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Abstract

While it is now well-known in the stan-
dard binary classification setup, that, un-
der suitable margin assumptions and com-
plexity conditions on the regression function,
fast or even super-fast rates (i.e. rates faster
than n−1/2 or even faster than n−1) can be
achieved by plug-in classifiers, no result of
this nature has been proved yet in the con-
text of bipartite ranking, though akin to that
of classification. It is the main purpose of
the present paper to investigate this issue,
by considering bipartite ranking as a nested
continuous collection of cost-sensitive classi-
fication problems. A global low noise condi-
tion is exhibited under which certain (plug-
in) ranking rules are proved to achieve fast
(but not super-fast) rates over a wide non-
parametric class of models. A lower bound
result is also stated in a specific situation, es-
tablishing that such rates are optimal from a
minimax perspective.

1. Introduction

The study of (minimax) learning rates in the context of
classification/regression has been the subject of a good
deal of attention in the machine-learning and statisti-
cal literature, see (Massart, 2000; Tsybakov, 2004; Au-
dibert & Tsybakov, 2007; Audibert, 2009; Lecué, 2008;
Koltchinskii & Beznosova, 2005; Srebro et al., 2010)
for instance. Under adequate smoothness/complexity
assumptions on the regression function combined with
a margin (or low noise) condition, minimax rates for
the excess of misclassification risk have been proved in
a variety of situations. Such analyses of best achiev-
able rates of classification take into account the bias in
the excess of misclassification risk and establish that
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plug-in classifiers (i.e. classifiers directly built from
a nonparametric estimate of the regression function)
may be optimal in the minimax sense.

In parallel, a supervised learning problem termed bi-
partite ranking, akin to binary classification in the
sense that it involves exactly the same probabilistic
setup but of very different nature (it is global and not
local), has recently received much interest in the sta-
tistical learning community, see (Freund et al., 2003;
Rudin, 2006; Clémençon & Vayatis, 2009c) for in-
stance, mainly because of its ubiquity in the appli-
cations: anomaly detection in signal processing, infor-
mation retrieval, design of diagnosis tools in medicine,
credit-scoring in finance among others. A rigorous for-
mulation of the goal of bipartite ranking is given in
(Clémençon et al., 2008), where it is cast in terms of
minimization of a pairwise classification error, called
the ranking risk. Minimization of this error measure
can be shown as equivalent to maximization of the so-
termed ”AUC criterion” (Hanley & McNeil, 1982), a
widely used ranking criterion in practice. In the lat-
ter paper, a low noise assumption has been proposed,
under which Empirical Risk Minimization (ERM) is
shown to yield rates close to n−1, under the restrictive
assumption that an optimal ranking rule belongs to the
set of candidates over which ERM is performed (i.e.
assuming zero bias for the ranking method consid-
ered). In (Clémençon & Vayatis, 2009a), plug-in rank-
ing rules based on partitions (grids) of the input space
have been considered in a less specific framework (re-
laxing the ”zero bias” assumption namely), and have
been proved to achieve rates slower than n−1/2. It is
the major purpose of this paper to pursue this anal-
ysis by considering more general low noise conditions
together with smoothness/complexity assumptions for
the regression function and study the rates attained
by plug-in ranking rules, providing thus upper bounds
for the minimax rate of the expected excess of ranking
risk. Although the contribution of the present paper is
mostly theoretical, given the difficulties one may face
when trying to compute nonparametric estimates of
the regression function (and thus plug-in predictors) in



Minimax Learning Rates for Bipartite Ranking and Plug-in Rules

high dimension, it hopefully shed light on the nature
of the ranking task, underlining the major differences
between classification and bipartite ranking.

The article is organized as follows. In section 2, basic
notions related to the bipartite ranking issue are briefly
recalled and the main notations are set out. Crucial
assumptions on the regression function and global low
noise conditions are next described and thoroughly dis-
cussed. Preliminary results, based on the low noise
conditions and linking the accuracy of nonparametric
estimators of the regression function to the ranking
risk of the related plug-in ranking rules are stated in
section 3. The analysis of the rates achieved by plug-in
ranking rules carried out in section 4 relies on the lat-
ter. Finally, a preliminary lower bound result for the
minimax rate of the expected excess of ranking risk is
stated in a specific situation in section 5, showing in-
cidentally the minimax optimality of the plug-in rule
studied in the preceding section in this particular case.
Technical proofs are deferred to the Appendix.

2. Theoretical Background

For clarity, we first set out the main assumptions in-
volved in the formulation of the bipartite ranking prob-
lem and recall important results that shall be used in
the subsequent analysis, giving incidentally an insight
into the nature of the ranking problem.

