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Abstract

We study online algorithms for selective sam-
pling that use regularized least squares (RLS)
as base classifier. These algorithms typically
perform well in practice, and some of them
have formal guarantees on their mistake and
query rates. We refine and extend these guar-
antees in various ways, proposing algorith-
mic variants that exhibit better empirical be-
havior while enjoying performance guaran-
tees under much more general conditions. We
also show a simple way of coupling a generic
gradient-based classifier with a specific RLS-
based selective sampler, obtaining hybrid al-
gorithms with combined performance guar-
antees.

1. Introduction

Online selective sampling is an active variant of online
learning in which the learner is allowed to adaptively
subsample the labels of an observed sequence of fea-
ture vectors. The learner’s goal is to achieve a good
trade-off between mistakes rate and number of sam-
pled labels. This can viewed as an abstract protocol
for interactive learning applications. For example, a
system for categorizing stories in a newsfeed asks for
human supervision whenever it feels that more train-
ing examples are needed to keep the desired accuracy.

Linear classifiers lend themselves well to selective sam-
pling settings. The margin of the classifier on the cur-
rent instance can be viewed as a measure of confidence
for the classification of the instance’s label. If this con-
fidence is deemed too low, then the selective sampler
queries the label and uses it, along with the instance,
to adjust the underlying linear model. The selective
sampler performance is evaluated both in terms of pre-
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dictive accuracy over the entire sequence of examples
and in terms of the overall number of sampled labels.

In this work we consider kernel-based linear classi-
fiers that compute their margins using the regularized
least squares (RLS) estimate. When used for selective
sampling, these algorithms offer a good compromise
between theoretical robustness and empirical perfor-
mance. More specifically, we focus on two RLS-based
selective samplers: BBQ (Cesa-Bianchi et al., 2009)
and the single teacher version of the algorithm pro-
posed in (Dekel et al., 2010), which we call DGS. As
far as we know, these are the only two examples of ef-
ficient online algorithms that offer simultaneous guar-
antees on mistake and query rate without stringent as-
sumptions on the data process (such as i.i.d. or linear
separability). Both algorithms make the same stochas-
tic assumption on the process generating labels: the
Bayes classifier belongs to the RKHS induced by the
kernel with which the algorithm is run. On the con-
trary, no assumptions are made on the generation of
the instances sequence1. BBQ and DGS base their
query decisions on a quantity, called rt, which esti-
mates the variance of the RLS margin at the current
time step t. Intuitively, if the variance of the RLS
linear estimate is high in the direction of the feature
vector observed at time t, then the label of that vector
gets sampled. BBQ compares rt with a threshold poly-
nomial in 1/t, where the degree of the polynomial is a
free parameter. The threshold used by DGS, instead,
is the squared margin returned by the RLS estimate
on the current instance divided by a logarithmic quan-
tity. In both cases, the label is sampled if rt is bigger
than the threshold.

In this work we refine and extend the theoretical analy-
sis of both algorithms, and provide empirical evidence
about differences in their behavior. In particular:

1. While previous analyses could only handle unit

1Although the analyses of both algorithms work for ad-
versarially chosen instance sequences, DGS assumptions
are weaker, as they allow each instance to be adversari-
ally chosen as a function of past label realizations.
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norm Bayes classifiers, we remove this assumption and
explicit the dependence of regret and queries on the
unknown norm of the Bayes classifier. This is espe-
cially important when RLS is run in the RKHS in-
duced by a universal kernel (Steinwart, 2001), since
now the Bayes classifier can be any continuous function
of the instances. As a consequence, we can virtually
drop any assumption about the way labels stochasti-
cally depend on each instance.

2. Most selective samplers, including BBQ, have a
parameter to control the sampling rate. The original
version of DGS, instead, is parameterless. This makes
the algorithm rather awkward to use. Indeed, in some
experiments we observed that DGS keeps sampling all
labels for a long initial stretch of the instance sequence.
We thus introduced a tunable parameter in DGS sam-
pling rule and derived new bounds on mistakes and
queries that take this parameter into account (further
modifications of the original rule were necessary in or-
der to prove these bounds, we call DGS-Mod the DGS
algorithm using the modified rule). Experiments show
that DGS-Mod performs much better than DGS, and
in some case better than all other baselines we consid-
ered.

