Learning Linear Functions with Quadratic and Linear Multiplicative
Updates

Tom Bylander

BYLANDERQCS.UTSA.EDU

Department of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249 USA

Abstract

We analyze variations of multiplicative up-
dates for learning linear functions online.
These can be described as substituting ex-
ponentiation in the Exponentiated Gradient
(EG) algorithm with quadratic and linear
functions. Both kinds of updates substitute
exponentiation with simpler operations and
reduce dependence on the parameter that
specifies the sum of the weights during learn-
ing. In particular, the linear multiplicative
update places no restrictions on the sum of
the weights, and, under a wide range of con-
ditions, achieves worst-case behavior close to
the EG algorithm. We perform our analysis
for square loss and absolute loss, and for re-
gression and classification. We also describe
some experiments showing that the perfor-
mance of our algorithms are comparable to
EG and the p-norm algorithm.

1. Introduction

We describe and analyze two online algorithms for
learning linear functions. Our algorithms replace the
update in the EG (Exponentiated Gradient) algorithm
(Kivinen & Warmuth, 1997). One improvement is
that exponentiation is replaced with simpler opera-
tions: addition and multiplication. A more important
improvement is reduced parameter tuning while main-
taining similar loss bounds. EG has a parameter that
specifies the sum of the weights. In our algorithms,
the sum of the weights are not restricted to a specific
value. In particular for our linear multiplicative up-
date, there is no restriction on the sum of the weights
(our quadratic version has an upper bound). How-
ever, our algorithms still have initialization and learn-

Appearing in Proceedings of the 28 International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

ing rate parameters (as does EG), which still require
tuning for our analytical results.

The issue of parameters is important because a search
is needed to find the best parameter values for apply-
ing a learning algorithm to a task (Salzberg; Bengio).
EG’s restriction on the sum of the weights also re-
stricts its hypothesis space, and so more search might
be needed to optimize its parameters compared to an
algorithm that covers a larger hypothesis space.

We analyze our algorithms both for square loss as well
as absolute loss, and transform the absolute loss re-
sults into mistake bounds for binary classification. We
also describe two experiments on synthetic data, one
with an “easy” distribution and another with a “hard”
distribution. In these experiments, the performance of
our algorithms was comparable to EG and the p-norm
algorithm (Grove et al., 2001; Gentile).

Considerable research has been performed on online
algorithms for learning linear functions. We will note
only the key papers that show the results that we build
upon. The beginning of this topic within the machine
learning community can perhaps be traced to (Lit-
tlestone), who developed the Winnow algorithm for
learning linear functions.

Our results can be viewed as extensions of the EG al-
gorithm (Kivinen & Warmuth, 1997) in the following
ways. EG is based on relative entropy distance mea-
sures; we use unnormalized relative entropy as defined
in that paper to analyze our results. Their approx-
imated EG update is very close one of our updates;
our linear multiplicative update substitutes z;; — ¥ in
their paper with x; ;. This update has also been stud-
ied by (Cesa-Bianchi et al., 2007), though only in the
expert setting.

The style of our absolute loss bounds will be similar to
(Bylander), which includes an additional constant loss
per trial. However, for classification problems, this loss
per trial will be eliminated using a technique similar
to the clipping function in (Auer et al., 2002).

Learning Linear Functions with Quadratic and Linear Multiplicative Updates

The p-norm algorithm (Grove et al., 2001; Gentile) is
also relevant to our results. This algorithm does not
have a sum of weights parameter and has loss bounds
that are comparable to EG. These loss bounds also
have the advantage over our results in that the learn-
ing rate and the initial weights do not need to be tuned
to properties of the optimal weight vector. The ad-
vantage of our algorithms is that only basic arithmetic
operations are required, while the p-norm algorithm
requires two exponentiations for updating each weight.

2. Preliminaries

A trial is an ordered pair (x,y), consisting of a real
vector x € R™ (an instance, each value is an input) and
a real number y € R (an outcome). A prediction y on
an instance x is made using a weight vector w € " by
computing the dot product § = w-x =" | w;z;. All
of our results require that the weights are positive and
do not include a bias weight; simple transformations
to the instances can easily address these restrictions.