2.1. Probabilistic Setup and First Notations

Here and throughout, (X, Y) denotes a pair of ran-
dom variables, taking its values in the product space
X×{−1,+1} where X is typically a subset of an euclid-
ian space of (very) large dimension d ≥ 1, Rd say. The
r.v. X is viewed as a random observation for predict-
ing the binary label Y. Let p = P{Y = +1} be the rate
of positive instances. The joint distribution of (X, Y)
is denoted by P, X’s marginal distribution by µ and
the posterior probability by η(x) = P{Y = +1 | X = x},
x ∈ X . For simplicity and with no loss of generality,
we assume that X coincides with µ(dx)’s support. Ad-
ditionally, the r.v. η(X) is supposed to be continuous.

The indicator function of any event E is denoted by
I{E} and the range of any mapping Φ by Im(Φ). We
also denote by B(x, r) the closed Euclidean ball in Rd
centered at x ∈ Rd and of radius r > 0. For any multi-
index s = (s1, ..., sd) ∈ Nd and any x = (x1, ..., xd) ∈
Rd, we set |s| =

∑d
i=1 si, s! = s1!...sd!, x

s = xs11 ...x
sd
d

and ‖x‖ = (x21+...+x
2
d)
1/2. LetDs denote the differen-

tial operatorDs = ∂s1+...+sd

∂x
s1
1 ...∂x

sd
d

and bβc the largest inte-

ger that is strictly less than β ∈ R. For any x ∈ Rd and
any bβc-times continuously differentiable real-valued

function g on Rd , we denote by gx its Taylor polyno-
mial of degree bβc at point x,

gx(x
′) =

∑
|s|≤bβc

(x− x ′)s

s!
Dsg(x).

Finally, for 1 ≤ q ≤ ∞, we denote by ‖ · ‖q the
Lq(Rd, µ) norm.

2.2. Bipartite Ranking

In contrast to binary classification, where the goal
is to guess, for a given x ∈ X , the likeliest label
C∗(x) = 2 · I{η(x) > 1/2} − 1, the ranking task con-
sists in sorting all the instances x ∈ X by increas-
ing order of the posterior probability η(x). A natural
way of defining a pre-order on X is to transport the
usual order on the real line onto X through a (mea-
surable) scoring function s : X → R: ∀(x, x ′) ∈ X 2,
x �s x ′ ⇔ s(x) ≤ s(x ′). The gold standard for
evaluating the accuracy of such a preorder is of func-
tional nature, the so-termed ROC curve (D.M.Green
& Swets, 1966), namely the plot of the false positive
rate against the true positive rate

t 7→ (P{s(X) > t | Y = −1}, P{s(X) > t | Y = +1}) .

Pairwise classification. As considering a perfor-
mance criterion taking its values in a function space
naturally leads to great difficulties in regards to math-
ematical analysis and computational implementation
both at the same time, many authors have addressed
the ranking issue from the perspective of pairwise clas-
sification, (Agarwal et al., 2005; Clémençon et al.,
2005; Freund et al., 2003). In this setup, the objective
is to determine, given two independent pairs (X, Y) and
(X ′, Y ′) drawn from P, whether Y ′ > Y or not. In this
context, the predictor takes the form of a ranking rule,
namely a (measurable) function r : X 2 → {−1,+1}
such that r(x, x ′) = 1 when x ′ is ranked higher than
x: the more pertinent a ranking rule r, the smaller
the probability that it incorrectly ranks two instances
drawn independently at random. Formally, optimal
ranking rules are those that minimize the ranking risk :

L(r)
def
= P {r(X,X ′) · (Y ′ − Y) < 0} . (1)

A ranking rule r is said transitive iff ∀(x, x ′, x ′′) ∈ X 3:
”r(x, x ′) = +1 and r(x ′, x ′′) = +1” ⇒ ”r(x, x ′′) =
+1”. Observe that, by standard quotient set ar-
guments, one can see that transitive ranking rules
are those induced by scoring functions: rs(x, x

′) =
2 · I{s(x ′) ≥ s(x)} − 1 with s : X → measurable. With
a slight abuse of notation, we set L(rs) = L(s) for
ranking rules defined through a scoring function s.
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Optimality. In regards to the performance criterion
above, the rule

r∗(x, x ′) = 2 · I{η(x ′)>η(x)} − 1 (2)

defined by the regression function η(x) (i.e. r∗ = rη) is
unsurprisingly optimal, see Example 1 in (Clémençon
et al., 2008) for further details. Additionally, it should
be noticed that one may derive a closed analytical form
for the excess of ranking risk E(r) = L(r) − L∗, with
L∗ = L(r∗). For clarity, we recall the following result.

