
Suboptimal Solution Path Algorithm for Support Vector Machine

Masayuki Karasuyama krsym@goat.ics.nitech.ac.jp

Ichiro Takeuchi takeuchi.ichiro@nitech.ac.jp

Nagoya Institute of Technology, Gokiso-cho, Syowa-ku, Nagoya, Aichi, 466-8555, JAPAN

Abstract

We consider a suboptimal solution path al-
gorithm for the Support Vector Machine.
The solution path algorithm is an effective
tool for solving a sequence of a parametrized
optimization problems in machine learning.
The path of the solutions provided by this
algorithm are very accurate and they sat-
isfy the optimality conditions more strictly
than other SVM optimization algorithms. In
many machine learning application, however,
this strict optimality is often unnecessary,
and it adversely affects the computational
efficiency. Our algorithm can generate the
path of suboptimal solutions within an arbi-
trary user-specified tolerance level. It allows
us to control the trade-off between the accu-
racy of the solution and the computational
cost. Moreover, We also show that our sub-
optimal solutions can be interpreted as the
solution of a perturbed optimization problem
from the original one. We provide some the-
oretical analyses of our algorithm based on
this novel interpretation. The experimental
results also demonstrate the effectiveness of
our algorithm.

1. Introduction

Recently, the solution path algorithm (Efron et al.,
2004; Hastie et al., 2004) has been widely recognized
as one of the effective tools in machine learning. It
can efficiently compute a sequence of the solutions of
a parametrized optimization problem. This technique
is originally developed as parametric programming in
the optimization community (Best, 1982).

In a class of parametric quadratic programs (QPs), the

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

solution path is represented as a piecewise-linear func-
tion of the problem parameters. If we regard the reg-
ularization parameter of the Support Vector Machine
(SVM) as problem parameter, the optimization prob-
lem for the SVM is categorized in this class. Therefore,
the SVM solutions are represented as piecewise-linear
functions of the regularization parameter.

The solutions of these parametric QPs are character-
ized by active constraint set in the current solution.
The linearity of the path comes from the fact that the
Karush-Khun-Tucker (KKT) optimality conditions of
these problems are represented as a linear system de-
fined by the current active set, while the “piecewise-
ness” is the consequence of the changes in the active
set. The piecewise-linear solution path algorithm re-
peatedly updates the linear system and active set. The
point of active set change is called breakpoint in the lit-
erature. The path of solutions generated by this algo-
rithm is very accurate and they satisfy the optimality
conditions more strictly than other algorithms.

Many machine learning problems, however, do not re-
quire strict optimality of the solution. In fact, one of
the popular SVM optimization algorithm, called se-
quential minimal optimization (SMO) (Platt, 1999),
is known to produce suboptimal (approximated) so-
lution, where the tolerance to the optimality (degree
of approximated) can be specified by users. In many
experimental studies, it has been demonstrated that
the generalization performances of these suboptimal
solutions are not significantly different from those of
strictly optimal ones.

Therefore, the strict optimality of the solution path
algorithm is often unnecessary. Furthermore, it ad-
versely affects the computational efficiency of the al-
gorithm. In fact, the solution path algorithm can be
very slow when it encounters a large number of (seem-
ingly redundant) breakpoints. Although some empir-
ical studies suggest that the number of breakpoints
grows linearly in the input size, in the worst case, it
can grow exponentially (Gärtner et al., 2009). An-
other difficulty is in starting the solution path algo-

Suboptimal Solution Path Algorithm for Support Vector Machine

rithm from an approximated solution, for example ob-
tained by SMO, because it does not satisfy the strict
optimality requirement.

In order to address these issues in the current solu-
tion path algorithm, we introduce a suboptimal so-
lution path algorithm. Our algorithm also generates
piecewise-linear solution path, but the optimality tol-
erance (approximation level) can be arbitrary con-
trolled by users. It allows to control the trade-off be-
tween the accuracy of the solution and the computa-
tional cost.

The presented suboptimal solution path algorithm has
the following properties.

• First, the algorithm can reduce the number of
breakpoints (which is the main computational
bottleneck in solution path algorithm) by allow-
ing multiple active set changes at one breakpoint.
Although this modification causes what is called
degeneracy problem, we provide an efficient and
accurate way to solve this issue. We empirically
show that reducing the number of breakpoints can
work effectively to the computational efficiency.

• Second, the suboptimal solutions obtained by the
algorithm can be interpreted as the solution of a
perturbed optimization problem from the original
one. This novel interpretation provides several in-
sights into the properties of our suboptimal solu-
tions. We present some theoretical analyses of our
suboptimal solutions using this interpretation.

We also empirically investigate several practical prop-
erties of our approach. Although, our algorithm up-
dates multiple active constraints at one breakpoint, we
observe that the entire changing patterns of the active
sets are very similar to those of the exact path. More-
over, despite its computational efficiency, the general-
ization performance of our suboptimal path is compa-
rable to conventional one.

