
Adaptive Kernel Approximation for
Large-Scale Non-Linear SVM Prediction

Michele Cossalter michele.cossalter@sv.cmu.edu

Carnegie Mellon University

Rong Yan rongyan@facebook.com

Facebook

Lu Zheng lu.zheng@sv.cmu.edu

Carnegie Mellon University

Abstract

The applicability of non-linear support vector
machines (SVMs) has been limited in large-
scale data collections because of their lin-
ear prediction complexity to the size of sup-
port vectors. We propose an efficient pre-
diction algorithm with performance guaran-
tee for non-linear SVMs, termed AdaptSVM.
It can selectively collapse the kernel func-
tion computation to a reduced set of sup-
port vectors, compensated by an additional
correction term that can be easily computed
on-line. It also allows adaptive fall-back to
original kernel computation based on its es-
timated variance and maximum error toler-
ance. In addition to theoretical analysis, we
empirically evaluate on multiple large-scale
datasets to show that the proposed algorithm
can speed up the prediction process up to 104

times with only < 0.5% accuracy loss.

1. Introduction

The solid theoretical foundation and proved effec-
tiveness of support vector machines (SVMs) have
contributed to their success in diverse applications
(Burges, 1998). One of the most appealing properties
for SVMs is their ability to discriminate non-linearly
separable data by mapping original feature space into
a higher dimensional space via kernel functions. How-
ever, the applicability of non-linear SVMs is hindered
by their prediction complexity which is linearly grow-

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

ing to the number of support vectors (SVs). The
SVM prediction process may become computationally
demanding (Joachims & Yu, 2009; Rai et al., 2009;
Catanzaro et al., 2008) especially for large-scale data
collections with complicated decision boundaries, such
as image and audio data, where the size of SVs is not
much smaller than the training data. Unlike learning
which can be performed off-line, prediction must take
place on-line and thereby its efficiency plays a much
more crucial role for the applicability in real world
datasets (Liu et al., 2003; Ukkonen, 2010).

Most existing approaches address this issue by opti-
mizing the SVM learning stage to produce a smaller set
of support vectors. For instance, ClusterSVM (Boley,
2004) partitions the training data into pair-wise dis-
joint clusters and replaces the cluster containing only
non-support vectors by a point. Tsang et al. (2005)
proposed Core Vector Machine (CVM), which formu-
lates many kernel methods as equivalent minimum en-
closing ball problems, with a time complexity linear in
the training set size. Joachims & Yu (2009) proposed
Cutting-Plane Subspace Pursuit (CPSP), which trains
on a reduced number of arbitrary support vectors and
iteratively constructs the set of vectors from a cutting-
plane model. The number of SVs can be reduced by
two orders of magnitude without a significant loss of
accuracy. While being effective in reducing SVM pre-
diction complexity, these approaches usually require a
significant upgrade of learning algorithms, and might
not exploit full potential of prediction speedup due to
their focus on training optimization.

A second type of approaches completely focus on ac-
celerating the prediction process. Starting from a
set of support vectors learned from existing methods,
they aim to reduce the size of support vectors by ei-

Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction

ther data selection or aggregation methods. Burges &
Scholkopf (1996) and Schölkopf & Smola (2001) sug-
gested searching for a reduced set of support vectors
such that the Euclidean distance between the origi-
nal and approximated solution is minimized. They
can achieve a significant prediction speedup, but suf-
fer from the drawback of expensive computation. Liu
et al. (2003) presented a ball tree algorithm that can
be exploited to achieve faster k-NN and SVM classi-
fication. Ukkonen (2010) proposed an SV tree idea
which maintain a flexible subset of basis vectors de-
pending on the classifier input. When having a com-
parable accuracy to non-linear SVMs, its number of
basis functions is dramatically reduced.