Lemma 1 (Ranking risk excess - (Clémençon
et al., 2008)) For any ranking rule r, we have:

E(r) = E [|η(X) − η(X ′)| I{r(X,X ′)(η(X ′) − η(X)) < 0}] .

The accuracy of a ranking rule is here character-
ized by the excess of ranking risk E(r), the chal-
lenge from a statistical learning perspective being
to build a ranking rule, based on a training sample
(X1, Y1), . . . , (Xn, Yn) of i.i.d. copies of the pair
(X, Y), with asymptotically small excess of ranking risk
for large n.

We highlight the fact that, using a basic conditioning
argument, the minimum ranking risk L∗ can be ex-
pressed as a function of η(X)’s Gini mean difference:

L∗ = p(1− p) −
1

2
E[|η(X) − η(X ′)|]. (3)

Hence, in contrast to binary classification where it is
well-known folklore that the learning problem is all
the easier when η(X) is bounded away from 1/2, in
bipartite ranking, Eq. (3) roughly says that the more
spread the r.v. η(X), the easier the optimal ranking of
X ’s elements.

A continuum of classification problems. In addi-
tion, we emphasize the fact that the optimal ranking
rule r∗(x, x ′) can be viewed as a (nested) collection
of optimal cost-sensitive classifiers: the binary rule
r∗(x, X) = 2 · I{η(X) > η(x)}−1, related to the (regres-
sion) level set G∗t = {x ′ ∈ X : η(x ′) > t} with t = η(x),
is optimal when considering the cost-sensitive risk
Rω(C) = 2(1 − p)ω · P{| Y = −1} + 2p(1 − ω) · P{|

Y = −1} with cost ω = η(x), see Proposition 15 in
(Clémençon & Vayatis, 2009b) for instance. Hence,
while binary classification only aims at recovering the
single level set G∗1/2, which problem is made easier
when η(X) is far from 1/2 with large probability (see
(Massart & Nédélec, 2006) or (Tsybakov, 2004)), the
ranking task consists in finding the whole collection
{G∗t : t ∈ Im(η(X))}. Though of disarming simplicity,
this observation describes well the main barrier for ex-
tending fast-rate analysis to the ranking setup: indeed,

the random variable η(X) cannot be far with arbitrar-
ily high probability from all elements of its range.

Plug-in ranking functions. Given the form of the
Bayes ranking rule r∗(X,X ′), it is natural to consider
plug-in ranking rules, that is to say ranking rules ob-
tained by ”plugging” a nonparametric estimator η̂n(x)
of the regression function η, based on a data sample
(X1, Y1), . . . , (Xn, Yn), instead of η(x) into Eq. (2):

r̂n(x, x ′)
def
= rbηn(x, x ′), (x, x ′) ∈ X 2.

The performance of predictive rules built via the plug-
in principle has been extensively studied in the clas-
sification/regression context, under mild assumptions
on the behavior of η(X) in the vicinity of 1/2 (see
the references in (Audibert & Tsybakov, 2007) for in-
stance) and on η’s smoothness in particular. Similarly
in the ranking situation, since one obtains as imme-
diate corollary of Lemma 1 that E (̂rn) is bounded by
E[|η̂n(X) − η(X)|], one should investigate under which
conditions nonparametric estimators η̂n leads to rank-
ing rules with fast rates of convergence of E (̂rn) as the
training sample size n increases to infinity. This paper
is hence devoted to the study of the convergence rates
of plug-in ranking rules under specific assumptions on
(X, Y)’s distribution, that are described/discussed in
the next section.

2.3. Additional Assumptions

Optimal ranking rules can be defined as those having
the best possible rate of convergence of E (̂rn) towards
0, as n → +∞. Therefore, the latter naturally de-
pends on (X, Y)’s distribution. Following in the foot-
steps of (Audibert & Tsybakov, 2007), we embrace the
minimax point of view, that consists in considering a
specific class P of joint distributions P of (X, Y) and
to declare r̂n optimal if it achieves the best minimax
rate of convergence over this class:

sup
P∈P

E [E (̂rn)] ∼ min
rn

sup
P∈P

E [E(rn)] as n→∞,
where the infimum is taken over all possible ranking
rules rn depending on (X1, Y1), . . . , (Xn, Yn). In or-
der to carry out such a study, mainly three types of
hypotheses shall be used. Following in the footsteps
of (Audibert & Tsybakov, 2007), smoothness condi-
tions related to the real-valued function η : X ⊂
Rd → (0, 1) together with regularity conditions on the
marginal µ(dx) and assumptions that we shall inter-
pret as ”spreadness” conditions for η(X)’s distribution
are stipulated.