3. We have improved the analysis of BBQ by deriving
a tighter upper bound on the regret. The improvement
is significant in the following sense. If the instance
process is i.i.d. and satisfies the well-known Mammen-
Tsybakov low noise condition, then —provided BBQ
parameter is properly tuned— the instantaneous re-

gret per sampled label vanishes at rate N−
1+α

2 , where
α is the exponent in the low noise condition. This
is asymptotically better than the previous rate and
matches the rate achieved by DGS/DGS-Mod under
the same assumptions.

4. In many situations, one would like to run a selective
sampler using an underlying linear classifier different
than RLS. For example, one might be interested in
specific regularizers that promote certain patterns in
the data, such as sparsity. Unfortunately, to the best
of our knowledge, there are no simultaneous bounds on
regret and queries for arbitrary online linear classifiers
run in selective sampling mode. In this paper we show
that one can combine any gradient-based online clas-
sifier based on strongly convex regularizers with the
DGS-Mod algorithm and obtain a selective sampler
with the same query rate as DGS-Mod and the same
mistake bound as the online classifier (plus a constant
term).

5. Our experiments reveal that both BBQ and DGS-
Mod generally perform well when run with linear ker-
nels. With nonlinear kernels, instead, DGS-Mod suf-

fers badly while BBQ keeps a very good performance.
This fact is apparently caused by a bad dependence of
DGS/DGS-Mod query bound on the determinant of
the Gram matrix. Finally, if data are generated ac-
cording to the stochastic assumptions underlying both
algorithms, then BBQ outperforms all other baselines.

2. Preliminaries

Selective sampling is a modification of the online learn-
ing protocol for binary classification. At each step
t = 1, 2, . . . the learner receives and instance x ∈ Rd
and outputs a binary prediction for the instance’s bi-
nary label yt ∈ {−1,+1}. After each prediction, the
learner may observe the true label yt only by query-
ing for it. Hence, if no query is issued at time t, then
yt remains unknown. Since the learner’s performance
is expected to improve as more labels are observed,
the goal in selective sampling is to trade off predictive
accuracy against number of queries.

Given a RKHS H with feature map φ and inner prod-
uct 〈· , ·〉, we make the following assumptions on the
data-generating process: the sequence x1,x2, · · · ∈ Rd
of instances is such that there exists f ∈ H for which∣∣ 〈f , φ(xt)〉

∣∣ ≤ 1 for all t. Moreover, we assume la-
bels yt are realizations of independent random vari-
ables Yt such that E[Yt | xt] = 〈f , φ(xt)〉. Hence
sgn

(
〈f , φ(xt)〉

)
, is the Bayes optimal classification for

this noise model. Note that we do not make any as-
sumption on ‖f‖2 = 〈f , f〉. In particular, we assume
that this quantity is not known to the algorithm.

Note that ifH has a universal kernel (Steinwart, 2001),
then any continuous function g(xt) = E[Yt | xt] is well
approximated by some f ∈ H. Hence, with univer-
sal kernels our noise model becomes quite general. In
fact it only requires the labels to be generated by a
stochastic source with a probability density function,
which must be continuous w.r.t. the input space. For
simplicity, in the sequel we always use the linear kernel
and write E[Yt | xt] = u>xt for some u ∈ Rd. Here
u ∈ Rd is the Bayes classifier of unknown norm ‖u‖
which satisfies

∣∣u>xt∣∣ ≤ 1 for all t. We also use the
notation ∆t = u>xt.

The trade-off addressed by the learner concerns the si-
multaneous control of the number NT of queried labels
and the cumulative regret

RT =

T∑
t=1

(
P(Yt ∆̂t < 0)− P(Yt ∆t < 0)

)
(1)

uniformly over the number T of prediction steps. Fol-
lowing previous papers (Cesa-Bianchi et al., 2009;
Dekel et al., 2010), our bounds can depend on the
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number of steps where the labels Yt are close to being
random. According to our noise model, this is cap-
tured by ε Tε, where Tε =

∣∣{1 ≤ t ≤ T : |∆t| < ε}
∣∣.