The square loss of a prediction § on a trial (x,y)
is Lossa(y,7) = (y — ¥)?, and the absolute loss is
Lossi(y,9) = |y — Y|l The square (absolute) loss of
a weight vector on a sequence S of T trials, § =
((x1,91),-.., (X1,yr)), sums the square (absolute)
loss over the trials. We use Loss(w, S) to denote the
loss of weight vector on a trial sequence.

An online algorithm on a trial sequence begins with a
weight vector wi, and then, for each trial ¢, makes a
prediction w;-x; on the instance, receives the outcome
yt, and updates its weight vector to wy; ;. The square
(absolute) loss of the online algorithm on S sums the
square (absolute) loss of the predictions. The param-
eters for the algorithms we are studying include the
learning rate n and might include a constraint on the
sum of weights W. That is, the sum of the updated
weights might be normalized to equal W.

For an online algorithm A and a trial sequence S, we
compare the loss of A to a comparison class, which
we typically define as all nonnegative weight vectors
u with a sum of weights equal to (or less than or
equal to) a constant U. Our bounds are of the form
Loss(A4,S) < (1 + ¢)Loss(u, S) + a for all weight vec-
tors u from the comparison class, where a > 0 and
¢ > 0 are expressions based on A, S, U, and the type
of loss. The relationship between U and W depends
on the algorithm; in particular, our algorithms do not
require U = W.

The bounds are based on demonstrating single-
trial loss bounds, showing for each trial S, that
Loss(w¢, S;) < (1 4 ¢)Loss(u, S;) + a¢, and summing

Algorithm 1 QMU

Input: Learning rate n > 0,
initial weight vector wi € R},
maximum sum of weights W
fort=1,...,T do
Get instance x; € R"
Predict g, = wy - x4
Get label y, € R.
Lossa (yt, ;)
Loss1(yt, U;)
Update weights:
Y — Uy
sign(y: — ;)
Zti = 775t96t,i

QMU,
Incur loss QMU,
QMU,
QMU,

5 =

42
/ _ 1 t,0
Wiyr; = Wi | 1+ 25+ 3

Wuwh. ;.
t+1,i . n ’
S W] EW < wiyy,
Wi41,4 = i=1 "t+1,
, .
Wiy, otherwise
end for

up the additional loss a; over all the trials. When wy
has a larger loss than u, the updated wy; should be
closer to the optimal u. Our analysis is based on show-
ing how d(u, w;) —d(u, w;11) is related to the a; term,
where d is the unnormalized relative entropy distance
measure:

n u;
d = i — Ui iln —

(u,w) ;<w u; +u nwi)

For the case that u; = 0, we define 0ln0 = 0. The
case that w; = 0 cannot happen with the algorithms.

3. Quadratic Multiplicative Update

The Quadratic Multiplicative Update (QMU) algo-
rithm (Algorithm 1) inputs a learning rate 7, an ini-
tial weight vector wi, and a parameter W bounding
the maximum sum of weights. The W parameter is
not strictly needed. QMU could be run without any
normalization; then the W in the analysis would cor-
respond to the maximum sum of weights of the algo-
rithm’s weight vectors.

QMU differs from the EG algorithm (Kivinen & War-
muth, 1997) in two respects. One is that EG computes
wy g ; by Wiy ; = weiexp{z:;}. The other is that EG
always normalizes the weights, while QMU performs
normalization only if the sum of weights exceeds W.

Let QMU, and QMU; respectively denote the square
loss and absolute loss versions of the QMU algorithm.
We have demonstrated the following results.

