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Abstract

We derive a generalized notion of f -
divergences, called (f, l)-divergences. We
show that this generalization enjoys many of
the nice properties of f -divergences, although
it is a richer family. It also provides alter-
native definitions of standard divergences in
terms of surrogate risks. As a first practical
application of this theory, we derive a new
estimator for the Kulback-Leibler divergence
that we use for clustering sets of vectors.

1. Introduction

In this paper we are interested in defining functions
that measure the divergence between probability dis-
tributions, motivated by the problem of clustering sets
of points. This scenario arises mainly when working
with sequences of data whose dynamical information
can be discarded. Typical examples include speaker
recognition, bag-of-words models for images or lan-
guage processing. In order to leverage standard al-
gorithms (such as spectral clustering) in this scenario,
it is necessary to define a similarity function between
sets X,Y of points in some input space. This simi-
larity should be a function of how separated the two
sets X and Y are. It is a natural idea to measure the
amount of separation between two sets with the help
of a classifier. In the simplest case, we simply train
a classifier that is supposed to separate the points X
from Y and use its error rate as a similarity score. In-
tuitively, if the sets X and Y “overlap a lot”, then the
classifier will have a high error rate, which we interpret
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as a high similarity. If, on the other hand, X and Y
are well separated from each other, the classifier will
achieve a low error, leading to a low similarity score.

More abstractly, consider two probability distributions
P,Q on the same space and their convex combination
πP + (1 − π)Q for some weight parameter π ∈ [0, 1].
Assign labels +1 to all points that have been drawn
from P , and labels −1 to all points drawn from Q.
The classification task (π, P,Q, l) consists in finding
the optimal classification function for this setting un-
der a given loss function l. We can now define a sim-
ilarity score between P and Q as the overall expected
loss for this task. In case we allow any possible clas-
sification function and choose the 0-1 loss, this simi-
larity score becomes the Bayes error of the classifica-
tion task. This approach immediately rises a couple
of questions: what is the value of π we should use,
and what is the best loss function l in order to ob-
tain a meaningful similarity score? Moreover, using
the Bayes error as a similarity measure is problematic,
since it is hard to estimate. Estimation of risks might
become easier if we restrict the classification function
to a simple (e.g. parametric) family, like linear classi-
fiers. However, this effectively imposes limitations on
the features of the distributions that are being taken
into account by the similarity measures. This can be
beneficial if there is some domain knowledge substan-
tiating that limitations, but detrimental in general.
Moreover, optimizing the 0-1 loss is still a complex
problem as it cannot be handled analytically. Instead,
surrogate losses (Bartlett et al., 2006) are usually em-
ployed. They are functions that share some features
of the 0-1 loss while being well-behaved.

A first pragmatic approach for defining risk-based
affinities is to use the nearest neighbor (NN) rule.
Being a non-parametric method, it can capture arbi-
trary “shapes” of the distributions, making it flexible
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enough to define similarities between sets of points.
From a theoretical point of view, we show that the NN
risk is closely related to the Bayes risk for the well-
known square loss (Sec. 2). From a practical point
of view, there exist several efficient alternatives for
obtaining error estimates with good distribution-free
performance guarantees (Sec. 5.1).

We then derive a more general approach using the
framework of f -divergences (Ali & Silvey, 1966) as a
starting point. Many of the best-known divergence
functions are members of this flexible family, all of
which admit an integral representation in terms of
Bayes errors. In this paper we deal with the ef-
fects of surrogating the 0-1 loss in such integral rep-
resentations to define (f, l)-divergences. The class of
(f, l)-divergences shares many properties with the f -
divergences, but is richer. It also provides alternative
representations of well-known divergences. As a first
application of this general framework, we show how
(f, l)-divergences can be used to obtain new estima-
tors and bounds for the Kullback-Leibler divergence.

Notation and definitions

Let P,Q be a pair of probability distributions, and M
their convex combination M := πP + (1 − π)Q for
π ∈ [0, 1]. Given a classification task (π, P,Q) whose
goal is to assign labels Y = 1 to points coming from P
and Y = 0 to points from Q, we denote by η = P (Y =
1|X = x) and η̂ the posterior class probability and its
estimate, respectively. The representations (π, P,Q)
and (η,M) are interchangeable.