We consider selective sampling algorithms that use
sgn

(
∆̂t

)
to predict yt, where ∆̂t ∈ R is an estimate of

∆t. Let Zt be the indicator function of the event that
yt is queried at time t. Then the cumulative regret can
be decomposed as follows (we often use { · } to denote
the indicator function of an event).

Lemma 1. (Dekel et al., 2010) For any ε > 0,

RT ≤ ε Tε +

T∑
t=1

Z̄t{∆t∆̂t < 0, |∆t| > ε}

+

T∑
t=1

Zt{∆t∆̂t < 0, |∆t| > ε}|∆t| .

A different regret decomposition, which we later use,
is the one below here.

Lemma 2. (Cesa-Bianchi et al., 2009)

RT ≤ ε Tε +

T∑
t=1

P
(∣∣∆̂t −∆t

∣∣ ≥ ε) .
Our algorithms predict with the margin ∆̂t = w>t xt,
where wt is computed via the familiar RLS estimate2

wt =
(
I + St−1 S

>
t−1 + xtx

>
t

)−1
St−1 Y t−1 . (2)

The random matrix St−1 =
[
x′1, . . . ,x

′
Nt−1

]
contains

the Nt−1 queried instances up to time t− 1. The ran-
dom vector Y t−1 =

(
Y ′1 , . . . , Y

′
Nt−1

)
contains the ob-

served labels (so that Y ′k is the label of x′k), and I
is the d × d identity matrix (whenever it is possible,
we avoid expressing our quantities using dual-variable
notation).

Introduce the notation At =
(
I + St−1 S

>
t−1

)
, Bt =

u>
(
I + xt x

>
t

)
(At + xt x

>
t )−1xt, rt = x>t (At +

xt x
>
t )−1xt. The following are standard properties of

the RLS estimate (2), see for example (Cesa-Bianchi
et al., 2009).

Lemma 3. For each t = 1, 2, . . . the following inequal-
ities hold:

1. E ∆̂t = ∆t −Bt, where |Bt| ≤ ‖u‖
√
rt + rt;

2. For all ε > 0,

P
(∣∣∆̂t +Bt −∆t

∣∣ ≥ ε ∣∣∣St−1

)
≤ 2 exp

(
− ε2

2rt

)
.

2Note that the sign of the prediction does not change if
xtx

>
t is removed from the expression in parenthesis.

3. If NT is the total number of queries issued in the
first T steps, then

T∑
t=1

Zt rt ≤ ln |AT+1| ≤ d ln

(
1 +

∑NT
i=1 ‖xi‖2

d

)
.

Using Lemma 3 we can prove the following.

Lemma 4. For all ε, p > 0,

P
(∣∣∆̂t −∆t

∣∣ ≥ ε ∣∣∣St−1

)
≤ 2 exp

(
− ε2

8rt

)
+ exp

1− ε2p(
4rt
(
‖u‖2 + ε

))p
 .

Proof. We expand the indicator of
∣∣∆̂t − ∆t

∣∣ ≥ ε by
introducing the bias term Bt{∣∣∆̂t −∆t

∣∣ ≥ ε} ≤{∣∣∆̂t +Bt −∆t

∣∣ ≥ ε

2

}
+
{
|Bt| >

ε

2

}
.

The first term is bounded with Lemma 3(2). For the
second term, note that{
|Bt| >

ε

2

}
≤
{
‖u‖
√
rt + rt >

ε

2

}
≤

{
rt >

ε2

4
(
‖u‖2 + ε

)} =

{
rpt >

(
ε2

4
(
‖u‖2 + ε

))p}

≤ exp

1− ε2p(
4rt
(
‖u‖2 + ε

))p
 .

The first inequality is obtained from Lemma 3(1). The
last one uses {b < 1} ≤ e1−b ∀ b.

3. A new bound for the BBQ algorithm

In this section we improve the regret bound of the BBQ
selective sampler (Algorithm 1). The proof is based
on applying techniques from (Dekel et al., 2010) to
the original BBQ proof of (Cesa-Bianchi et al., 2009).
Here we only show the main differences.