Learning Linear Functions with Quadratic and Linear Multiplicative Updates

Theorem 1 Let S be a sequence of T' trials, where all
instances x; € [—X, X|", i.e., X bounds the absolute
value of any input. Let w1 = (Wi/n,...,Wi/n), 0 <
Wi <U<SW,V=U+2W)/3, andn > 3. Ifn =
c/((1+ c)VX?2) with ¢ > 0, then, for any nonnegative
weight vector u whose sum of weights is less than or
equal to U, the following bound holds:

Lossa (QMU,(n, wy, W), S) <
2(1 X2
(1 + ¢)Lossa(u, S) + 2 +UVX" U

For any n > 0 and for any nonnegative weight vector
u whose sum of weights is less than or equal to U, the
following bound holds:

Loss; (QMU, (1, wi, W), S) <

P y2
Lossi (u, S) + %IH%UI + %

If we think of U as fixed in advance, we can choose
U =W, =W =V, which makes these loss bounds
identical to EG, both for square loss (Kivinen & War-
muth, 1997) and absolute loss (Bylander). If U is
treated more realistically as an unknown (for exam-
ple, think of U as the sum of the unknown optimal
weights), there are a number of considerations.

If the conditions W7 < U and n > 3 do not hold, then
Uln(nU/W7) should be replaced with max(W, W +
Uln(nU/(eW1))) (this comes from Lemma 4).

W and 7 are parameters of QMU, and X is a con-
stant, so the value of ¢ in the bound for QMU, can
be treated as a function of U. Suppose, for example,
that U is between 0 and W, and n = 1/(2W X?). This
gives a value of ¢ between 1 (at U = W) and 1/2 (at
U = 0), much better for smaller values of U. The
distance measure will primarily vary in the U In(nU)
term. Thus, we can expect faster and better conver-
gence for smaller values of U.

Finally, we should explain the magic number 1/3 in
the update (used in the computation of wj,, ;). The
1/3 factor in the update can be traced to Lemma 7 and
can be replaced by any number greater than 1/4 and
less than 1/3. The choice of 1/3 represents a tradeoff
between dependence on W versus U, indicated by V =
(U+2W)/3 in the theorem. Specifically, replacing 1/3
with a would lead to V = 2a2U/(8a — 2) + 2aW.

The update has some unusual characteristics when
né¢xy ; is negative. Using z in place of nd;z; ;, we note
that 1+ 2+ 22/3 has a minimum at z = —1.5 and be-
comes greater than 1 when z < —3. In this case, the
weight can increase even though that would increase

Algorithm 2 LMU
Input: Learning rate n > 0,
initial weight vector wi € 7}
fort=1,...,7T do
Get instance x; € R™
Predict y, = wy - x;
Get label y; € R.

Incur loss Lossa (yt, y\t)
Loss1 (yt, Uy)

Update weights:
Yt — ?/J\t
sign(yr — Yy)
Zti = 77515%,1'
Wi, = Wi (14 214)
end for

LMU,
LMU,

LMU,
LMU;

error on the instance. This indicates that the analysis
has a lot of “slack” for larger magnitudes.

4. Linear Multiplicative Update

The Linear Multiplicative Update (LMU) algorithm
(Algorithm 2) inputs a learning rate n and an initial
weight vector w;. LMU replaces the exponential func-
tion in the EG update step with a linear function and
does not require any normalization, so the W param-
eter is eliminated. However, the algorithm requires
zt; > —1, which is potentially a problem with the
square loss version of LMU.

Let LMU,; and LMU; respectively denote the square
loss and absolute loss versions of the LMU algorithm.
We have demonstrated the following results.

Theorem 2 Let S be a sequence of T trials, where all
instances x; € [—X, X|", i.e., X bounds the absolute
value of any input. Let wi = (Wi/n,...,Wi/n), 0 <
W, <U<SW, andn > 3.

If 2o > =1/7 for 1 <t < T and1 < i < n, and
if 1 = 9¢/(10(1 + ¢)UX?) with ¢ > 0, then, for any
nonnegative weight vector u whose sum of weights is
less than or equal to U, the following bounds hold:

Lossa(LMUsz(n, Wh), S) <
40X o
9c wh

(14 ¢)Lossz(u, S) +
If z4; > =17 for 1 <t < T and 1 < i < n, then,
for any n > 0 and for any nonnegative weight vector
u whose sum of weights is less than or equal to U, the
following bound holds:

Loss; (LMU; (n, W1), S) <
2
Lossi(u, S) + %ln —;VU; + %

Learning Linear Functions with Quadratic and Linear Multiplicative Updates

The extra losses for the LMU algorithm are similar to
the QMU algorithm (and so also to EG), with slightly
higher constants (20/9 and 5/9 instead of 2 and 1/2,
respectively). The condition z;; > —1/7, which comes
from Lemma 8, is tightly related to these constants.
For example, if a stronger condition z;; > —1/15
were true, that would lead to the constants 44/21
and 11/21, respectively. The more general condition
2t > —1 does not lead to useful constants.