To the best of our knowledge, there are no previous
works for suboptimal solution path algorithm with
controllable optimality tolerance that can be applica-
ble to standard SVM formulation 1. Although many
authors mimic the solution path by just repeating the
warm-start on finely grid points (e.g., Friedman et al.,
2007), this approach does not provide any guarantee
about the intermediate solutions between grid points.
In this paper we focus our attention to the solution
path algorithm for standard SVM, but the presented
approach can be applied to other problems in the
aforementioned QP class.

1 Giesen et al. (2010) proposed approximated path al-
gorithm with some optimality guarantee that can be ap-
plicable to L2-SVM without bias term.

2. Solution Path for Support Vector

Machine

In this section, we describe the solution path algorithm
for regularization parameters of Support Vector Ma-
chine (SVM).

2.1. Support Vector Machine

Suppose we have a set of training data {(xi, yi)}
n
i=1,

where xi ∈ X ⊆ R
p is the input and yi ∈ {−1,+1} is

the output class label. SVM learns a linear discrimi-
nant function f(x) = w⊤Φ(x) + α0 in a feature space
F , where Φ : X → F is a map from the input space X
to the feature space F , w ∈ F is a coefficient vector
and α0 ∈ R is a bias term.

In this paper, we consider the optimization problem of
the following form:

min
w,α0,{ξi}n

i=1

1
2‖w‖22 +

∑n
i=1 Ciξi, (1)

s.t. yif(xi) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n,

where {Ci}
n
i=1 denotes regularization parameters.

This formulation reduces to the standard formulation
of the SVM when all Ci’s are the same. Our discussion
in this paper holds for arbitrary choice of Ci’s.

We formulate the dual problem of (1) as:

maxα − 1
2α

⊤Qα+ 1⊤α

s.t. y⊤α = 0, 0 ≤ α ≤ c,
(2)

where α = [α1, . . . , αn]
⊤, c = [C1, . . . , Cn]

⊤ and (i, j)
element of Q ∈ R

n×n is Qij = yiyjΦ(xi)
⊤Φ(xj).

Note that, we use inequalities between vectors as the
element-wise inequality (i.e., α ≤ c ⇔ αi ≤ Ci for
i = 1, . . . , n). Using kernel function K(xi,xj) =
Φ(xi)

⊤Φ(xj), discriminant function f is represented
as: f(x) =

∑n
i=1 αiyiK(x,xi) + α0.

In what follows, the subscript by an index set such as
vI for a vector v = [v1, · · · , vn]

⊤ indicates a sub-vector
of v whose elements are indexed by I = {i1, . . . , i|I|}.
Similarly, the subscript by two index sets such as
MI1,I2

for a matrix M ∈ R
n×n denotes a sub-matrix

whose rows and columns are indexed by I1 and I2,
respectively. The principal sub-matrix such as MI,I

is abbreviated as MI .

2.2. Solution Path Algorithm for SVM

In this paper, we consider the solution path with re-
spect to the regularization parameter vector c. To
follow the path, we parametrized c in the following
form:

c(θ) = c(0) + θd,

Suboptimal Solution Path Algorithm for Support Vector Machine

where c(0) = [C
(0)
1 , . . . , C

(0)
n]⊤ is some initial param-

eter, d = [d1, . . . , dn]
⊤ is a direction of the path and

θ ≥ 0. We trace the change of the optimal solution of
the SVM when θ increases from 0.

Let {α
(θ)
i }ni=0 be the optimal parameters and {f

(θ)
i }ni=1

be the outputs f(xi) at θ. The KKT optimality con-
ditions are summarized as:

yif
(θ)
i ≥ 1, if α

(θ)
i = 0, (3a)

yif
(θ)
i = 1, if 0 < α

(θ)
i < C

(θ)
i , (3b)

yif
(θ)
i ≤ 1, if α

(θ)
i = C

(θ)
i , (3c)

y⊤α = 0. (3d)

We separate data points into three index sets
M,O, I ⊆ {1, . . . , n} in such a way that these sets
satisfy

i ∈ O ⇒ yif
(θ)
i ≥ 1, α

(θ)
i = 0, (4a)

i ∈ M ⇒ yif
(θ)
i = 1, α

(θ)
i ∈ [0, Ci], (4b)

i ∈ I ⇒ yif
(θ)
i ≤ 1, α

(θ)
i = Ci, (4c)

and we denote these partitions altogether as π :=
(O,M, I). If every data point belongs to one of the
three index sets and equality (3d) holds, the KKT con-
ditions (3) are satisfied. As long as these index sets are
unchanged, we have analytical expression of the opti-

mal solution in the form of α
(θ+∆θ)
i = α

(θ)
i + ∆θβi,

i = 0, . . . , n, where ∆θ is the change of θ and {βi}
n
i=0

are constants derived from sensitivity analysis theory:

Theorem 1. Let π = (O,M, I) be the partition
at the optimal solution at θ and assume that M =[

0 y⊤
M

yM QM

]
is non-singular2. Then, as long as π is

unchanged, {βi}
n
i=0 is given by

[
β0

βM

]
=−M−1

[
y⊤
I

QM,I

]
dI , βO = 0, βI = dI . (5)

The proof is in the longer version of this paper (Kara-
suyama & Takeuchi, 2011). This theorem can be
viewed as one of the specific forms of the sensitivity
theorem (Fiacco, 1976). It can be derived from the
KKT conditions (3) and the similar properties are re-
peatedly used in various solution path algorithms in
machine learning (Hastie et al., 2004).