Theorem 1. If BBQ is run with input κ ∈ [0, 1] then,
after any number T of steps, NT ≤ Tκ ln |AT+1| with
probability 1. Moreover, the cumulative regret satisfies

RT ≤ min
0<ε<1

(
ε Tε +

8
(
‖u‖2 + 1

)
ε

ln

(
5NT
δ

)
ln |AT+1|

+ 2 d1/κe!
(

8

ε2

)1/κ

+ e

(
4
(
‖u‖2 + ε

)
ε2

)1/κ)
with probability at least 1− δ uniformly over T .
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Algorithm 1 The BBQ selective sampler

Parameter: 0 ≤ κ ≤ 1
Initialization: Vector w = 0, matrix A1 = I
for each time step t = 1, 2, . . . do

Observe instance xt ∈ Rd
Predict label yt ∈ {−1,+1} with sgn(w>t xt)
if rt > t−κ then

Query label yt
At+1 = At + xtx

>
t

wt+1 = A−1
t+1(Atwt + ytxt)

else
At+1 = At,wt+1 = wt

end if
end for

Note that when the dimension d is finite, Lemma 3(3)
shows that NT is of order d Tκ

(
lnT + ln lnT

)
.

Proof. We use Lemma 1 when Zt = 1 and Lemma 2
when Zt = 0,

T∑
t=1

P(Yt ∆̂t < 0)− P(Yt ∆t < 0)

≤ ε{|∆t| < ε}+
∑

t : rt≤t−κ
P
(∣∣∆̂t −∆t

∣∣ ≥ ε)
+

∑
t : rt>t−κ

{
∆̂t∆t ≤ 0, |∆t| ≥ ε

}
|∆t| .

Proceeding as in (Dekel et al., 2010), we can write{
∆̂t∆t ≤ 0, |∆t| ≥ ε

}
|∆t| ≤

(∆t − ∆̂t)
2

ε
.

We now use the fact that in BBQ St, and conse-
quently Nt, are deterministic quantities for all t. From
Lemma 4, overapproximating and setting p = 1, it fol-
lows that with probability at least 1− δ

NT
we have(

∆̂t −∆t

)2

≤ 8(U2 + 1)rt ln

(
(2 + e)NT

δ

)
.

Hence we have that, with probability at least 1− δ,∑
t : rt>t−κ

{
∆̂t∆t ≤ 0, |∆t| ≥ ε

}
|∆t|

≤ 1

ε

∑
t : rt>t−κ

8(U2 + 1)rt ln

(
(2 + e)NT

δ

)

≤
8
(
‖u‖2 + 1

)
ε

ln

(
5NT
δ

) ∑
t : rt>t−κ

rt

≤
8
(
‖u‖2 + 1

)
ε

ln

(
5NT
δ

)
ln |AT+1|

where in the last step we used Lemma 3(3). For the
rounds when a label is not asked we use the following
inequality from (Cesa-Bianchi et al., 2009),

T∑
t=1

exp (−atκ) ≤ d1/κe!
(

1

a

)1/κ

.

Lemma 4 with p = 1/κ now implies∑
t : rt≤t−κ

P
(∣∣∆̂t −∆t

∣∣ ≥ ε)

≤ 2d1/κe!
(

8

ε2

)1/κ

+ e

(
4
(
‖u‖2 + ε

)
ε2

)1/κ

.

The bound on the number NT of queried labels is the
same as in (Cesa-Bianchi et al., 2009).

This bound, beside showing explicitly the dependency
on the norm of u, has a better dependency on ε in the
regret bound, compared to the one proved in (Cesa-
Bianchi et al., 2009). This allows us to prove an op-
timal rate in the i.i.d. case. In fact, consider the case
when the instances xt are i.i.d. random variables Xt

with fixed but unknown distribution. We model the
distribution of the instances around the hyperplane
u>x = 0 using the popular Mammen-Tsybakov low
noise condition (Tsybakov, 2004):

There exist c > 0 and α ≥ 0 such that

P
(∣∣u>X∣∣ < ε

)
≤ c εα for all ε > 0.