We write EP [f ] for the expectation of a function
f(x) of a random variable x ∼ P . Let l be a loss
function l : {0, 1} × [0, 1] → R. The point-wise
risk Ll associated to l is given by Ll(η(x), η̂(x)) =
η(x)l(1, η̂(x))+(1−η(x))l(0, η̂(x)), and the (expected)
risk Ll is thus Ll(η,M) = EM [Ll(η(x), η̂(x))]. Opti-
mal or Bayes risks are denoted by an underline, so
Ll(η(x)) = inf η̂(x) Ll(η(x), η̂(x)) and Ll(π, P,Q) =
Ll(η,M) = EM [Ll(η(x))]. The prior Bayes risk is the
optimal risk when only the prior class probability π is
known Ll(π) = Ll(π).

2. NN error and surrogate Bayes risks

In this section we show how the asymptotic error rate
of the NN rule relates to the Bayes risk for a certain
loss. Consider the square loss lSQ(y, ŷ) defined over
{0, 1} × [0, 1] as

lSQ(y, ŷ) =

{

(1 − ŷ)2 , y = 1
ŷ2 , y = 0

(1)

It induces the following point-wise risk.

LSQ(η(x), η̂(x)) = η(x)(1 − η̂(x))2 + (1− η(x))η̂(x)2.

It is very easy to check that, for a given η(x), the
minimum of LSQ(η(x), η̂(x)) is achieved whenever
η̂(x) = η(x). Losses that induce a point-wise risk
satisfying this intuitive property are known as proper
losses (Buja et al., 2005). The corresponding optimal
(Bayes) point-wise risk is then given simply by

LSQ(η(x)) = η(x)(1 − η(x)).

It is well-known (see e.g. Devroye et al. (1996), Chap.
5) that the asymptotic error rate for the NN rule LNN

0−1

can be written as

L
NN
0−1(η,M) = EM [2η(x)(1 − η(x))].

The following theorem is then obvious from the above
discussion and the definition of expected Bayes risk.

Theorem 2.1. For any pair of distributions P,Q and
prior probability π ∈ [0, 1], the asymptotic error rate
of the NN rule satisfies

L
NN
0−1(π, P,Q) = 2LSQ(π, P,Q).

So the error probability of the NN rule provides a way
to estimate the Bayes risk for the square loss. It is
worth mentioning that the NN rule is not minimizing
the risk under the square loss, since there is a factor
of 2 in the formula. However, both magnitudes are in
a one-to-one correspondence.

3. Background on f-divergences

In this section we recapitulate definitions and known
facts about f -divergences. Given a convex function
f : (0,∞) → R, with f(1) = 0, the corresponding f -
divergence (Ali & Silvey, 1966) between two probabil-
ity distributions P,Q over an input space X is defined
as

If (P,Q) = EQ

[

f

(

dP

dQ

)]

=

∫

X

dQf

(

dP

dQ

)

,

if P is absolutely continuous with respect to Q, and ∞
otherwise. Many well-known divergences can be cast
into this framework by adequately choosing the gen-
erating function f . Some important examples include
the variational, Kullback-Leibler (KL) and Pearson’s
χ2 divergences.

Our discussion will be based mainly on a classical re-
sult (see e.g. Österreicher & Vajda (1993)) that shows
how f -divergences can be represented by a weighted in-
tegral of statistical informations ∆L0−1(π, P,Q) under
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the 0-1 loss. These informations can be intuitively in-
terpreted as the risk reduction provided by the knowl-
edge of the exact posterior probability η instead of just
the prior probability π. They are defined as

∆L0−1(π, P,Q) = L0−1(π)− L0−1(π, P,Q)

= min(π, 1 − π)− L0−1(π, P,Q).

The integral representation of f -divergences is given
by

If (P,Q) =

∫ 1

0
∆L0−1(π, P,Q)γf (π)dπ, (2)

where the weight function γf (π) is related to the cur-
vature of the function f defining the divergence

γf (π) =
1

π3
f

′′

(

1− π

π

)

. (3)

Since f is a convex function, the weights γf (π) are
non-negative. For a comprehensive list of well-known
f -divergences and their associated f and weight func-
tions please refer to Reid & Williamson (2011).

4. (f, l)-divergences

We propose a risk-based generalization of the family of
f -divergences, based on the integral representation in
Eq. (2). The main idea is to substitute the 0-1 loss for
an arbitrary loss function l. This way, we can express
this new generalization as follows.