Using the above theorem, we can update the solution

by α
(θ+∆θ)
i = α

(θ)
i + ∆θβi as long as π is unchanged.

However, if we changes θ, the optimal partition π could

2The invertibility of the matrix M is assured if and
only if the submatrix QM is positive definite in subspace

{z ∈ R
|M| | y⊤

Mz = 0}.

also changes. Those change points are called break-
points. In the solution path algorithm, the optimality
conditions are always kept satisfied by precisely de-
tecting the breakpoints and updating π properly.

3. Suboptimal Solution Path

In this section, we develop a suboptimal solution path
algorithm for the SVM, where the tolerance to the
optimality conditions can be arbitrary controlled by
users. The basic idea is to relax the KKT optimal-
ity conditions and allow multiple data points to move
among the partition π at the same time. Note that
it reduces the number of breakpoints and leads to the
improvement in its computational efficiency: allowing
us to control the balance between the accuracy of the
solution and the computational cost.

3.1. Approximate Optimality Conditions

First, we relax the conditions (4) as

i ∈ O ⇒ yif
(θ)
i ≥ 1− ε1, α

(θ)
i ∈ [−ε2, 0], (6a)

i ∈ M ⇒ yif
(θ)
i ∈ [1−ε1, 1+ε1], α

(θ)
i ∈ [−ε2, C

(θ)
i +ε2],
(6b)

i ∈ I ⇒ yif
(θ)
i ≤ 1+ε1, α

(θ)
i ∈ [C

(θ)
i , C

(θ)
i +ε2], (6c)

where ε1 ≥ 0 and ε2 ≥ 0 specify the degree of ap-
proximation. If we set ε1 = ε2 = 0, these conditions
reduce to (4).

Our algorithm changes θ while keeping the above con-
ditions (6) satisfied. Let θ0 = 0 be the initial value of
θ and the non-decreasing sequence θ0 ≤ θ1 ≤ θ2 ≤ . . .,
be the breakpoints. Suppose we are currently at θk,
the next breakpoint θk+1 is characterized as the point
that we can not increase θ without violating the con-
ditions (6) or changing index sets π.

If we set {βi}
n
i=0 by (5), then yif

(θ)
i , i ∈ M, and α

(θ)
i ,

i ∈ O ∪ I, are constants. To increase θ from θk, we
only need to check the following inequalities:

yif
(θk)
i +∆θgi ≥ 1− ε1, i ∈ O,

α
(θk)
i +∆θβi ∈ [−ε2, C

(θk)
i + ε2], i ∈ M,

yif
(θk)
i +∆θgi ≤ 1− ε1, i ∈ I,

where gi is the change of output yifi which is defined
by g = Qβ + yβ0. We want to know the maximum
∆θ which satisfies all of the above inequalities. We can
easily calculate the maximum ∆θ for each inequality

Suboptimal Solution Path Algorithm for Support Vector Machine

1

α
(θ)
i

θ
0

yif
(θ)
i

θ

(a) Exact path

θ
0

yif
(θ)
i

α
(θ)
i

0 − ε2

1 − ε1

1 + ε1

θ

(b) Suboptimal path

Figure 1. An illustrative example of the breakpoint. The
points of the vertical dashed lines are breakpoints. (a)
At the breakpoint in the upper plot, αi, i ∈ M, reaches 0.
Since the index i is transferred from M to O, αi = 0 on the
right side of the vertical line. In the lower plot, yif

(θ)
i

= 1

on the left side of the vertical line and yif
(θ)
i

≥ 1 on the
right side of the vertical line. At the breakpoint, the data
point i satisfies the both of the optimality conditions (4b)
and (4a) for M and O, respectively. (b) At the breakpoint
in the upper plot, one of αi, i ∈ M, reaches −ε2. In the
lower plot, both of the two lines are in [1 − ε1, 1 + ε1]. In
this case, these two points satisfy the both of the optimal-
ity conditions (6b) and (6a) for M and O, respectively.
It does not necessarily mean that these two data points
should move to O: either of them have a possibility to stay
in M even after the breakpoint. This situation is called
degeneracy in parametric programming literature.

as follows:

ΘO =
{
(1− ε1 − yif

(θk)
i)/gi

∣∣∣i ∈ O, gi < 0
}
,

ΘMℓ
=

{
−(α

(θk)
i + ε2)/βi

∣∣∣ i ∈ M, βi < 0
}
,

ΘMu
=

{
(C

(θk)
i + ε2 − α

(θk)
i)/(βi − di)∣∣∣i ∈ M, βi > di

}
,

ΘI =
{
(1 + ε1 − yif

(θk)
i)/gi

∣∣∣i ∈ I, gi > 0
}
,

Since we have to keep all of the inequalities satisfied,
we take the minimum of these values: ∆θ = minΘ,
where Θ = {ΘO,ΘMℓ

,ΘMu
,ΘI}. Then we can find

θk+1 = θk +∆θ.