Note that, when the noise exponent α is 0, this condi-
tion is vacuous.

It is easy to show that a proper choice of κ as a function
of α gives that the regret of BBQ, when expressed in
terms of the number N of queries, vanishes at rate

N−
1+α
2 excluding log factors. This is the same rate

as the one obtained by the DGS algorithm under the
same low noise condition, although DGS requires no
tuning.

4. A modified DGS algorithm

In this section we propose and analyze a modification
of the DGS selective sampler, called DGS-Mod (Al-
gorithm 2), where we introduce a parameter α > 0
in the query rule. This parameter, which appears in
both regret and query bounds, allows us to trade off
regret against queries in a smooth way. In addition
to that, we also change the query rule to make the al-
gorithm independent from the unknown norm of the
Bayes optimal classifier u (which in previous analyses
was assumed to be known and set to 1).
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Algorithm 2 The DGS-Mod algorithm

Parameter: α > 0
Initialization: Vector w1 = 0, matrix A1 = I
for each time step t = 1, 2, . . . do

Observe instance xt ∈ Rd
Set ∆̂t = w>t xt
Predict label yt ∈ {−1,+1} with sgn(∆̂t)
θ2
t = 2α

(
x>t A

−1
t xt

)
hδ(t) log t

if ∆̂2
t ≤ θ2

t then
Query label yt

wt+1/2 = wt − sign(∆̂t)
∣∣∣ |∆̂t|−1

x>t A
−1
t xt

∣∣∣
+
A−1
t xt

At+1 = At + xtx
>
t and rt = x>t A

−1
t+1xt

wt+1 = A−1
t+1(Atwt+1/2 + ytxt)

else
At+1 = At,wt+1 = wt

end if
end for

Let hδ(t) = 4
∑t−1
s=1 Zsrs + 36 ln(t/δ), the DGS-Mod

strategy (Algorithm 2) decides whether to query by
comparing the square of the current margin to the
threshold θ2

t = 2α
(
x>t A

−1
t xt

)
hδ(t) ln t. This strategy

is motivated by the following Lemmas, that prove that
in this way the regret on rounds when no label is asked
sum to a constant factor that depends on the ratio be-
tween the unknown squared norm of u and α.

Lemma 5. (Dekel et al., 2010) With probability at

least 1 − δ, (∆t − ∆̂t)
2 ≤

(
x>t A

−1
t xt

)(
‖u‖2 + hδ(t)

)
holds simultaneously for all t ≥ 1.

Lemma 6. With probability at least 1 − δ uniformly
over T we have

T∑
t=1

Z̄t

{
∆t∆̂t < 0

}
≤ 1 +

2

3
exp

(
1

α

(
‖u‖2

24
+ 1

))
.

Proof. Using Lemma 5, for each t ≥ 2 we can write

Z̄t

{
∆t∆̂t < 0

}
≤
{

(∆t − ∆̂t)
2 > ∆̂2

t , ∆̂2
t > θ2

t

}
≤
{
x>t A

−1
t xt

(
‖u‖2 + hδ(t)

)
> θ2

t

}
=

{
‖u‖2 + hδ(t)

αhδ(t)
> 2 ln t

}
≤ 1

t2
exp

(
‖u‖2 + hδ(t)

αhδ(t)

)

≤ 1

t2
exp

(
1

α

(
‖u‖2

36 ln(2/δ)
+ 1

))
.

Since the above chain of inequalities holds for all t ≥ 2
with probability at least 1 − δ, by summing over t =
1, . . . , T we obtain the desired result.

We can now prove the regret bound for DGS-Mod and
its bound on the number of queries.

Theorem 2. After any number T of steps, with prob-
ability at least 1 − δ, the cumulative regret RT of the
modified DGS algorithm run with input α > 0 satisfies

RT ≤ min
0<ε<1

(
1 + ε Tε +

2

3
exp

[
1

α

(
‖u‖2

24
+ 1

)]

+
1

ε

(
2 ‖u‖2 + 8 ln |AT+1|+ 144 ln

T

δ

))
and for X ≥ maxt ‖xt‖ the number NT of queries sat-
isfies

NT ≤ 1 + Tε +
4(1 +X2)

ε2
ln |AT+1|

×
[
‖u‖2 +

(
1 + 2α lnT

)(
4 ln |AT+1|+ 36 ln

T

δ

)]
.