Because these bounds require z,; > —1/7, this places
an implicit constraint on U. If LMU,y’s weight vector
becomes large, it is more likely that 3 become large,
which could lead to n(y —§)z.; < —1/7. With LMU;,
this is not a serious issue because ensuring 7sign(y —
Y)xy; > —1/7 can be achieved by satisfying n < X/7.

The 1 parameter is also implicitly constrained by U.
For example, suppose we set 1 with some value for
W in mind, though W is not a parameter of LMU.
Let n = 1/(2WX?) for LMU,, and consider different
values for U. From U =0 to U = W, ¢ ranges from 0
to 5/4. As U approaches 9W/5, ¢ approaches infinity.
Thus, although W is not a parameter of LMU, the
choice for 7 needs to take W into account.

5. Classification

To apply our analysis to binary classification problems,
we make the following revisions. First, we allow the
outcome to be a real interval rather than a real num-
ber. The loss functions are adjusted so that if the
prediction is in the interval, the loss is zero. If the
prediction is less/greater than the interval, the loss is
calculated using the minimum/maximum of the inter-
val. The previous theorems hold for real intervals and
the modified loss calculations.

Second, for binary classification trials, we use the in-
tervals [1, 00) for (—oo, —1] (labels y = 1 and y = —1)
for positive and negative instances, respectively. With
these intervals, the absolute loss is equivalent to the
hinge loss max(0,1 — yg), which has a convenient cor-
respondence to 0-1 loss. With deterministic predic-
tion (positive if ¥ > 0, else negative), the hinge loss is
an upper bound on the number of mistakes, i.e., the
hinge loss must be at least 1 if the predicted class dif-
fers from the outcome. With probabilistic prediction
(if is between —1 and 1, positive is predicted with
probability (7 —1)/2), the hinge loss divided by two is
an upper bound on the expected number of mistakes.

The following theorem describes the performance of
LMU; on classification problems. Similar theorems
could be provided for EG and QMU,, but LMU; has
the advantage of not requiring any U or W parameters.

Theorem 3 Let S be a sequence of T trials, where all
instances x; € [—X, X|", i.e., X bounds the absolute
value of any input, and where all outcome intervals are
either [1,00) or (—oo,—1]. Let Wiy < U and n > 3.
If 2o > =1/7 for 1 <t < T and1 < i < n, and
if 1 = 9¢/(5(1 + c)UX?), then, for any nonnegative
weight vector u whose sum of weights is less than or
equal to U, the following bounds hold:

Loss; (LMUq(n,1),8) <

5(14¢)2U%2X? n(l1+c)U
(14 ¢)Lossi(u, S) + (9)0 In (Wl)

The restriction on the outcome intervals allows to us
to remove the extra loss per trial, but at the expense of
a larger constant times the loss for u and the distance
measure. The extra loss is O(L + U2?X?21nn) provided
n is a fraction of 9/(5UX?) and 1/7 is ©(UX?).

While the LMU algorithm does not require U or W as
a parameter, the n parameter is implicitly constrained
by U. For example, if n = 1/100 and X = 1, then
the theorem does not provide any useful bounds when
U > 900/5, though, on the positive side, the theorem
applies to a wide range of values for U.

6. Experiments

We tested QMU and LMU along with the EG and p-
norm algorithm on two types of artificially generated
sequences of classification trials. Each sequence con-
sisted of 100,000 trials, where each instance consisted
of 1000 inputs (called attributes from this point on),
where each attribute was either +1 or —1. No bias
weights were employed in our experiments.