Although we detect θk+1, it is necessary to update π to
go beyond the breakpoint. Conventional solution path
algorithms allow only one data point to move between
the partition π at each breakpoint. For example, αi,
i ∈ M, reaches 0, the algorithm transfers the index i
from M to O (Figure 1(a)). In our algorithm, multiple
data points are allowed to move between the partitions
π at the same time in order to reduce the number of
breakpoints.

3.2. Update Index Sets

At a breakpoint, our algorithm handles all the data
points that violate the strict inequality conditions (4)
rather than the relaxed ones (6) (Figure 1(b)). This
situation can be interpreted as what is called degen-
eracy in the parametric programming (Ritter, 1984).
Here, degeneracy means that multiple constraints hit
their boundaries of inequalities simultaneously. Al-
though degenerate situation rarely happens in conven-
tional solution path algorithms, it is not the case in
ours. The simultaneous change of multiple data points
inevitably brings about “highly” degenerate situations
involved with many constraints. In degenerate case,
we have a problem called the cycling. For example,
if we move two indices i and j from M to O at the
breakpoint, then both or either of them may immedi-
ately return to M. To avoid the cycling, we need to
design an update strategy for π that can circumvent
cycling.

The degeneracy can be handled by several approaches
which are known in the parametric programming lit-
erature. Ritter (1984) showed that the cycling can
be dealt with through the well-known Bland’s min-
imum index rule in the linear programming (Bland,
1977). However, in the worst case, this approach must
go through all the possible patterns of next π. Since
we need to evaluate {βi}

n
i=0 in each iteration, a large

number of iterations may cause additional computa-
tional cost. In this paper, we provide more essential
solution to this problem based on (Berkelaar et al.,
1997).

Suppose we are currently on the breakpoint θk. Let

BO = {i | α
(θk)
i ≤ 0, βi < 0, i ∈ M}∪

{i | yif
(θk)
i ≤ 1, gi < 0, i ∈ O},

BI = {i | α
(θk)
i ≥ C

(θk)
i , βi > di, i ∈ M}∪

{i | yif
(θk)
i ≥ 1, gi > 0, i ∈ I}.

BO is the set of indices which satisfy the conditions
(6a) and (6b) for being the member of M and O si-
multaneously at θk. Similarly, indices in BI satisfy the
conditions (6b) and (6c) for being the member of M
and I at θk. Moreover, let us define sum of these two
sets as B = BO ∪ BI . Our task is to partition these
indices to O, M and I correctly so that it does not
cause the cycling.

In our formulation, due to the approximation by ε1 and
ε2, the cycling may not occur at ∆θ = 0 immediately.
For example, suppose that i move to M from O and
its parameter is αi = 0. In the next iteration, we need
to check αi + ∆θβi ≥ −ε2. If βi < 0, then we obtain
∆θ ≤ −ε2/βi > 0. Although it allows ∆θ > 0, the

Suboptimal Solution Path Algorithm for Support Vector Machine

index i may return back to O. This situation can also
be considered as cycling.

Let πk = (Ok,Mk, Ik) be π in [θk, θk+1]. At θk+1, if
and only if the cycling does not occur, it can be shown
that the following conditions hold:

βi ≥ 0, gi = 0, for i ∈ Mk+1 ∩ BO, (7a)

βi = 0, gi ≥ 0, for i ∈ Ok+1 ∩ BO, (7b)

βi ≤ di, gi = 0, for i ∈ Mk+1 ∩ BI , (7c)

βi = di, gi ≤ 0, for i ∈ Ik+1 ∩ BI . (7d)

Although βi and gi are usually calculated using π,
our approach allows us to calculate βi and gi without
knowing π so that they can satisfy the above condi-
tions. If the gradient β, which is defined in (5), sat-
isfies the following conditions, we can find the next
partition πk+1 to satisfy (7). The conditions are:

giβi = 0, gi ≥ 0, βi ≥ 0, i ∈ BO,

gi(di − βi) = 0, gi ≤ 0, βi ≤ di, i ∈ BI ,
(8)

If we know such β and g, using the following update
rule, we can determine πk+1 as:

Mk = Mk+ 1
2
∪ {i | βi > 0, gi = 0, i ∈ BO}

∪ {i | βi < di, gi = 0, i ∈ BI},
Ok = Ok+ 1

2
∪ {i | βi = 0, gi ≥ 0, i ∈ BO},

Ik = Ik+ 1
2
∪ {i | βi = di, gi ≤ 0, i ∈ BI},

(9)

where Ok+ 1
2
= Ok \ B, Mk+ 1

2
= Mk \ B and Ik+ 1

2
=

Ik \ B.

Remark 1. By definition, the update rule (9) guar-
antees that the non-cycling conditions (7) hold.