Proof. By Lemma 1, in order to bound RT is

enough bounding
∑T
t=1 Z̄t

{
∆t∆̂t < 0, |∆t| > ε

}
via

Lemma 6, and then using the bound

T∑
t=1

Zt{∆t∆̂t < 0, |∆t| > ε}|∆2
t |

≤ 1

ε

(
2 ‖u‖2 + 8 ln |AT+1|+ 144 ln

T

δ

)
obtained via an obvious modification of the corre-
sponding result in (Dekel et al., 2010). In order to

bound NT , define βt = ε2

4
2α ln t

1+2α ln t . Then

Zt = Zt
{
θ2
t < βt

}
+ Zt

{
θ2
t ≥ βt

}
= Zt

{
∆̂2
t ≤ θ2

t , θ
2
t < βt

}
+ Zt

{
θ2
t ≥ βt

}
. (3)

Consider the first term in (3). Using Lemma 1,

|∆t| ≤ |∆̂t|+
√
x>t A

−1
t xt

(
‖u‖2 + hδ(t)

)
holds for each t ≥ 2 with probability at least 1 − δ.
Hence, using (a+ b)2 ≤ 2a2 + 2b2 we have that{

∆̂2
t ≤ θ2

t , θ
2
t < βt

}
≤
{

∆2
t ≤ 2θ2

t + 2x>t A
−1
t xt

(
‖u‖2 + hδ(t)

)
, θ2
t < βt

}
=

{
∆2
t ≤ 2θ2

t

1 + 2α ln t

2α ln t
+ 2 ‖u‖2 x>t A−1

t xt, θ
2
t < βt

}
≤
{

∆2
t ≤ 2βt

1 + 2α ln t

2α ln t
+ 2 ‖u‖2 x>t A−1

t xt

}
=

{
∆2
t ≤

ε2

2
+ 2 ‖u‖2 x>t A−1

t xt

}
≤
{

∆2
t ≤ ε2

}
+

{
2 ‖u‖2 x>t A−1

t xt >
ε2

2

}
≤
{

∆2
t ≤ ε2

}
+

4(1 + ‖xt‖2) ‖u‖2 rt
ε2
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holds for each t ≥ 2 with probability at least 1− δ. In
the last inequality we used x>t A

−1
t xt ≤ (1 + ‖xt‖2)rt.

For the second term in (3) we have{
θ2
t ≥ βt

}
=
{

4
(
x>t A

−1
t xt

)
(1 + 2α ln t)hδ(t) ≥ ε2

}
≤ 4

ε2

(
x>t A

−1
t xt

)
(1 + 2α ln t)hδ(t)

≤ 4rt
ε2

(1 +X2)(1 + 2α lnT )hδ(T ) .

Summing rt over t = 1, . . . , T and using hδ(T ) ≤
4 ln |AT+1|+ 36 ln T

δ concludes the proof.

Comparing DGS-Mod and DGS bound, we can see
that the independence on the norm of u comes at
the cost of an additional constant term in the regret
bound, and term 1 + 2α lnT multiplying the second
part of the bound on the number of queries. We now
compare the bounds for BBQ and DGS-Mod. Both
regret bounds have a term that takes into account
the rounds in which no label is asked, and depends
on the unknown squared norm of the Bayes classi-
fier u. In BBQ this term has a polynomial depen-
dence on ‖u‖, whereas in DGS-Mod this dependence
is exponential. However, the main difference between
the two algorithms is in the query bounds. Whereas
in BBQ the query bound is deterministic and con-
trolled by Tκ, DGS-Mod has a probabilistic query
bound which depends, through Tε, on the number of
small margin instances —a far less controllable quan-
tity. Moreover, DGS-Mod query bound contains the
term ln2 |AT+1|. This can grow fast when the RKHS
is infinite-dimensional, as in the case of universal ker-
nels. Indeed, in Section 6 we observe a super-linear
growth of this term in case of Gaussian kernels, and a
corresponding bad empirical behavior of DGS-Mod.

