15 20 25 30
Task ID (t)

Figure 1. Visualizing how tasks are grouped in the syn-
thetic dataset. Given the correct number of groups G = 3,
the correct groupings are discovered for all but one tasks .

values represent the mean error rates across 5 splits,
and one standard error, defined as the standard devi-
ation of error rates and scaled by 1/ V5.

The results show that conventional MTL—while im-
proving over single-task learning—suffers by requir-
ing all tasks to share features. The Random group-
ing baseline improves the error slightly, and the Sim-
ilarity grouping baseline is even a bit better, already
showing the influence of splitting tasks that can cause
negative transfer. However, the very best results are
obtained with our approach (see last row), which de-
termines which tasks should share directly from the
data. Interestingly, our method’s advantage over the
Similarity groups-MTL baseline indicates that simply
judging relatedness based on similarity is insufficient
to identify groups of tasks that enhance discriminative
power when sharing.

Our approach does not exhibit statistically significant
differences from Kernel groups-MTL. We note in pass-
ing that this approach requires significant amount of
time to learn grouping structures and model parame-
ters. Our experiments (including those on other data
sets reported below) indicate it is often one or two-
order slower than ours. While heuristic in nature, Fit-
ness groups-MTL is a very strong performer. However,
it relies on the assumption that parameters from dif-
ferent tasks are similar in both scales and “semantics”
— the tasks are of the same type, i.e, classifying object
categories from images of similar data characteristics,
etc. Thus, its applicability to learning tasks with dif-
ferent characteristics, for example, classifying object
categories versus detecting visual attributes, needs to
be studied (Hwang et al., 2011).

4.2.2. MNIST DIGITS DATASET

The second digits dataset is the MNIST dataset. We
perform preprocessing similarly as for the USPS data,
except reducing dimensionality to 64. Table 2 (right
column) shows the results. Our method’s improve-
ment over standard MTL or the alternate grouping
baselines is minor in this case. This could be explained
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Table 2. Error rates (%) on two different handwritten digit
recognition datasets. The proposed approach outperforms

several natural baselines. See text for details.

Table 4. Recognition accuracy (%) out of 100 test exam-
ples as a function of the number of training examples N,
learning to transfer to the 10-class Animals dataset from
the other 20-class Animals dataset described in the text.

Single Fitness- Ours
N task MTL
10| 314+1.5 37+1.7 | 40.6 +1.2
30 | 36.6+1.1 | 39.24+1.6 | 39.4+0.7
50 | 39.2+1.3 | 42.4+1.5 | 38.9+04

USPS MNIST
Single task (G =T) 95+0.4 || 15.9+0.3
No groups-MTL (G=1) | 88+0.1 || 15.6+0.3
Random groups-MTL 8.8+0.1 || 154+£0.2
Similarity groups-MTL | 8.6+£0.2 || 15.4+0.3
Fitness groups-MTL 8.5+0.1 || 15.2+£0.2
Kernel groups-MTL 8.5+0.4 || 15.7+£0.2
Ours 84+0.3 | 152403

Table 3. Recognition accuracy (%) on the 20-class Animals

dataset.
Single task | No groups- | Fitness- Ours
(G=T) (G=1) MTL
26.14+02 | 275+£0.3 | 28.0+£0.5 | 28.4+04

by the fact that there is very small improvement of
G = 1 over G = T; that is, it seems that multi-task
learning is generally not helpful in this data.

On both digit datasets, we found that the two strate-
gies for creating the Similarity-based groups performed
similarly, and was indeed relatively close to random
grouping. This result lends further evidence that our
strategy to learn groups that enable discriminative fea-
ture sharing is effective.

4.3. Animal recognition

We next experiment with an image -classifica-
tion task wusing the Animals with Attributes
dataset (Lampert et al., 2009). We use the SIFT bag
of word descriptors kindly provided by the dataset
creators, which represent each image with a 2000-
dimensional histogram over prototype local feature
patches. We reduce the dimensionality to 202 us-
ing PCA, to retain 95% of the variance. We choose
the first 20 animal classes in the data set: antelope,
grizzly-bear, killer-whale, beaver, Dalmatian, Persian-
cat, horse, german- shepherd, blue-whale, Siamese-cat,
skunk, ox, tiger, hippopotamus, leopard, moose, spider-
monkey, humpback-whale, elephant, and gorilla. We
use 50, 20, and 30 examples per class for training, val-
idation, and testing, respectively. The tasks are to
recognize the different animal classes.

Table 3 shows the recognition accuracy for different
methods. There is a clear and significant improve-
ment of using multi-task learning (G = 1) over inde-
pendent learning (G = T). Our method’s improvement
over the standard multi-task learning approach with-

out grouping is also significant. The difference between
the mean accuracies is 0.9, significantly greater than
the sum of the two standard errors. We did not fully
test other approaches (Random groups-MTL and Sim-
ilarity groups-MTL) because of ineffectiveness in the
previous experiments (cf. Table 2) and the extra com-
putational cost. The method of Kernel groups-MTL
has an accuracy of 26.3 + 0.1, significantly lower than
other methods.

Finally, we investigate the proposed variant of our
method for incorporating new tasks into an existing
group structure we learned previously. To test whether
this can be beneficial, we select another 10 animal
classes in the dataset. We then use the algorithm de-
scribed in Section 3.3 to automatically decide whether
these 10 classes should be added to the existing group-
ing structure, form new groups, or both.

Table 4 displays the accuracy of the 10 added classes:
independent learning versus 2 transfer learning meth-
ods differentiated by how the new 10 tasks are
grouped. The result suggests that particularly when
there are few training examples, exploiting existing
structures for MTL may significantly improve the ac-
curacy. Furthermore, our approach achieves the most
significant gain when the number of training examples
for the new task is 10. However, this gain diminishes
when the number of training examples is increased. In
particular, the approach of Fitness-MTL achieves the
highest accuracy when N = 50, though the difference
from our approach is not significant, considering the
relatively large standard errors. (Kernel groups-MTL
does not perform as well as the other two methods and
are thus not reported here.)

5. Conclusion

In this paper, we study the problem of how to partition
multiple tasks into groups where within each group,
tasks are related and can jointly learn a shared feature
representation. Compared to the dominant paradigm
where all tasks are assumed to be related, our ap-
proach provides the means to deter negative transfer
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where learning unrelated and dissimilar tasks jointly
results in worsened performance. Empirical studies
validated our approach and showed that it is indeed
beneficial to simultaneously identifying task grouping
structures and task parameters. For future work, we
plan to study richer models that can organize tasks
in more complicated structures (such as hierarchical
trees) than clusters.
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