Definition For a convex function f : (0,∞) → R with
f(1) = 0, and a loss l : {0, 1} × [0, 1] → R+, we define
the corresponding (f, l)-divergence If,l as

If,l =

∫ 1

0
∆Ll(π, P,Q)γf (π)dπ, (4)

where γf (π) is given by Eq. (3) and

∆Ll(π, P,Q) = Ll(π)− Ll(π, P,Q). (5)

Obviously, the original f -divergences can be obtained
as a particular case of (f, l)-divergences by setting
l = l0−1. Note that the idea of substituting 0-1 for
more general losses is at the core of almost every prac-
tical classifier. This is the idea of surrogate losses
(Bartlett et al., 2006): Since the 0-1 loss is not very
well behaved and thus hard to handle, most learn-
ing algorithms use, explicitly or implicitly, other kind
of losses that approximate the 0-1 loss while being
much more amenable to theoretical analysis and nu-
merical optimization. These surrogates are almost al-
ways1 proper losses whose second term is mapped from

1The most important exception being the hinge loss

[0, 1] to R. Thus, if the goal is to define divergences
that can be nicely estimated using classification risks
it is very natural to work with surrogate/proper losses,
since they are what most practical classifiers optimize.

4.1. Some properties of (f, l)-divergences

In this section we will study how we can get interesting
properties for (f, l)-divergences by adequately choos-
ing the loss l. We will implicitly assume all losses to
be proper (see Sec. 2).

As we will show in Sec. 4.2, (f, l) and f -divergences
are deeply connected, so it is natural to recover most
properties of standard f -divergences with a sensible
selection of the loss function l. For an overview of the
most important properties of f -divergences, please re-
fer to Österreicher (2002). Due to space constraints,
we show in the form of short theorems a small represen-
tative selection of such properties, along with the con-
ditions that the losses must satisfy in order for those
properties to hold. We sketch the proofs, which are
quite straight-forward.

Theorem 4.1 (Non-negativity and identity of indis-
cernibles). For any convex f and any proper loss l,
If,l(P,Q) ≥ 0 for all P,Q. Moreover, if f is non-
trivial (∃π ∈ (0, 1) | γf (π) > 0) and l is such that Ll

is strictly concave, then equality holds iff P = Q.

This theorem can be easily proved by applying
Jensen’s inequality, noting that point-wise Bayes
risks Ll induced by proper losses are always concave
(Savage, 1971). It is easy to check that most com-
mon proper losses, such as square or log-losses, induce
strictly concave point-wise Bayes risks Ll, so the con-
dition is not very restrictive.

Theorem 4.2 (Symmetry). If l is a proper loss such
that l(0, η̂) = l(1, 1− η̂), then If,l(P,Q) = If,l(Q,P ) if
f(t) = f∗(t)+c(t−1), c ∈ R, where f∗ is the Csiszar’s
dual (or ∗-conjugate) of function f .

This is analogous to the standard symmetry prop-
erty of f -divergences. The proof uses the fact that
the condition on f implies γf (π) = γf (1 − π), and
then it mainly involves showing that ∆Ll(π, P,Q) =
∆Ll(1 − π,Q, P ) for π ∈ [0, 1]. Once again, standard
losses satisfy the simple and natural condition imposed
on l for the symmetry property to hold.

Theorem 4.3 (Information Processing). If,l(P,Q) ≥
If,l(Φ(P ),Φ(Q)), where Φ is any transformation.

This is also analogous to a standard f -divergences
property. The proof relies on the non-decreasing prop-
erty of Bayes risks under arbitrary transformations.



Risk-Based Generalizations of f-divergences

4.2. Connecting f and (f, l)-divergences

In this section we show how some (f, l)-divergences
are equivalent to standard f -divergences via a trans-
formation of the weight function depending on the loss
l. This will provide insight into the effect of using a
surrogate loss for divergence definition, as well as moti-
vating surprising ways of estimating some well-known
divergences.

The discussion is based on the one-to-one relationship
between statistical informations and f -divergences, as
stated in the following classical result

Theorem 4.4 (Österreicher & Vajda (1993), Thm.
2).
Given an arbitrary loss l, then defining

fπl (t) = Ll(π) − (πt+ 1− π)Ll

(

πt

πt+ 1− π

)

(6)

for π ∈ [0, 1] implies fπl is convex and fπl (1) = 0, and

∆Ll(π, P,Q) = Ifπ
l
(P,Q) (7)

for all distributions P and Q.