Complexity assumption. In the plug-in view, the
goal is to link closeness of η̂n(x) to η(x) to the rate at
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which E (̂rn) vanishes. Complexity assumptions for the
regression function (CAR) stipulating a certain degree
of smoothness for η are thus quite tailored for such
a study. Here, focus is on regression functions η(x)
that belong to the (β, L,Rd)-Hölder class of functions,
denoted Σ(β, L,Rd), with β > 0 and 0 < L <∞. The
latter is defined as the set of functions g : Rd → R that
are β times continuously differentiable and satisfy, for
any x, x ′ in Rd, the inequality

|g(x ′) − gx(x
′)| ≤ L‖x− x ′‖β.

Remark 1 (Alternative assumptions.) We
point out that more general CAR assumptions could
be considered (see (Dudley, 1999) for instance), involv-
ing metric entropies or combinatorial quantities such
as the VC dimension, more adapted to the study of
the performance of empirical risk minimizers. Owing
to space limitations, the analysis is here restricted to
the Hölder assumption.

Marginal density assumption. Let strictly posi-
tive constants c0 and r0 be fixed. Recall first that a
Lebesgue measurable set A ⊂ Rd is said to be (c0, r0)-
regular iff ∀r ∈]0, r0[, ∀x ∈ A:

λ(A ∩ B(x, r)) ≥ c0λ(B(x, r)),

where λ(B) denotes the Lebesgue measure of any bore-
lian set B ⊂ Rd . The following assumption on the
marginal distribution µ will be used in the sequel. Fix
constants c0, r0 > 0 and 0 < µmin < µmax < ∞ and
suppose that a compact set C ⊂ Rd is given. The
strong density assumption is said to be satisfied if the
marginal distribution µ(dx) is supported on a com-
pact and (c0, r0)-regular set A ⊂ C and has a density
f (w.r.t. the Lebesgue measure) bounded away from
zero and infinity on A: µmin ≤ f(x) ≤ µmax if x ∈ A
and µ(x) = 0 otherwise.

Global low noise assumption. Let α ∈ [0, 1]. The
condition stated below describes the behavior of η(X).

Assumption NA(α). We have: ∀(t, x) ∈ [0, 1]×X ,

P {|η(X) − η(x)| ≤ t} ≤ C · tα, (4)

for some constant C <∞.

Condition (4) above is void for α = 0 and more
and more restrictive as α grows. It clearly echoes
Tsybakov’s noise condition, introduced in (Tsybakov,
2004), which boils down to (4) with 1/2 instead of
η(x). Whereas Tsybakov’s noise condition is related
to the behavior of η(X) near the level 1/2, condition
(4) implies global properties for η(X)’s distribution, as
shown by the following result.

Lemma 2 (Low noise and continuity) Let α ∈
]0, 1]. Suppose that assumption NA(α) is fulfilled,
η(X)’s distribution is then absolutely continuous w.r.t.
the Lebesgue measure on [0, 1]. In addition, in the case
where α = 1, the related density is bounded by C/2.

Another low noise assumption has been proposed in
(Clémençon et al., 2008) in the context of the study of
the performance of empirical (ranking) risk minimiz-
ers. The latter may be formulated as follows.

Assumption LN(α). There exists C <∞ such that:

∀x ∈ X , E[|η(x) − η(X)|−α] ≤ C. (5)

Under the hypothesis above, it has been proved that
minimizers of an empirical version of the ranking risk
(1) of the form of a U-statistic have an excess of
risk of the order OP((logn/n)1/(2−α)) when optimiza-
tion is performed over classes of ranking functions
of controlled complexity (VC major classes of finite
VC dimension for instance), that contains an opti-
mal ranking rule (assuming thus zero bias for the
ERM method), see Proposition 5 and Corollary 6 in
(Clémençon et al., 2008). The following result de-
scribes the connection between these assumptions.

Proposition 3 (Noise assumptions) The following
assertions hold true.

(i) If η(X) fulfills Assumption LN(α) for α ∈ [0, 1]
then Assumption NA(α) holds.

(ii) Conversely, if η(X) satisfies Assumption NA(α)
then Assumption LN(α− ε) holds for all ε > 0.

In contrast to what happens for Tsybakov’s noise con-
dition, where α can be very large, up to +∞, recov-
ering in the limit Massart’s margin condition (Mas-
sart, 2000), Assumption NA(α) can be fulfilled for
α ≤ 1 solely. Indeed, as may be shown by a care-
ful examination of Lemma 2’s proof, bound (4) for
α > 1 implies that F ′(η(x)) = 0, denoting by F

the cdf of η(X). Therefore, the (probability) density
of the r.v. η(X) cannot be zero on its whole range
Im(η) = {η(x), x ∈ X }. Condition LN(α) may looks
rather technical and restrictive at first glance, but at
first glance only. Indeed, it simply asks η(X)’s distri-
bution to be sufficently spread. In addition, it far from
restrictive: as shown by Proposition 3 combined with
Corollary 8 in (Clémençon et al., 2008), assumption
LN(1 − ε) is fulfilled for any ε > 0 as soon as η(X)
has a bounded density.