5. A hybrid algorithm

In this section we address the question of design-
ing selective samplers whose underlying online classi-
fier is not based on RLS. For example, consider the
gradient-based online classifier that predicts the la-
bel of xt ∈ Rd with sgn(v>t xt), where v1 = 0 and
vt+1 = ∇f∗

(
∇f(vt) − ytxt

)
. Here f is any differen-

tiable function which is strongly convex w.r.t. a norm
‖·‖. The function f acts as a regularizer, promot-
ing specific structures in the data sequence such as
sparsity. One can derive randomized selective sam-
plers from gradient-based classifiers using the tech-
nique of (Cesa-Bianchi et al., 2006). However, via this
technique one only bounds the regret and not the num-
ber of queries. We now show a way of combining the
DGS-Mod algorithm with any gradient-based online

Algorithm 3 The hybrid DGS selective sampler

Parameters: α > 0 (used by DGS-Mod)
Initialization: Weight vectors v1 = 0, w1 = 0
for each time step t = 1, 2, . . . do

Observe instance xt ∈ Rd
Set ∆̂t = w>t xt
if ∆̂2

t ≤ θ2
t then

Predict label yt ∈ {−1,+1} with sgn(v>t xt)
Query label yt
Update wt using the DGS-Mod algorithm
vt+1 = ∇f∗

(
∇f(vt)− ytxt

)
else

Predict label yt ∈ {−1,+1} with sgn(∆̂t)
end if

end for

classifier so that the resulting selective sampler enjoys
a simultaneous bound on regret and number of queries.

Consider the hybrid DGS (Algorithm 3). This selec-
tive sampler runs in parallel the gradient-based classi-
fier and the DGS-Mod algorithm. If DGS-Mod issues
a query on the current instance, then the prediction
of the gradient-based classifier is used; otherwise, the
prediction of DGS-Mod is used. When a query is is-
sued, both algorithms use the label to make an update.

Using the framework of (Orabona & Crammer, 2010),
we get that any gradient-based classifier, using a β-
strongly convex function f such that f(av) ≤ a2f(v)
for all a ∈ R+, has a mistake bound

MT < inf
v∈Rd

(
LT (v) +X

√
2f(v)

β
T

)

on any sequence (xt, yt), . . . , (xT , yT ) ∈ Rd×{−1,+1}
of examples. Here LT (v) =

∑T
t=1 `t(v) is the cumula-

tive hinge loss of v and maxt ‖xt‖∗ ≤ X. This can be
used to prove the following result (proof omitted).

Theorem 3. If the hybrid DGS algorithm is run on
an arbitrary sequence of instances with labels generated
according to the model of Section 2, then with proba-
bility at least 1−δ the number MT of mistakes satisfies

MT ≤ LT (u) +X

√
2f(u)

β
NT +O(1)

where u ∈ Rd defines the Bayes classifier. NT is the
number of queries issued on the same sequence by the
DGS-Mod algorithm, which also bounds the number of
queries made by the hybrid DGS algorithm.

This bound differs from the previous ones (Theorem 1
and 2) in a few aspects. There, the probability of mak-
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Figure 1. Accuracy against number of examples on the syn-
thetic dataset when the query rate is ∼0.135 (averages over
5 random permutations).

ing a mistake is bounded as a function of the probabil-
ity of u making a mistake. Here, we compare mistakes
of the algorithm to hinge loss of u. In the bound,
the only term that depends on time is

√
NT , which is

small when DGS-Mod issues few queries. Moreover,
this term is proportional to X

√
f(u). So, if the reg-

ularizer f matches the properties of u and the data,
through the dual norm ‖ · ‖∗, we can expect fewer mis-
takes. We see this experimentally in Section 6.