To use (9), we need β (5) which satisfies (8). The
following theorem shows that it can be obtained from
a quadratic programming problem (QP):

Theorem 2. Let β̂0, β̂ and ĝ be the optimal solutions
of the following QP problem:

min
β̂0,

̂β,ĝ

∑
i∈BO

ĝiβ̂i +
∑

i∈BI
ĝi(β̂i − di) (10)

s.t.





ĝBO
≥ 0, β̂BO

≥ 0, ĝBI
≤ 0, β̂BI

≤ dI ,

ĝM
k+1

2

= 0, β̂O
k+1

2

= 0, β̂I
k+1

2

= dI
k+1

2

,

y⊤β̂ = 0, ĝ = Qβ̂ + yβ̂0,

and π is determined by (9) using β̂ and ĝ. Then β̂0,

β̂ and ĝ satisfy (8) and they are equal to the gradient
β0, β and g, respectively.

Although the detailed proof is in (Karasuyama &
Takeuchi, 2011), we can provide clear interpretation
of this optimization problem. The objective function

and inequality constraints corresponds to (8) and the
other constraints correspond to the linear system (5).
It can be shown that the optimal value of the objective
function is 0. Given the non-negativity of each term in
the objective, we see that (8) holds (see Karasuyama
& Takeuchi, 2011, for detail).

The optimization problem (10) has 2n+1 variables and
2|B|+2n+1 constraints. However, we can reduce these
sizes to |B| variables and 2|B| constraints by arranging
the equality constraints3. The detailed formulation of
the reduced problem is in (Karasuyama & Takeuchi,
2011). If the size of |B| is large, it may take large
computational cost to solve (10). To avoid this, we set
the upper bound B for the number of elements of B.
In the case of |B| > B, we choose top B elements from
the original B by increasing order of Θ as the elements
of B.

3.3. Algorithm and Computational

Complexity

Here, we summarize our algorithm and analyze its
computational complexity. At the k-th breakpoint,
our algorithm performs the following procedure:

step1 Using πk, calculate β0,β and g by (5)

step2 Calculate the next breakpoint θk+1 and update

α
(θ)
0 ,α(θ), c(θ);

step3 Solve (10) and calculate πk+1 by (9)

In step1, we need to solve the linear system (5). In
conventional solution path algorithms, we can update
it using rank-one-update of an inverse matrix or a
Cholesky factor from previous iteration by O(|M|2)
computations. In our case, we need rank-m-update at
each breakpoint, where 1 ≤ m ≤ B. When we set B as
some small constant, the computational cost still re-
mains O(|M|2). Including the other processes in this
step, the computational cost becomes O(n|M|). In
step2, given β and g, we can calculate all the possible
step length Θ by O(n). In step3, since the optimiza-
tion problem (10) becomes convex QP problem with
|B| variables, it can be solved efficiently by some stan-
dard QP solvers in the situation |B| is relatively small
compared to n. When we set B as some constant,
the time for solving this optimization problem is then
independent of n.

Put it all together, in the case of constant B, the com-
putational cost of each breakpoint is O(n|M|). This is
the same as the conventional solution path algorithm.
However, as we will see later in experiments, our al-

3In the case of |M
k+ 1

2
| = 0, the reduced problem has

|B|+ 1 variables 2|B|+ 1 constraints.

Suboptimal Solution Path Algorithm for Support Vector Machine

gorithm drastically reduces the number of breakpoints
especially when we use large ε1 and ε2.

4. Analysis

In this section, we provide some theoretical analyses
of our suboptimal solution path.

4.1. Interpretation as Perturbed Problem

An interesting property of our approach is that the
solutions always keep the optimality of an optimization
problem which is slightly perturbed from the original
one. The following theorem gives the formulation of
the perturbed problem:

Theorem 3. Every solution α(θ) in the suboptimal
solution path is the optimal solution of the following
optimization problem:

maxα − 1
2α

⊤Qα+ (1+ p)⊤α

s.t. y⊤α = 0, −q ≤ α ≤ c(θ) + q.
(11)

where perturbation parameters p, q ∈ R
n are in

−ε11 ≤ p ≤ ε11 and 0 ≤ q ≤ ε21, respectively.

Proof. Let ξ+, ξ− ∈ R
n
+ and κ ∈ R be the Lagrange

multipliers. The Lagrangian is

L = − 1
2α

⊤Qα+ (1+ p)⊤α

+(α+ q)⊤ξ− + (c(θ) + q −α)⊤ξ+ + κy⊤α,

and the KKT conditions are

∂L
∂α = −Qα+ 1+ p+ ξ− − ξ+ + κy = 0, (12a)

ξ+, ξ− ≥ 0, (12b)

ξ−i (αi + qi) = 0, i = 1, . . . , n, (12c)

ξ+i (C
(θ)
i + qi − αi) = 0, i = 1, . . . , n, (12d)

−q ≤ α ≤ c(θ) + q. (12e)

y⊤α = 0, (12f)

Substituting α = α(θ) and κ = −α
(θ)
0 , i-th element

of (12a) can be written as yif
(θ)
i = 1 + pi + ξ−i −

ξ+i . Considering this and the conditions of suboptimal
solution α(θ) (6), there exist pi ∈ [−ε1, ε1] and ξ±i
which satisfy ξ+i = ξ−i = 0 for i ∈ M, ξ+i = 0, ξ−i ≥ 0,
for i ∈ O and ξ+i ≥ 0, ξ−i = 0, for i ∈ I. These ξ±i ’s
satisfy the non-negativity constraint (12b).