In the context of binary classification, by combin-
ing the CAR assumptions described above and Tsy-
bakov’s noise condition, optimal rates of convergence
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have been obtained in (Audibert & Tsybakov, 2007).
In particular, it has been shown that, with the addi-
tional assumption that µ(dx) satisfies the strong den-
sity assumption, the minimax rate of convergence is
n−β(1+α)/(2β+d) and may be thus faster than n−1/2

or even than n−1, depending on the values taken by
the parameters α and β. We shall now attempt to
determine whether similar results hold in ranking.

3. Comparison Inequalities

It is the purpose of this section to show how the low
noise assumption NA(α) enables to link the accuracy
of a nonparametric estimate of η(x) in terms of Lq-
approximation error to the excess of ranking risk of the
related plug-in ranking rule. Here, η̄ is a Borel func-
tion on Rd and r̄(x, x ′) = 2·I{η̄(x) ≥ η̄(x ′)}−1 denotes
the corresponding (plug-in) ranking function. The
following results improve upon the bound stated in
(Clémençon & Vayatis, 2009a), see Corollary 9 therein.

Proposition 4 (Risk excess and Lq-error) Let
α ∈]0, 1[ and assume that Assumption NA(α) is ful-
filled. Then, the excess of ranking risk can be bounded
as follows: there exists a constant C < ∞, such that
for any distribution P and all approximant η̄, we have

L(η̄) − L∗ ≤ C‖η− η̄‖1+α∞ . (6)

In addition, we have:

P {r̄(X,X ′) 6= r∗(X,X ′)} ≤ C‖η− η̄‖α∞, (7)

where (X,X ′) denotes a pair of independent r.v.’s
drawn from µ(dx).

Let 1 ≤ q <∞. There exist finite constants C0(α, q),
C1(α, q) such that, whatever the distribution P and the
approximant η̄:

L(η̄) − L∗ ≤ C0(α, q)‖η− η̄‖
q(1+α)
q+α

q (8)

and P {r̄(X,X ′) 6= r∗(X,X ′)} ≤ C1(α, q)‖η− η̄‖
q
q+α
q .

These inequalities permit to derive bounds for the
expected excess of ranking risk of plug-in ranking
rules directly (by taking the expectation). Considering
L∞(Rd, µ)-error for instance, the existence of nonpara-
metric locally polynomial estimators (LP) η̂n, optimal
in the minimax sense, such that

sup
η∈Σ(β,L,Rd)

E [‖η̂n − η‖m∞] ≤ C (logn/n)
mβ/(2β+d)

,

(9)
for any m > 0, has been shown in (Stone, 1982) un-
der the strong density assumption. With m = 1 + α,

this bound combined with Eq. (6) leads to an up-
per bound of the order (logn/n)

(1+α)β/(2β+d) for the
maximum expected excess of ranking risk of the rule
r̂n = rbηn . Upper bound results, related to the MSE
based on the L2(Rd, µ)-error measure, established in
(Yang, 1999) (see also (Stone, 1982) in a more restric-
tive framework, stipulating that the strong density as-
sumption is fulfilled) claim that there exist nonpara-
metric estimators of the regression function that at-
tain the minimax rate n−2β/(2β+d) uniformly over the
class Σ(β, L,Rd), yielding an upper bound of the order
n−2β(1+α)/((2β+d)(2+α)) for the maximum expected
excess of ranking risk of the corresponding plug-in
ranking functions.

However, although the comparison inequalities stated
above are useful from a technical perspective (refer to
the Appendix), as will be shown in the next section,
such bounds are not optimal: in the L∞ case, an extra
logarithm factor appears in the rate thus obtained and
in the L2 situation, the exponent involved in the rate
is even suboptimal.

4. Fast Rates in Bipartite Ranking

Equipped with the intermediary results proved in the
previous section, we are now ready for establishing up-
per bounds for the minimax rate of the expected excess
of ranking risk infrn supP∈Σ E[E(rn)], under the set of
assumptions described in the following definition.

Definition 5 Let α ≤ 1, β and L be strictly positive
constants. The collection of distributions probabilities
P(dx, dy) such that

1. the marginal µ(dx) =
∫
y
P(dx, dy) satisfies the

strong density assumption,

2. the global noise assumption NA(α) holds,

3. the regression function belongs to Hölder class
Σ(β, L,Rd),

is denoted by Pα,β,L (omitting to index it by the con-
stants involved in the strong density assumption for
notational simplicity).