This may seem at odds with the result in Nguyen et al.
(2009) which establish a many-to-one relationship be-
tween losses and f -divergences. However, note that in
that work they are concerned with margin classifica-
tion losses, while here we work with proper losses. The
many link functions that can be coupled with a given
proper loss to yield classification losses introduce that
extra degree of freedom (Reid & Williamson, 2011).

Exploiting this representation of statistical informa-
tion for arbitrary losses, Eq. (4) can be rewritten as

If,l =
∫ 1
0 Ifπ

l
(P,Q)γf (π)dπ. Now we can leverage the

weighted integral representation of Ifπ
l
as given by Eq.

(2), yielding

If,l =

∫ 1

0

(
∫ 1

0
∆L0−1(π

′, P,Q)ϕl,π(π
′)dπ′

)

γf (π)dπ

=

∫ 1

0
∆L0−1(π

′, P,Q)

(
∫ 1

0
ϕl,π(π

′)γf (π)dπ

)

dπ′

=

∫ 1

0
∆L0−1(π, P,Q)γf,l(π)dπ, (8)

where ϕl,π(π′) is the weight function corresponding to
fπl , as given by Eq. (3)

ϕl,π(π
′) =

1

π3
fπl

′′

(

1− π

π

)

. (9)

So we get the following theorem.

Theorem 4.5. Assume a (f, l)-divergence with weight
function γf (π) and loss function l. Let ϕl,π be given
by Eq. (9). Whenever

γf,l(π) = (Tlγf ) (π) =

∫ 1

0
ϕl(π, π

′)γf (π
′)dπ′

converges, then that (f, l)-divergence is equivalent to a
standard f -divergence with weight function γf,l(π).

In this case, both divergences are intrinsically the same
one, but expressed on different bases. The relation-
ships between the weight functions is given by a linear
operator Tl with kernel ϕl(π, π′) ≡ ϕl,π(π′). This con-
nection has the important effect of allowing the esti-
mation of standard f -divergences by using statistical
informations under adequate proper/surrogate losses.

Note that Reid & Williamson (2011) connect losses
and f -divergences by associating a loss l with a di-

vergence with f = f
1

2

l (see Thm. 4.4). That can be
seen to be a particular case of (f, l)-divergences when
f is chosen to represent the variational divergence V ,
since γV ∝ δ(π − 1

2 ).

4.3. A worked-out example: Square loss

Here we will show how the above results particularize
to the square loss defined in Section 2. Using Eq. (6)
we can get the f function associated to the statistical
information under that loss,

fπSQ(t) = π(1 − π)−
π(1 − π)t

πt+ 1− π
. (10)

The weight function of the integral representation of
Ifπ

SQ
can be obtained by plugging in the above result

into Eq. (9). With a little algebra we get

ϕSQ(π, π
′) =

2(1− π′)2π′2

(π′(1 − 2π) + π)3
. (11)

Let us now apply this kernel to find the equivalent
f -divergence of some (f, SQ)-divergences. With some
hindsight, we start with Jeffreys (J) divergence, which
is a symmetrized version of KL. The weight function
corresponding to the integral representation of the J
divergence is given by γJ(π) =

1
π2(1−π)2 . We then get

this very simple and interesting expression for the final
weights

γJ,SQ(π) = (TSQγJ)(π) =
1

π2(1 − π)2
(12)

that is to say, the weight function associated with the
f -divergence equivalent of the (J, SQ)-divergence is
exactly the same weight function of the standard Jef-
freys divergence. An analogous result holds for the
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KL divergence, whose weights are given by γKL(π) =
γKL,SQ(π) = 1

π2(1−π) . The weight functions for both
KL and Jeffreys divergences are eigenfunctions of the
integral operator TSQ with eigenvalue 1. In some
sense, they are eigendivergences of the square loss.
This is summarized in the following corollary.

Corollary 4.6.