The complementary conditions (12c) and (12d) for i ∈
M hold from ξ+i = ξ−i = 0. For i ∈ O, since ξ+i = 0,
we don’t have to check (12d). In this case, if we set

qi = −α
(θ)
i ∈ [0, ε2], then (12c) holds. It can be shown

in a similar way that (12c) and (12d) hold for i ∈ I.

Our suboptimal solution path algorithm always sat-
isfies the equality constraint of the dual (2) and the
box constraint (12e) satisfied. Therefore, we see (12)
holds.

The problem (11) can be interpreted as the dual prob-
lem of the following form of the SVM:

minw,α0

1
2w

⊤w +
∑n

i=1 ℓ(1 + pi − yifi), (13)

where

ℓ(ξi) =

{
(C

(θ)
i + qi)ξi, for ξi ≥ 0,

−qiξi, for ξi < 0,

is a loss function. We see that the perturbations
present in the loss term.

4.2. Error Analysis

We have shown that the solution of the suboptimal so-
lution path can be interpreted as the optimal solution
of the perturbed problem (13). Here, we consider how
close the optimal solution of the perturbed problem
to the solution of the original problem in terms of the
optimal objective value.

Let D(α) and D̃(α) be the dual objective functions
of the original optimization problem (2) and the per-
turbed problem (11), respectively. From the affine

lower bound of D̃(α), we obtain

D̃(α) ≤ D(α∗) + p⊤α∗ + (−Qα∗ + 1+ p)⊤(α−α∗),

where α∗ is the optimal solution of the original prob-
lem. Let α̃ be the optimal solution of the per-
turbed problem. Substituting α = α̃ and adding
α∗
0y

⊤(α̃−α∗) = 0 to the right hand side, we obtain

D̃(α̃)−D(α∗) ≤ p⊤α∗ + (ξ∗ + p)⊤(α̃−α∗), (14)

where ξ∗ = −Qα∗ − yα∗
0 + 1. Note that ξ∗I ≥ 0,

ξ∗M = 0 and ξ∗O ≤ 0, where I, M and O represent the
optimal partition of the original problem (2). Here, we

define Ĩ = {i | ξ∗i + pi ≥ 0, i ∈ I}, Õ = {i | ξ∗i + pi ≤

0, i ∈ O} and M̃ = {1, . . . , n} \ (Õ ∪ Ĩ). From the
right hand side of (14), we obtain

D̃(α̃)−D(α∗) ≤
∑

i∈M∪I |pi| C
(θ)
i +

∑
i∈Ĩ∪Õ |ξ∗i + pi| qi +

∑
i∈M̃

|pi| (C
(θ)
i + qi)

From the duality theorem, this also bounds the dif-
ference of the primal objective value. Comparing the
original objective function (1), this bound can be con-
sidered small when pi and qi is enough small compared
to ξ∗i and Ci. In this view point, this bound gives
theoretical justification for our intuitive interpretation.
The bound for D(α∗) − D̃(α̃) can be also derived in
the same manner.

Suboptimal Solution Path Algorithm for Support Vector Machine

5. Experiments

In this section, we illustrate the empirical performance
of the proposed approach compared to the conven-
tional exact solution path algorithm. Our task is to
trace the solution path from c(0) = 10−1/n × 1 to
c(1) = 106/n × 1. Since all the elements of c(θ) takes
the same value in this case, we sometimes refer to this
common value as C(θ) (i.e., c(θ) = C(θ) × 1). The
RBF kernel K(xi,xj) = exp(−γ‖xi − xj‖

2
2) is used

with γ = 1/p where p is the number of features. To
circumvent possible numerical instability in the solu-
tion path, we add small positive constant 10−6 to the
diagonals of the matrix Q.

Let e ≥ 0 be a parameter which controls the degree of
approximations. In this paper, using e, we set ε1 and
ε2 as ε1 = e and ε2 = e × C(θk), respectively, where
θk is the previous breakpoint. We set ε2 using relative
scale to C(θk).

We used the following four data sets for comparison:
‘internet ad’, ‘spam’, ‘a5a’ and ‘w5a’. The size of each
data set is (n, p) = (2539, 1558), (4601, 57), (6414, 123)
and (9888, 300), respectively. These data sets are avail-
able from LIBSVM site4 and UCI data repository5.
We randomly sampled approximately 80% data points
from the original data set 10 times. The input x of
each data set is linearly scaled to [0, 1]p.