An upper bound for the minimax rate is proved by
exhibiting a sequence of ranking rules attaining the
latter. Here we consider the same estimator as that
studied in (Audibert & Tsybakov, 2007) (see section 3
therein). Let K : Rd → R be a Parzen-Rosenblatt
kernel such that K is bounded away from 0 on a
neighborhood of 0 in Rd,

∫
(1 + ||x||4β)K2(x)dx <∞ and supx(1 + ||x||2β)K2(x) < ∞. Fix l ∈ N
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and a bandwidth h > 0, set U(u) = (us)|s|≤l,
Q = (Qs1,s2)|s1|, |s2|≤blc with Qs1,s2 =

∑n
i=1(Xi −

x)s1+s2K((Xi − x)/h) and Bn = (Bs1,s2)|s1|, |s2|≤bβc
with Bs1,s2 = (nhd)−1

∑n
i=1((Xi−x)/h)s1+s2K((Xi−

x)/h). Consider the estimator η̂n,h(x) equal to the lo-
cally polynomial estimate

η̂LPn (x) =

n∑
i=1

YiK

(
Xi − x

h

)
Ut(0)Q−1U(Xi − x)

when η̂LPn (x) ∈ [0, 1] and Bn’s smallest eigenvalue is
larger than 1/ logn, and to 0 otherwise.

Theorem 6 (A minimax upper bound) There ex-
ists a constant C > 0 such that for all n ≥ 1, the
maximum expected excess of ranking risk of the plug-
in rule r̂n(x, x ′) = 2 · I{η̂n,hn(x ′) > η̂n,hn(x)}−1, with
hn = n−1/(2β+d) and l = bβc, is bounded as follows:

sup
P∈Pα,β,L

E (̂rn) ≤ C · n−
β(1+α)
d+2β . (10)

Remark 2 (Fast, but not super-fast, rates.)
Notice that, since α ≤ 1 rates faster than n−1 can-
not be achieved by the plug-in rule r̂n defined in the
theorem above, in spite of the optimality of the re-
lated estimator η̂n,hn . However, for any α ∈]0, 1], fast
rates can be attained (i.e. rates faster than n−1/2),
provided that the regression function is sufficiently
smooth, when β > d/2α namely. Note also that the
rate highly depends on the dimension d of the feature
space, since the bias term is taken into account in the
present analysis (in contrast to most convergence rate
studies). Observe finally that building η̂n,hn requires
knowledge of the parameter β, unknown in most cases
encountered in practice. The construction of plug-in
for other purpose than to carry out minimax rate anal-
ysis leads to consider adaptive regression estimators,
as in (Lecué, 2008) for instance.

5. A Minimax Lower Bound

For completeness, we now state a lower bound for the
minimax rate of the expected excess of ranking risk. It
holds in a specific situation, when d = 1 and αβ ≤ 1
namely, proving the results in full generality requiring
significative developments of the argument sketched in
the Appendix.

Theorem 7 (A minimax lower bound) Let
(α,β) ∈]0, 1] × R∗+ such that αβ ≤ 1. There exists
a constant C > 0 such that, for any ranking rule rn
based on n independent copies of the pair (X, Y), we
have: ∀n ≥ 1,

sup
P∈Pα,β,L

E(rn) ≥ C · n−
β(1+α)
1+2β .

Remark 3 (Minimaxity & plug-in optimality.)
This result shows that the plug-in rule described in Sec-
tion 4 is optimal in the case αβ ≤ 1, the rates involved
in Theorem 6 being minimax (and fast when, addition-
ally, αβ > 1/2).

6. Conclusion

The need for understanding the originality/specificity
of bipartite ranking in regards to the (minimax) learn-
ing rates that can be attained, in comparison to clas-
sification rates in particular, motivates the present pa-
per. A global low noise assumption, extending the
Mammen-Tsybakov condition originally proposed in
the context of binary classification, is introduced, un-
der which novel comparison inequalities, linking ap-
proximation error of a regression estimate and rank-
ing risk of the corresponding plug-in rule, are proved.
By considering a specific (locally polynomial) regres-
sion estimator, we highlighted the fact that fast rates
can be achieved (by plug-in ranking rules in particu-
lar) in certain situations. A preliminary lower bound
result showed that these rates are actually optimal in
a restrictive (univariate) situation. To the best of our
knowledge, the present analysis, destined to be com-
pleted in regards to minimax lower bounds and adap-
tivity of the nonparametric estimators considered, is
the first to state results of this nature.