IJ (P,Q) = IJ,SQ(P,Q)

IKL(P,Q) = IKL,SQ(P,Q)

Note that many (f, SQ)-divergences cannot be realized
as standard f -divergences. Consider for example the
(χ2, SQ)-divergence. Since γχ2(π) = 1

π3 , applying the
integral operator to try to express it as an f -divergence

yields γχ2,SQ(π) = 2
∫ 1
0

(1−π′)2

π′

1
(π′(1−2π)+π)3 , which di-

verges, showing that the (χ2, SQ)-divergence is not
an f -divergence. In particular, this negative exam-
ple shows that the class of (f, l)-divergences is strictly
larger than the class of f -divergences.

5. Application: divergence estimation
via NN errors

Coupling Thm. 2.1 with Corollary 4.6 shows that it is
possible to define KL divergences as weighted integrals
of NN error rates. Without this result, the obvious
way of using the integral representation to estimate
an f -divergence would be to plug-in a consistent clas-
sifier (such as k-NN with an adequate election of k)
or class probability estimator to obtain the 0-1 Bayes
risks. Most recent proposals for KL divergence estima-
tion relies on direct estimation of the likelihood ratio
(Nguyen et al., 2008; Wang et al., 2009; Suzuki et al.,
2009), and thus of the posterior class probabilities,
avoiding individual density estimation. Our proposal
avoids any explicit density and likelihood ratio or pos-
terior estimation. Instead, we have shown that it is
possible to use the risk of a simple, non-consistent clas-
sifier such as NN to obtain an error-rate based exact
expression for the KL divergence (interestingly, using
the exact same weight function as we would use with
the Bayes errors).

5.1. Estimating the NN risk

From an empirical estimation point of view, the prob-
lem remains to obtain good estimates of the NN error
rate for the whole range of prior probabilities π ∈ [0, 1].
The particularities of the NN rule can be exploited to
obtain closed-form estimates of the error rate for a
given π. One example is complete stratified cross vali-
dation (Mullin & Sukthankar, 2000). The idea behind
complete cross-validation is to obtain the expectation

of the risk over all the possible test/train partitions of
data satisfying the desired proportions, instead of re-
sorting to empirical resampling. Nonetheless, running
this process for a large enough number of π’s is a very
time consuming process.

To speed things up we have devised a simple “closed-
form sampling scheme”, specially tailored for the task
of estimating risks over the whole range of prior proba-
bilities, which we now sketch. The main idea is to sub-
sample just one of the sets, depending on π. Assume
we are given two sets X and Y, with nX and nY ele-
ments coming from P and Q respectively, so the esti-
mated prior probability is just π0 = nX

nX+nY
. The error

for π = π0 can be estimated using standard methods
such as deleted estimate (Devroye et al. (1996) Chap.
24), yielding error estimates in {0, 1} for each point
z ∈ (X ∪Y). In order to obtain error estimates for
π -= π0, our proposal is to calculate the expectation
of the probability of error at each point z given that
we are subsampling X if π < π0 or Y if π > π0. We
can obtain the desired expectation just by knowing the
order of the closest point to z in both X and Y and
calculating the ratio of partitions that result in the
point changing its label with respect to case π = π0.
For example, consider the case of a point z ∈ X which
is correctly classified for π = π0, and whose closest
point in Y occupies the kY (z) position in the ordered
list of neighbors. Let ns(π) be the number of points
from X that must be taken away for the desired π to
hold. Point z will become incorrectly classified when-
ever its nearest neighbor after subsampling belongs to
Y. That is to say, whenever the kY (z)− 1 first neigh-
bors of z are taken away from X. This is a sampling-
without-replacement scenario, and the probability of
such an event is given by the hypergeometric distribu-

tion, yielding Pe(z;π) =
(

nx−(kY (z)−1)
ns(π)−(kY (z)−1)

)

·
(

nx

ns(π)

)−1
.

The reasoning is similar for points which are originally
incorrectly classified. Note that this method is based
solely on the order of the neighbors of each point.

5.2. Risk-based bounds of KL and Jeffreys
divergences

Finally, upper bounds on the NN error rate can be used
to obtain lower bounds on the estimated divergences.
For example, consider the following result.

Theorem 5.1. For all distributions P,Q over X with
finite second moment we have

IKL(P,Q) ≥
∫ 1

0

(1− π)∆2(π, P,Q)

1 + π(1− π)∆2(π, P,Q)
dπ.

IJ(P,Q) ≥
∫ 1

0

∆2(π, P,Q)

1 + π(1− π)∆2(π, P,Q)
dπ.