The target hypotheses were of the type [k/2] out of k
relevant attributes, where k was an odd integer varying
from 1 to 19 over the trial sequences. A relevant at-
tribute might have a negative or positive weight. For
each trial, [k/2] relevant attributes were selected to
match the noise-free outcome; this ensures that the
(near) optimal weight is either +1 or —1 for a rele-
vant attribute and 0 for an irrelevant attribute. We
also varied the noise from 0 to 0.4 (40% noise) in steps
of 0.1 (10%) over the trial sequences; note that the
hinge loss of the target hypothesis will be either 0 for
a noise-free trial or 2 for a noisy trial.

For each number of relevant attributes and noise level,
10 trial sequences were generated, resulting in a total
of 500 trial sequences (for each experiment below).

For all algorithms, we used a learning rate of 0.01. We
used 1000 weights for the p-norm algorithm, and 2000
weights for the other algorithms because they need an
additional 1000 weights to encode negative weights.

Learning Linear Functions with Quadratic and Linear Multiplicative Updates

5000

4000

3000

Extra Loss

2000

1000

Figure 1. Average Extra Loss for Random Irrelevant At-
tributes

For EG, the sum of weights was set to 20. For QMU,
the maximum sum of weights was set to 20. LMU and
p-norm do not limit the sum of weights. The initial
weights were set to 0 for the p-norm algorithm and
20/2000 for EG. For QMU and LMU, we used two dif-
ferent initial weights: 1/2000 (the initial sum is 1) and
20/2000 (an initial sum of 20); the combinations are
referred to by QMU1, QMU20, LMU1, and LMU20.

6.1. Random Irrelevant Attributes

Figure 1 displays the overall results when the values of
the irrelevant attributes are generated randomly. Each
bar shows, over the trial sequences, the average extra
loss of an algorithm compared to the target hypothesis.
The three groups are the hinge loss divided by 2, the
probabilistic 0-1 loss, and the deterministic 0-1 loss.

All differences between algorithms in Figure 1 are sta-
tistically significant (p < 0.05) except for p-norm vs.
EG and EG vs. QMU1 for hinge loss, and EG vs.
LMU20 and QMU vs. LMU20 for deterministic 0-1
loss. Note that a difference of 1000 corresponds to 1%
error for the 0-1 losses.

LMU1 and QMU1 had higher losses than p-norm and
EG with LMU1 worse than QMU1. However, LMU20
and QMU20 had lower hinge and probabilistic 0-1
losses than p-norm and EG, while the deterministic
0-1 losses were close. This indicates that experimental
fine-tuning of LMU and QMU is necessary, but can
have significant benefits. Note that EG with a sum
of weights equal to 1 would be unable to converge to
most of the target hypotheses. p-norm’s performance
is good, but required over 10 times as much processing
time as LMU and QMU.

14000

12000

10000

8000

6000

Extra Loss

4000

2000

0

Figure 2. Average Extra Loss on More Difficult Trial Se-
quences

6.2. Less Random Irrelevant Attributes

We generate trial sequences just as before, except that,
for each trial, one selected irrelevant attribute is set to
agree with the outcome (after any noise is applied).
Each irrelevant attribute is selected in turn for 100
trials. That is, a selected attribute will agree 100%
with the outcome for 100 trials, then it will return
to being randomly generated while the next irrelevant
attribute is selected for 100 trials.

The overall results are shown in Figure 2, which dis-
plays the average extra loss of each algorithm, the dif-
ference between the algorithm’s loss and the target hy-
pothesis’s loss. All differences between algorithms are
statistically significant (p < 0.05) except for QMU20
vs. LMU1 for hinge loss and for p-norm vs. EG for
probabilistic 0-1 loss. Note that the extra loss for all
algorithms were two to three times higher for this type
of trial sequence even though we are only changing, on
average, one irrelevant attribute per two trials.

LMU and QMU had slightly lower hinge loss than p-
norm and EG, but LMU1 had higher probabilistic 0-1
loss, and all LMU and QMU variations had higher de-
terministic 0-1 loss, with LMU1 and QMU1 perform-
ing much worse. We have no explanation for this be-
havior yet; absolute loss results do not bound deter-
ministic 0-1 loss very well.

7. Conclusion

We have presented two new linear learning algorithms,
QMU and LMU. With both theoretical and empirical
results, we have shown that the new algorithms have
comparable performance and some advantages com-
pared to EG and p-norm. EG requires a parameter

Learning Linear Functions with Quadratic and Linear Multiplicative Updates

that specifies the sum of the weights, while QMU only
requires an upper bound on the weights, and LMU
eliminates this parameter.