6. Experiments

In this section we compare the average accuracy (to-
tal number of correct online classifications divided
by the number of examples) of BBQ and DGS-Mod
against two baselines, both using RLS as base clas-
sifier. We use synthetic and real-world datasets
with linear and Gaussian kernels. Our baselines are:
SOLE from (Cesa-Bianchi et al., 2006), SS and SSMD
from (Cavallanti et al., 2008). All algorithms have a
tunable parameter to trade-off performance vs. num-
ber of queried labels.

Synthetic dataset with linear kernel. In our first
experiment we use a synthetic dataset with 10,000 ex-
amples drawn from a uniform distribution in 100 di-
mensions, with instances xt such that ‖xt‖∞ ≤ 1. The
hyperplane u generating the labels has all coefficients
set to zero but the first two, which are chosen at ran-
dom under the constraint ‖u‖ = 1. The labels are
generated stochastically according to the noise model
described in Section 2. Instances with margin big-
ger than one in absolute value are discarded. In this
experiment, we also test the hybrid algorithm of Sec-
tion 5 using a p-norm Perceptron (Gentile, 2003) as

Figure 2. Accuracy against fraction of queried labels on the
synthetic dataset (averages over 5 random permutations).

Figure 3. Accuracy against fraction of queried labels for
the task of classifying the most frequent category of RCV1
(linear kernel, averages over 5 random permutations).

gradient-based classifier. Cross-validation is used to
choose p. Figure 1 shows average accuracy vs. number
of examples when the parameter of each algorithm is
chosen so that the query rate is ∼0.135. In this case
the best algorithm is BBQ, while DGS-Mod exhibits
a much lower accuracy. The hybrid algorithm, which
takes advantage of the sparse u, performs also quite
well, although not as well as BBQ. Figure 2 shows
the trade-off between average accuracy and fraction of
queried labels. The behavior over a large spectrum of
query rates is qualitatively similar to the one observed
in Figure 1. In the following experiments the Hybrid
algorithm is omitted because its performance remains
very close to that of DGS-Mod.

Real-world data with linear kernel. Our second
experiment uses the first 40,000 newswire stories from
the Reuters Corpus Volume 1 dataset (RCV1). Each
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Figure 4. Accuracy against fraction of queried labels for
a9a (Gaussian kernel, averages over 5 random permuta-
tions).

newsstory of this corpus is tagged with one or more
labels from a set of 102 categories. A standard TF-
IDF bag-of-words encoding is used to obtain 138,860
features. We use a linear kernel and train one-vs-all
based on the most frequent class. Figure 3 shows the
average accuracy vs. the average fraction of queried
labels. In this experiment the best performer is SS,
with BBQ and DGS-Mod performing similarly well.

Real-world data with Gaussian kernel. For our
third and last experiment we use a9a3, a subset of the
census-income (Adult) database with 32,561 binary-
labeled examples and 123 features. We use a Gaus-
sian kernel with σ2 = 12.5, chosen by cross-validation.
Here the performance of DGS-Mod is extremely poor,
while BBQ performs best —see Figure 4. In an
attempt to explain DGS-Mod behavior, we plot in

Figure 5 the value of 1
t

(
ln |At|

)2
against the num-

ber of the examples on a given permutation of data.

The term
(
ln |AT+1|

)2
appears in the query bound of

DGS/DGS-Mod —see Theorem 2. While in the lin-
ear case this quantity is O(lnT ), in a generic RKHS it
can grow much faster. On this dataset, we observe that(
ln |At|

)2
is superlinear in t, implying that DGS/DGS-

Mod query bound becomes vacuous. In fact, in this
case DGS queries at all time steps, while DGS-Mod
does not perform well no matter how the parameter α
is chosen.

7. Conclusions

In this work we derived improved regret bounds for
RLS-based algorithms in the online selective sampling

3 www.csie.ntu.edu.tw/∼cjlin/libsvmtools/

Figure 5. Behavior of 1
t

(
ln |At|

)2
as a function of t in a run

of DGS-Mod.

setting. We also conducted experiments to test the
behavior of our algorithms against other RLS-based
samplers. We plan to extend our empirical compari-
son by including algorithms developed under different
assumptions on the data process, such as the recent
work (Beygelzimer et al., 2010).
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