Risk-Based Generalizations of f-divergences

where ∆ stands for the Mahalanobis distance between
P and Q with prior probability π

∆(π, P,Q) =
√

(µp − µq)TΣ−1(µp − µq),

with Σ(π, P,Q) = πΣp+(1−π)Σq, Σp = E[(x−µp)(x−
µp)T ] and analogously for Σq.

The theorem is obtained by plugging into Eq. (4) the
following bound on the NN error rate due to Devijver
(see e.g. Devroye et al. (1996), Chap. 5).

L
NN
0−1(π, P,Q) ≤

2π(1− π)

1 + π(1− π)∆2(π, P,Q)
.

5.3. Experimental results

To bridge the gap between theory and practice, in
this section we will study the square loss-based di-
vergence measures in both synthetic and real-world
applications. Given the huge flexibility of the (f, l)-
divergence framework, we have to restrict ourselves to
some particular case. Specifically, we will focus on
using the Nearest Neighbor classifier to estimate KL
divergences, since that is arguably the most straight-
forward application of the theoretical results.

Based on above results, KL divergence can be ex-
pressed in terms of NN errors.

IKL(P,Q) =
1

2

∫ 1

0
∆L

NN
0−1(π, P,Q)γKL(π)dπ,

where ∆L
NN
0−1(π, P,Q) = LNN

0−1(π) − LNN
0−1(π, P,Q) =

2π(1 − π) − LNN
0−1(π, P,Q). We have devised a naive

estimation procedure, consisting of quadrature inte-
gration with uniform sampling of π ∈ [πmin, πmax]. A
more sophisticated approach could be taken by using
some kind of importance sampling depending on the
weight function γKL. The error rates LNN

0−1 at each
π are estimated using our procedure sketched in Sec-
tion 5.1. The thresholds on π can be used in a way
akin to the usual assumption in divergence estimation
that the likelihood ratio is bounded and falls within
some given thresholds. Statistical informations outside
these thresholds are assumed to be 0, effectively reg-
ularizing the divergence estimate. In our experiments
we fix πmin = 10−3, πmax = 1− 10−3. We denote this
non-parametric estimator NN-KL. The same approach
has been used for obtaining an estimator of the bound
in Eq. (13), yielding algorithm NNbound-KL.

5.4. KL divergence estimation

Our benchmark for divergence estimation will be the
proposal in Wang et al. (2009), which is arguably the

state-of-the-art in non-parametric estimators for KL
divergence. It is based on direct estimation of the
likelihood ratio at each point using nearest-neighbor
distances ÎKL(P,Q) = D

nX

∑nX

i=1 log
νk(xi)
ρk(xi)

+ log nY

nX−1 ,

where νk(z) and ρk(z) are the distances from x ∈ X
to its k-th nearest neighbor in Y and X respectively,
and D is the dimension of the data. This algorithm
was shown to outperform previous proposals, like data-
dependent partitions or direct kernel plug-in estimates.
In our experiments we have used k = 1.

We have run the algorithms in synthetic datasets com-
prised of samples from Gaussian distributions of dif-
ferent dimensionalities, with unit covariance matrices.
Figure 1 show plots of normalized mean square er-
ror (NMSE) (averaged over 100 runs) using separa-
tions of µQ = 0.5eD (left) and µQ = 0.75eD (right),
where eD is the unit vector in RD, for different di-
mensionalities D = {1, 5, 10}. The NN-KL estima-
tor improves its performance in comparison with both
the Wang estimator and the risk-based lower bound
as the dimensionality increases. Intuitively, in high-
dimensional scenarios it may be easier to estimate er-
ror rates than likelihood ratios. The abrupt change in
MSE slope of the NN-KL estimator in Fig.1f is due
to the thresholds on π limiting the divergence esti-
mate. Figure 2 shows the results for KL divergence
estimation between samples from Gaussian distribu-
tion N (0, I3) and a uniform distribution Unif[−3, 3]3.
In this case, the Mahalanobis-based bound for the KL
divergence is totally useless, since both distributions
have the same mean. The Wang estimator achieves an
impressive performance in this scenario. Nonetheless,
the NN-error based estimator remains competitive. In
general, our proposed estimator is competitive with
the state of the art, showing that risk-based estimation
of divergence measures is a promising line to explore.