While the EG and p-norm algorithms performed sig-
nificantly better empirically in some cases with respect
to 0-1 loss, QMU and LMU are significantly faster. In
our experiments, EG used over twice as much time
compared to either QMU or LMU, while p-norm used
over 10 times as much processing time. In future work,
we would like to more clearly describe the relationship
between these learning algorithms, both theoretically
and empirically.

A. Appendix: Proofs

We use unnormalized relative entropy (Kivinen &
Warmuth, 1997) to measure the distance between two
nonnegative weight vectors:

d(u,w) = Z (wi —u; +u;ln uz)

° W;
i=1
By definition, 01ln 0 = 0.

A.1. Lemmas

Lemma 4 is used to bound the distance from the ini-
tial weight vector to any weight vector whose sum of
weights is less than or equal to U.

Lemma 4 Let u and w be nonnegative weight vectors
of length n. Let w; = Wi/n for 1 <i<n. IfU >
S u; and Wy > 0, then:

nU
d < Wi, Wiy +UIln ——
(u,w) < max(Wy,W; +Uln er)

If, in addition, U > W7 and n > 3, then

U
d(u,w) < Ulmnw1

Proof: Let Wi > 0, w; = Wi/n for 1 < i < n and
U =3" u; <U. It follows that:

d(ll,W) = Z (U}z — U +'LL21HZ)Z>

i—1 i

_ PN, T
—Wl—U—i—;uZanl

n nU’
< Wl—U'+;uian1

nU’
Wy

=W, -U' +U'In

This expression has a positive second derivative with
respect to U’. Because U’ € [0,U], the maximum of
the expression must be either at U’ = 0, which re-
sults in Wy, or at U’ = U, which results in W; +
Uln(nU/eW7). This proves the first inequality.

If also U > Wy and n > 3, then because U/W; > 1
and Inn > 1, it follows that Uln(nU/W;) > Ulnn >
U > Wi. Also, Uln(nU/W1) > W1 +U In(nU/eW) =
W1 — U + Uln(nU/Wh) follows from Wy < U. This
proves the second inequality. [|

If w has a sum of weights that is greater than u, then
Lemma 5 shows that decreasing w’s weights decreases
the distance to u.

Lemma 5 Let u and w be nonnegative weight vectors
of length n. Let w; > 0 for 1 < i < n. LetU =
Soru;and W= Y10 jw;. IfW > U and a is a
positive value such that U < aW < W, then d(u,w) >
d(u,aw).

Proof: Under the conditions of the lemma, consider:
n

d(u,aw) = Z (awi —u; +u;ln Yi)

aw;
i=1 v

The derivative of this expression with respect to a is
S (w; —u;/a) = W — U/a, which is positive if a >
U/W. Hence, this expression decreases as a decreases
from 1 to U/W, proving the lemma.]

Lemma 6 bounds the change in the distance measure
when a weight vector is updated.

Lemma 6 Letu and w be nonnegative weight vectors
of lengthn. Let w; > 0 for1 <i <n. Letx be a weight
vector of length n. Let n > 0. Let f(z) and g(x) be
functions such that 1+ f(z) > e9®). Let w' satisfy
w;ed® < w! < wi(l + f(x;)). Then the following
inequality holds:

d(u,w) —d(u,w') > Zuig(fﬂi) - Zwif(xi)

Proof: Using the assumptions in the lemma, then
d(u,w) — d(u,w’)

= U; = U
- P — U iln—) — —yp iln —
g (w u; +u nw) g (wl u; +u nw{>

i=1 v i=1 g

n n w/

= g (wz—w;)—kg u;ln —

- X w;
=1 =1

Learning Linear Functions with Quadratic and Linear Multiplicative Updates

n w;ed(®)
Z w; —w;i (14 f(x —&—;uzln "

z:l
= Z + Zulg acl |
i=1

Lemmas 7 and 8 provide lower bounds for quadratic
and linear functions in terms of an exponential func-
tion. These lemmas ensure that the inequality 1 +
f(z) > e9*) in Lemma 6 is satisfied.