Figure 2 shows the comparison of the CPU time and
the number of breakpoints. To make fair compari-
son, the initialization is not included in the CPU time.
In these results, we set B = 10 and we investigated
the relationship between the computational cost and
the degree of approximation by examining several set-
tings of e ∈ {0.001, 0.01, 0.1, 0.5}. The results indi-
cate that our approach can reduce the CPU time es-
pecially when e is large. The number of breakpoints
were also reduced, in the same way as the CPU time.
In our approach, since we need rank-m-update of ma-
trix in each breakpoint (1 ≤ m ≤ B), an update in a
breakpoint may take longer time than rank-one-update
which is needed in the conventional solution path algo-
rithm. We conjecture that this is why the decrease in
the number of breakpoints was slightly faster than the
CPU time. However, since the maximum value of |B|
was set as B = 10 in this experiment, this additional
cost was relatively small compared to the effect of the
reduction of the number of breakpoints.

Next, we investigated the effect of B. Figure 3 shows
the CPU time and the number of breakpoints for w1a

4http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/

5http://archive.ics.uci.edu/ml/

10
−3

10
−2

10
−1

10
0

10
2

10
3

e

C
P

U
 t
im

e
 (

s
e
c
)

(c
ir
c
le

)

T
h
e
 n

u
m

b
e
r

o
f
b
re

a
k
p
o
in

ts
 (

c
ro

s
s
 m

a
rk

)

Exact path
Suboptimal path

102

103

B
P
 (
c
ro
s
s
)

e10-3 10-2 10-1

Exact path

Suboptimal
path

100

C
P
U
 t
im
e
(s
e
c
)(
c
ir
c
le
)

(a) ad

10
−3

10
−2

10
−1

10
1

10
3

e

C
P

U
 t

im
e

 (
s
e

c
)

(c
ir
c
le

)

T
h

e
 n

u
m

b
e

r
o

f
b

re
a

k
p

o
in

ts
 (

c
ro

s
s
 m

a
rk

)

Exact path
Suboptimal path

103

B
P
 (
c
ro
s
s
)

e10-3 10-2 10-1

Exact path

Suboptimal
path101

C
P
U
 t
im
e
(s
e
c
)(
c
ir
c
le
)

(b) spam

10
−3

10
−2

10
−1

10
1

10
3

e

C
P

U
 t
im

e
 (

s
e
c
)

(c
ir
c
le

)

T
h
e
 n

u
m

b
e
r

o
f
b
re

a
k
p
o
in

ts
 (

c
ro

s
s
 m

a
rk

)

Exact path
Suboptimal path

103

B
P
 (
c
ro
s
s
)

e10-3 10-2 10-1

Exact path

Suboptimal
path

101

C
P
U
 t
im
e
 (
s
e
c
)(
c
ir
c
le
)

(c) a5a

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

e

C
P

U
 t
im

e
 (

s
e
c
)

(c
ir
c
le

)

T
h
e
 n

u
m

b
e
r

o
f
b
re

a
k
p
o
in

ts
 (

c
ro

s
s
 m

a
rk

)

Exact path
Suboptimal path

B
P
 (
c
ro
s
s
)

e10-3 10-2 10-1

Exact path

Suboptimal
path

101

C
P
U
 t
im
e
 (
s
e
c
)(
c
ir
c
le
)

100

102

103

(d) w5a

Figure 2. Log plot of CPU time and the number of break-
points (BP). The horizontal axis of each plot is the de-
gree of the approximation. The circle denotes the CPU
time (left axis) and the cross mark denotes the number of
breakpoints (right axis) of the suboptimal path. The top
dashed line of each plot means both of the CPU time and
the number of breakpoints of the exact path. The relative
scale of the left and right axes are the same.

0

1

2

3

4

5

6

7

C
P

U
 t

im
e

 (
s
e

c
)

Exact
B=n
e=0.01

B=n
e=0.5

B=10
e=0.01

B=10
e=0.5

B=n
e=0.01,0.5

B=10
e=0.01,0.5

Exact

0

1

2

3

4

5

6

7

C
P
U
 t
im
e
 (
s
e
c
)

(a) CPU time

0

200

400

600

800

1000

1200

T
h

e
 n

u
m

b
e

r
o

f
b

re
a

k
p

o
in

ts

Exact
B=n
e=0.01

B=n
e=0.5

B=10
e=0.01

B=10
e=0.5

B=n
e=0.01,0.5

B=10
e=0.01,0.5

Exact

0

200

800

400

1000

600

1200

B
P

(b) Breakpoint (BP)

Figure 3. The comparisons for different settings of B.

data (n = 2477, p = 300) with B = 10 and B = n.
When B = n, there are no upper bounds for |B|. In
the left plot, when B = n, we see that the CPU time
is longer than the case of B = 10. In this data set,
this difference of the CPU time mainly comes from
the cost of the matrix update and QP (10) whose size
is proportional to |B| (data not shown). On the other
hand, in the left plot, the number of breakpoints is
stable in the both case of B = n and B = 10, and
interestingly, the number itself is almost the same in
these two settings. Our results suggest that too many
B does not contribute to reduce the number of break-
point. Although these unstable results in B = n is not
always happen, we observed that it is more stable to
use B = 10 or B = 100 in several other data sets.