Technical Proofs

Proof of Lemma 2. Let F denote η(X)’s cumula-
tive distribution function. The first part of the lemma
immediately results from the fact that NA(α) can be
rewritten as follows: ∀(t, x) ∈ R+ × X , F(η(x) + t) −
F(η(x) − t) ≤ C · tα. The cdf F is thus absolutely con-
tinuous. Denote by φ the related density. Observe
that, when α = 1, the bound above can be written
as (F(η(x) + t) − F(η(x) − t))/t ≤ C. Letting then t
tend to zero, one obtains that, for all x ∈ supp(µ),
2φ(η(x)) ≤ C.

Proof of Proposition 3. Hölder inequality combined
with condition NA(α) shows that E[I{|η(X) − η(x)| <
t}] is bounded by

c1/(1+α)E[I{|η(X) − η(x)| < t} · |η(X) − η(x)|]α/(1+α),

which quantity is clearly less than c1/(1+α)tα/(1+α).
This permit to prove assertion (i).

Let x ∈ X and ε > 0 be fixed. We have

E[|η(x ′) − η(X)|−α+ε]

=

∫+∞
0

α

t1+α−ε
P {|η(X) − η(x)| < t}dt.
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Using NA(α) when integrating over [0, 1] and bound-
ing simply the probability by 1 otherwise, this permits
to establish assertion (ii).

Proof of Lemma 4. Lemma 1 yields

E(rη̄) = E[|η(X) − η(X ′)|I{(X,X ′) ∈ Γη̄}],

where Γη̄ = {(x, x ′) : (η̄(x ′) − η̄(x))(η(x ′) − η(x)) < 0}.
Observe that on the event Γη̄, we have

|η(X) − η(X ′)| ≤ |η(X) − η̄(X)| + |η(X ′) − η̄(X ′)|

≤ 2 ‖η− η̄‖∞.
Using now condition NA(α), this proves the first
part of the result. The same argument shows that
P{r̄(X,X ′) 6= r∗(X,X ′)} ≤ P{|η(X) − η(X ′)| < 2‖η −
η̄‖∞}. Combining this bound to NA(α) permits to
finish the proof when q =∞.

When q < ∞, decompose E(r̄) = E[|η(X) −
η(X ′)|I{(X,X ′) ∈ Γη̄}] into a sum of two terms, depend-
ing on whether |η(X) − η(X ′)| ≤ t or not. As above,
the first term is bounded by E[2|η(X) − η̄(X)|I{|η(X) −
η(X ′)| ≤ t}]. Combining Hölder inequality with
NA(α), one gets that 2E[|η(X) − η̂n(X)|I{|η(X) −
η(X ′)| < t}] is bounded by C(q−1)/qtα(q−1)/q‖η−η̄‖q.
The second term is bounded by the expectation of

(|η(X) − η̄(X)| + |η(X ′) − η̄(X ′)|)×
I{|η(X) − η̄(X)| + |η(X ′) − η̄(X ′)| > t}],

which term can be shown to be smaller than 4E[|η(X)−
η̄(X)|I{|η(X) − η̄(X)| > t/2}]. Combining Hölder and
Markov inequalities, this is bounded by 2q+1‖η −
η̄‖qq/tq−1. Finally, minimizing in t, we obtain the
desired result. The same argument can be applied
to P{r̄(X,X ′) 6= r∗(X,X ′)}, in order to decompose it
into two terms, whether |η(X) − η(X ′)| ≤ t or not.
The first one is bounded by Ctα and the other one by
2q+1‖η− η̄‖qq/tq. Hence, optimizing in t leads to the
last bound stated in the Proposition.

Proof of Theorem 6. We start with establishing the
following result.

Lemma 8 Assume that condition NA(α) holds for
α > 0. Let η̂n be an estimator of η. Assume that
P is a set of joint distributions such that: ∀n ≥ 1,

sup
P∈P

P {|η̂n(X) − η(X)| > δ} ≤ C1 exp(−C2anδ
2),

(11)
for some constants C1 and C2. Then, there exists a
constant C <∞ such that we have for all n ≥ 1:

sup
P∈P

E[E(rbηn)] ≤ C · a(1+α)/2
n .

proof. Let u ∈ (0, 1), consider the sequence of (dis-
joint) subsets of Rd defined by

A0(u) = {x ∈ Rd : |η(x) − u| < δ},

Aj(u) = {x ∈ Rd : 2j−1δ < |η(x) − u| < 2jδ}, for j ≥ 1.