Lemma 7 For alla > 1/4 and z € R:

1+z+a22>exp{z a’z? }
- 8a — 2
In particular:
1+Z+2226Xp{2’22}
3 6

Proof: The inequality is equivalent to:

2.2
a‘z
>0
8a — 2) -
Assuming a > 1/4, f(a, z) and its first derivative with
respect to z are zero when z = 0. The second deriva-

tive with respect to z is nonnegative, which proves
f(a,z) > 0 and the first inequality of the lemma. The

fla,z) =In(1 + z + az?) — (z -

second inequality substitutes 1/3 for a.]
. 6a — 3
Lemma 8 For alla > 1/2, if z > 61’ then:
a0 —

1+ 2> exp{z — az?}

In particular, for a =5/9, if z > —1/7, then:
2
1+ 2> exp{z— %}

Proof Sketch: The inequality is equivalent to:

f(a,z) =

f(a,z) and its first derivative with respect to z are
zero when z = 0. The second derivative with respect
to z is positive for z > 0 and a > 1/2, so f(a,z) >0
when z > 0.

In(1+2) — (2 —az?) >0

Assuming a > 1/2, we can show that f(a, z) > 0in the
interval z € [—(6a — 3)/(6a — 1),0] by demonstrating
both of the following:

— (2 —2%/2+2%6a—1)/6) >0

fila,z) =1n(1 + 2)

=(z2—2%/2+2%6a—1)/6) — (z —az?) >0

f2 (av Z)
and noting that f(a,z) = fi(a, 2) + f2(a, 2). [|
A.2. Proof of Theorem 1: QMU Bounds
The QMUs algorithm has the single trial loss bound:
(1 + ¢)Lossz(u, S) +

20OV

using) = ¢/((1 + ¢)V X?). This is based as follows.
This

Lossa(wy, St) <

d(u, wii1)

Let z, = n(y, — wy - x¢), and let z,; = 22,
implies wy 1 ; = we (1 + 2¢ + z?l/3) Then:

d(u, wy) —d(u, wyyq) > d(u, wy) — d(u, wi)

" z 22,
ZZuz‘ (Zt,i_ “) Zwtz<2’m ;Z>
2X2 2X2
> Zuz <Zt @i~ > - Zwt,i <Zt$t,i + Ztg)

>z(u-x—w-x)—

The first inequality follows from Lemma 5. The second
inequality follows from Lemmas 6 and 7. The third
inequality follows from |z; ;| < X. The last inequality
follows from Y0 ju; < U, Y0 jw; < W, and V =
(2W 4+ U)/3.

Now to finish showing the single trial loss bound, we
need to find a and ¢ such that
1)Lossa(u, St)

aLossa(wy, St) — a(c +

=a(y —wi-x¢)* —alc+ 1) (ye —u-x)?
22V X2
<zu-x—w-x)— 5

Using standard techniques (Kivinen & Warmuth,
1997), it can be shown that a = n/2 and n = ¢/((1 +
c)V X?) satisfy the inequality.

Adding up all the single trial losses and applying
Lemma 4 implies the QMU, bound of the theorem.

For QMU , if we use instead z; = nsign(y; — wy - Xy),
we can borrow part of the previous derivation to show:

d(u,wy) —d(u,wi) > ze(u-x; — wy - x;) — 22 X2V/2

Now to show a single trial loss bound, we find a and ¢
such that

aLossy (wy, Sy) —
= aly;

a(c+ 1)Loss; (u, St)

—wy x| —alc+ 1)|ys — u - xy

2X2V
2

<z(u-xp —wy - xy) — 22 X2 V/2+

Learning Linear Functions with Quadratic and Linear Multiplicative Updates

where the last fraction is the extra loss per trial in-
cluded in the bound. Using standard techniques, it
can be shown that a = n and ¢ = 0 satisfy the inequal-
ity for any positive value for 1. The QMU; bound of
the theorem follows from Lemma 4 and adding up all
the single trial losses.]