5.4.1. Musical Genre Clustering

Following Garćıa-Garćıa et al. (2010), we define a clus-
tering task on a subset of the garageband dataset con-
sisting of snippets of around 60s of songsbelonging to
the following genres: “Punk”, “Heavy Metal”, “Clas-
sical”, and “Reggae”. There are 100 songs from each
genre. For preprocessing, first Mel frequency cepstral
coefficients (MFCCs) are extracted in overlapped win-
dows of short duration. Then, a multivariate autore-
gressive model of lag 3 is fitted to each block of the
sequence of MFCCs, using 2s windows and 1s hop-
size. Data dimensionality is D = 135. Since spectral
clustering works with symmetric affinity matrices, we
choose to estimate Jeffreys divergence. We also in-
troduce into the comparison the best results reported
in Garćıa-Garćıa et al. (2010) (algorithm SSD) and
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(a) D = 1, Q = N (0.5eD, ID)
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(b) D = 1, Q = N (0.75eD, ID)
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(c) D = 5, Q = N (0.5eD, ID)
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(d) D = 5, Q = N (0.75eD, ID)
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(e) D = 10, Q = N (0.5eD, ID)
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(f) D = 10, Q = N (0.75eD , ID)

Figure 1. NMSE of the different estimators of KL(P,Q) divergence, P = N (0, ID).

the maximum mean discrepancy (algorithm MMD)
(Gretton et al., 2007), which is a well-known measure
of dissimilarity based on RKHS embeddings of distri-
butions. We used Gaussian kernels for those embed-
dings. We swept the width parameter within a sen-
sible range and report the best performance. Finally,
we also report clustering results using an affinity ma-
trix based on simple nearest neighbor risks (algorithm
NN), obtained via complete cross-validation procedure
(Mullin & Sukthankar, 2000) with a training set size
parameter of 50%. For the actual clustering step, we
use normalized-cut (Shi & Malik, 2000). Prior to the
clustering, distance matrices are turned into affinities
by using a Gaussian kernel. Its width is automatically
selected as the one maximizing the eigengap (since the
number of clusters is assumed to be known).

Table 1 shows the results for the clustering task. The
best performance is obtained when the distance matrix
is obtained using our proposed NN-risk based estima-
tor of the Jeffreys divergence. It is remarkable how the
other estimator of Jeffreys divergence results in much
worse results. This is likely due to the high dimension-
ality of the feature vectors, coupled with small sample
size. This kind of data is likely to present a mani-
fold structure, so the explicit dependence of the Wang
estimator on the data dimensionality hinders its per-
formance, since the actual intrinsic dimensionality is
surely much lower than the ambient space dimension.

5.4.2. Speaker clustering

We also simulate a speaker clustering scenario using
the UCI Japanese Vowels dataset, comprised of 12-
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Table 1. Clustering error for the 4-way music genre recognition task on the Garageband (GB) dataset and the 9-way
speaker clustering task on the Japanese Vowels (JV) dataset

SSD NN NN-J Wang-J NN Bound-J MMD
GB 33.25% 39.50% 21.25% 47.75% 46.00% 31.50%
JV 12.07% 8.15% 10.00% 16.30% 7.41% 20.37%
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Figure 2. NMSE of the different estimators of KL(P,Q) di-
vergence, P = N (0, I3) , Q = Unif[−3, 3]3.

dimensional time series of LPC cepstrum coefficients
coming from 9 different speakers. There are 30 se-
quences per speaker, with lengths ranging from 7 to
29 vectors. The results in Table 1 show that this is
a much simpler task than the genre clustering one, as
most algorithms perform quite well. It is remarkable
how the three NN-error based algorithms give the best
performance. In this case, the added expressiveness of
KL divergence does not compensate the more complex
(and noisier) estimation procedure, as can be seen by
the Mahalanobis-based bound achieving the highest
performance, followed by the simple NN risk.

6. Conclusions

(f, l)-divergences generalize standard f -divergences by
surrogating the 0-1 loss by an arbitrary loss l. Many
convenient properties are preserved if some simple
conditions are imposed on l. (f, l)-divergences can
also provide alternative representations of standard f -
divergences. We applied this theory and a result link-
ing the error of the nearest-neighbor classifier with the
Bayes risk under the square loss to derive a novel order
statistics-based estimator for KL and J divergences.
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