For any δ > 0, we may write E(rbηn) as∑
j≥0

EX ′EX[|η(X)−η(X ′)|I{X ∈ Aj(X ′)}I{(X,X ′) ∈ Γbηn }]

The term corresponding to j = 0 in the sum above
is bounded by Cδ1+α by virtue of assumption
NA(α). The one indexed by j ≥ 1 is smaller than
2j+1δE

[
I{|η̂n(X) − η(X)| > 2j−2δ, X ∈ Aj(X ′)}

]
.

Then, using the hypothesis on the class
P plus assumption NA(α), it is less than
2C12

j(1+α)δ1+α exp(−C2an(2j−2δ)2). The proof
is finished by summing all the bounds. �

It follows from Theorem 3.2 in (Audibert & Tsybakov,
2007) that (11) holds for the estimator considered with
an = n

2β
2β+d when P = Pα,β,L. Using the lemma, this

lead to the following upper bound for the excess risk.
Now, using inequality (6) and taking δ = a

−1/2
n , one

gets the desired result.

Proof of Theorem 7 (Sketch of). The proof is
classically based on Assouad’s lemma. For q ≥ 1,
consider the regular grid on [0, 1] defined by

G(q) =

{
2k1 + 1

2q
: k ∈ {0, ..., q− 1}

}
.

Let ξq(x) ∈ G(q) be the closest point to x ∈ [0, 1] in
G(q) (uniqueness of ηq(x) is assumed: if it does not
hold, define ξq(x) as the one which is in addition clos-
est to 0). Consider the partition X ′1, ...,X ′q of [0, 1] de-
fined using the grid G(q): x and y belong to the same
subset iff ξq(x) = ξq(y). Obviously, X = [0, 1] =
∪qi=1X ′i . Let u1 : R+ → R+ be a nonincreasing in-
finitely differentiable function as in (Audibert & Tsy-
bakov, 2007). Let u2 : R+ → R+ be a infinitely differ-
entiable bump function such as u ′2 = 1 over [1/12, 1/6].
Define φ1, φ2 : R→ R+ by φi(x) = Cφui(‖x‖),where
the constant Cφ is taken small enough to ensure that
|φi(x)−φi,x(x

′)| ≤ L|x ′−x|β for any x, x ′ ∈ R . Thus
φ1, φ2 ∈ Σ(β, L,R). We form groups of K intervals,
Gk = [kK/q; (k+ 1)K/q], k ∈ {1, ..., bq/Kc}, and define
the hypercube H = {P~σ,~σ ∈ Sbq/Kc}, where Sbq/Kc is
the symmetric group of order bq/Kc, of probability dis-
tributions P~σ on [0, 1]× {−1,+1} as follows. We define
X’s marginal distribution so that it does not depend
on ~σ and has a density µ w.r.t Lesbesgue measure. Fix
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W > 0 and set µ(x) = W/λd(B(z, 1/4q) if x belongs
to a set B(z, 1/6q) \ B(z, 1/12q) for some z ∈ G(q),
and µ(x) = 0 for all other x. Next, the distristribution
of Y given X for P~σ ∈ H is defined by the regression
function

η~σ(x) = k(x)K/q+ σ(k(x))(x)h̃φ1(q|x− ξq(x)|)

+ h̃φ2(q|x− ξq(x)|),

where h̃ is a function of q and k(x) = bxq/Kc. We
now check the assumptions. Because of the design,
Hölder condition holds for x, x ′ ∈ Xi (Audibert &
Tsybakov, 2007). In contrast to the classification sit-
uation, we have to check that the Hölder condition
holds for x ∈ Xi, x ′ ∈ Xj when i 6= j, Xi and Xj be-
long to a same group Gk. One can see that Hölder
condition holds as soon as Kh̃ ≤ Lq−β. Consider now
the margin assumption. For t = O(h̃), it implies that
W ≤ Ch̃α. A constraint on K is also induced by the
margin assumption: restricted to a group, the range of
η has a measure of order q−β (because of the Hölder
assumption). Hence, the margin assumption is satis-
fied if KW = O(q−αβ). Because of the strong density
assumption, we also have W > C/q. Combining the
two last inequalities leads to αβ ≤ 1, guaranteeing
that K ≥ 2. Now, following step by step the argument
in (Mammen & Tsybakov, 1995), (Lecué, 2008) and
(Audibert, 2009), we can prove that:

inf
ŝn

sup
π∈PΣ,α,β

L(ŝn) − L∗ ≥ KW

128qβ
(1− q−β

√
2nW).

Finally, taking q = C1n
1

2β+1 , W = C2/q and K =
C3q

1−αβ, with some positive constants C1, C2, C3
properly chosen, ends the proof.
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Clémençon, S., Lugosi, G., and Vayatis, N. Ranking
and scoring using empirical risk minimization. In
Proceedings of COLT, 2005.
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