A.3. Proof Sketch Theorem 2: LMU Bounds
The LMU, algorithm has the single trial loss bound:

Lossa(wy, St) < (14 ¢)Lossa(u, S) +
20(1 +) UX?

9¢ (d(u,wt) — d(ll, Wt+1)

using 7 = 9¢/(10(1 + ¢)U X?). This is based on Lem-
mas 6 and 8. Adding up all the single trial losses and
applying Lemma 4 implies the LMU; bound of the
theorem.

The LMU; algorithm has the single trial loss bound:

Lossy (W, St) <
d(u,w;) —d(u,w 5nV X2
i (¢) —d(t+1) Lo

L S
oss1 (u, Sy) ; 9

Again, this is based on Lemmas 6 and 8. Adding up all
the single trial losses and applying Lemma 4 implies
the LMU; bound of the theorem. [|

A.4. Proof of LMU; Classification Bound

For convenience, we use the labels y = 1 and y = —1,
respectively, for positive and negative instances.

For the LMU; algorithm for classification, we obtain
the single trial loss bound:

Lossy (wy, S¢) < (1 4+ ¢)Lossi(u, Sy) +
5(1+) UX?

% d((1+c)u,we) —d((1 + c)u, wepq)

This is based on the the following.

The interesting case is when ¢ < 1 for y; = 1 or when
y > —1 for y, = —1. In this case, w¢’s loss is equal to
1 — yy, and u’s loss is equal to max(0,1 — y,u - x4).

Let 2z = nsign(y, — wy - x¢) = nye and 2, = 2424
This implies w41, = wy (1 + 2¢,). Instead of u, we
compare (14 c¢)u to the weight vectors. This is equiv-
alent to the clipping function in (Auer et al., 2002).

d((1 4 cJu, wy) — d((1 + c)u, wyi1)
- 522, -
> izl(l + c)u; (Zt,i - 9t> - ;wt,izt,i
5(1+ ¢)z2UX?

>z((l+cu-x—w-x)— 5

The first inequality follows from Lemmas 6 and 8.
The second inequality follows from |z;] < X and
Yimuwi <U.

Now to show the single trial loss bound for LMUjy, we
find a and ¢ such that

aLossy (wy, S¢) — a(c+ 1)Lossy (u, St)

=a(l —ywt - x¢) —alc+ 1) max(0,1 — ypu - x¢)

<a(l —ywy-x) —ale+1)(1 —yu-xy)

=ay (1 +c)u-x¢ — wy - X¢) — ac

5(1+)n’y; UX?
9

<ny((L+cju-x—w-x)—

Setting a = n and ¢ = 5(1 + ¢)pUX?/9 implies n =
9¢/(5(1 + c)UX?).

The bound of the theorem follows from Lemma 4 using
(14 ¢)u instead of u and adding up all the single trial
losses.]

References

Auer, P.; Cesa-Bianchi, N.,; and Gentile, C. Adap-
tive and self-confident on-line algorithms. Journal
of Computer and System Sciences, 64:48-75, 2002.

Bengio, Y. Gradient-based optimization of hyper-
parameters. Neural Computation, 12:1889-1900,
2000.

Bylander, T. Worst-case analysis of the perceptron
and exponentiated update algorithms. Artificial In-
telligence, 106:335-352, 1998.

Cesa-Bianchi, N., Mansour, Y., and Stoltz, G. Im-
proved second order bounds for prediction with ex-
pert advice. Machine Learning, 66:321-352, 2007.

Gentile, C. The robustness of the p-norm algorithms.
Machine Learning, 53:265—-299, 2003.

Grove, A. J., Littlestone, N., and Schuurmans, D.
General convergence results for linear discriminant
updates. Machine Learning, 43:173-210, 2001.

Kivinen, J. and Warmuth, M. K. Exponentiated gra-
dient versus gradient descent for linear predictors.
Information and Computation, 132:1-63, 1997.

Littlestone, N. Learning quickly when irrelevant at-
tributes abound: A new linear-threshold algorithm.
Machine Learning, 2:285-318, 1988.

Salzberg, S. L. On comparing classifiers: Pitfalls to
avoid and a recommended approach. Data Mining
and Knowledge Discovery, 1:317-328, 1997.