Suboptimal Solution Path Algorithm for Support Vector Machine

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

θ

R
a
te

 o
f
d
if
fe

re
n
c
e

0

0.2

0.4

0.6

0.8

1

R
a
te
 o
f
d
if
fe
re
n
c
e

0 0.2 0.4 0.6 0.8 1
θ

(a) The difference of π

3500

3000

2500

2000

1500

1000

500

0
10-2 10-1 10-0

θ

M

I

O

(b) The size of each index set
(solid: exact path, dashed:
suboptimal path)

Figure 4. Comparisons of the behavior of π

Table 1. Test error rate and its standard error

data exact path e = 0.5
ad 0.0326 (0.0021) 0.0328 (0.0026)
spam 0.0770 (0.0036) 0.0812 (0.0037)
a5a 0.1587 (0.0025) 0.1597 (0.0031)
w5a 0.0171 (0.0012) 0.0176 (0.0010)

We also compared the difference of π between the ex-
act solution path and the suboptimal path in order to
see the degree of approximation in terms of the active
set. Let Ii ∈ {0, 1} be an indicator variable which has
1 when a data point i belongs to different set among
M, O and I between two solution paths. Figure 4(a)
shows plots of 10 runs average of

∑n
i=1 Ii/n for e = 0.5

in a5a data set. We see that the difference is at most
about 10%. Figure 4(b) shows the size of each index
set (this plot is one of 10 runs). Although the small dif-
ferences exist, the changing patterns are similar each
other.

Table 1 shows results of test error rate comparison for
e = 0.5. We used 60% of the data for training, 20% for
validation and 20% for testing. In each data set, we
see that the performances of our suboptimal solutions
are comparable to the exact solution path.

6. Conclusion

In this paper, we have developed a suboptimal solution
path algorithm which traces the changes of solutions
under the relaxed optimality conditions. Our algo-
rithm can reduce the number of breakpoints by mov-
ing multiple indices in π at one breakpoint. Another
interesting property of our approach is that the sub-
optimal solutions exactly correspond to the optimal
solutions of the perturbed problems from the original
SVM optimization problems. The experimental results
demonstrate that our algorithm efficiently follows the
path and it has similar patterns of active sets and clas-

sification performances compared to the exact path.

References

Berkelaar, A. B., Roos, K., and Terláky, T. The opti-
mal set and optimal partition approach to linear and
quadratic programming. In Greenberg, H. and Gal, T.
(eds.), Advances in Sensitivity Analysis and Parametric
Programming, chapter 6. Kluwer Academic Publishers,
1997.

Best, M. J. An algorithm for the solution of the paramet-
ric quadratic programming problem. Technical Report
82-24, Faculty of Mathematics, University of Waterloo,
1982.

Bland, R. G. New finite pivoting rules for the simplex
method. Mathematics of Operations Research, 2:103–
107, 1977.

Efron, B., Hastie, T., Johnstone, L., and Tibshirani, R.
Least angle regression. Annals of Statistics, 32(2):407–
499, 2004.

Fiacco, A. V. Sensitivity analysis for nonlinear program-
ming using penalty methods. Mathematical Program-
ming, 10(3):287–311, 1976.

Friedman, J., Hastie, T., Höfling, H., and Tibshirani, R.
Pathwise coordinate optimization. Annals of Applied
Statistics, 1(2):302–332, 2007.

Gärtner, B., Giesen, J., and Jaggi, M. An exponential
lower bound on the complexity of regularization paths.
arXiv:0903.4817v2 [cs.LG], 2009.

Giesen, J., Jaggi, M., and Laue, S. Approximating pa-
rameterized convex optimization problems. In de Berg,
Mark and Meyer, Ulrich (eds.), 18th European Sympo-
sium on Algorithms, volume 6346 of Lecture Notes in
Computer Science, pp. 524–535. Springer Berlin / Hei-
delberg, 2010.

Hastie, T., Rosset, S., Tibshirani, R., and Zhu, J. The
entire regularization path for the support vector ma-
chine. Journal of Machine Learning Research, 5:1391–
1415, 2004.

Karasuyama, M. and Takeuchi, I. Suboptimal so-
lution path algorithm for support vector machine.
arXiv:1105.0471 [cs.LG], 2011.

Platt, J. C. Fast training of support vector machines using
sequential minimal optimization. In Schölkopf, Bern-
hard, Burges, Christopher J. C., and Smola, Alexan-
der J. (eds.), Advances in Kernel Methods — Support
Vector Learning, pp. 185–208, Cambridge, MA, 1999.
MIT Press.

Ritter, K. On parametric linear and quadratic program-
ming problems. In Cottle, R., Kelmanson, M. L., and
Korte, B. (eds.), Mathematical Programming: Proceed-
ings of the International Congress on Mathematical Pro-
gramming, pp. 307–335. Elsevier Science Publisher B.V.,
1984.