Following the second school of thought, we propose
an efficient prediction algorithm for non-linear SVMs
called AdaptSVM, which achieves orders of magnitude
speedup without significant loss on the prediction per-
formance on large-scale datasets. By assuming SVs
are randomly sampled from centain distribution, we
provide a key theorem to approximate the mean and
variance of kernel functions under two general assump-
tions. This allows us to selectively compress non-linear
kernel computation into functions of a much smaller
set of aggregated SVs, compensated by an additional
correction term, where both can be computed effi-
ciently on-line. In contrast to the prior approaches, we
also develop an adaptive fall-back strategy to switch
back to original kernel computation when the esti-
mated variance is larger than the maximum error tol-
erance, so as to guarantee the prediction performance
is not degraded. Since the proposed method is only
related to prediction parameters, it can work together
with any training optimization approaches to achieve
even further speedup. The proposed idea is related
to adaptive multi-pole expansion proposed by Green-
gard & Rokhlin (1987) and its further development
in Improved Fast Gauss Transform proposed by Yang
et al. (2004). However, since the approximation in
these works does not account for training distribution,
the derived error bound has no probabilistic semantics
and is looser than our variance estimation, thus being
unsuitable for dynamic fallback.

The remainder of the paper is structured as follows.
The proposed algorithm and theoretical analysis are
described in Section 2. Experimental evaluation re-
sults on three large-scale datasets are provided in Sec-
tion 3 to demonstrate its effectiveness. Section 4 con-
cludes the paper with discussions on future directions.

2. AdaptSVM: adaptive prediction for
large-scale non-linear SVMs

Given the labeled set of M training samples {xi, yi},
where xi ∈ RK with K features, and yi ∈ {−1, 1} is
the corresponding label, an SVM binary classifier finds
the optimal hyperplane to correctly separate the data
points while maximizing the margins using constrained
optimization. The SVM prediction problem can then
be written as the following kernel form (Burges, 1998):

M∑
i=1

yiαiK(xi, z) =
∑
yi=1

αiK(xi, z)−
∑
yi=−1

αiK(xi, z)

where z is the data to be classified and αi is the learned
weight of xi with αi ≥ 0. Without loss of general-
ity, we omit the bias term in the prediction function
and only keep the support vectors xi with αi > 0.
K(·, ·) is a kernel function which can project the orig-
inal input space to a high dimensional feature space
without being computationally intractable. To classify
non-linearly separable data, the commonly used ker-
nel functions include radial basis function (RBF) and
polynomials. Despite their effectiveness, SVMs suf-
fer from the drawback that the prediction complexity
is growing linearly to the number of support vectors,
which can become an issue for large-scale datasets.

To this end, we propose using an adaptive SVM pre-
diction process, which compresses the representation
of the decision boundary to be determined by only a
small number of support vectors, while dynamically
falling back to the original kernel computation if the
compression quality is insufficient. First, it is legiti-
mate to consider the support vectors xi as i.i.d. real-
izations of a random variable x, and αi as a function
of x, e.g. αx. Given that the SVM prediction function
only depends on the sum of kernel functions, we can es-
timate the kernel summation using the expected value
of the kernel function E[αxK(x, ·)] as surrogate, lead-
ing to a much faster on-line prediction process if the
expected value can be computed from off-line statis-
tics. This also provides an elegant way to measure the
approximation quality based on the variance of the
prediction function Var[αxK(x, ·)], thus we can adjust
the prediction formulation based on error tolerance.

2.1. Main theorem

In this section, we present a main theorem to derive
both E[αxK(x, ·)] and Var[αxK(x, ·)] when ∀αx > 0.
Let us start by introducing our notation. We de-
note f(x) = K(x, z), and transform E[αxK(x, ·)] to
a weighted expectation form:

E[αxf(x)] = α0E[f(x)αx/α0] = α0Eα[f]

Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction

0 20 40 60 80 100100

102

104

106

K

D
/d

Figure 1. Within-SV distance rx are close to each other for
a sufficiently large feature dimension.

where α0 = E[αx]. For simplicity, we will drop the
index of α in the following discussions, and use E to
represent Eα. Var[f] is re-defined in a similar way.

Given the weighted mean of x as µ = E[x], we rewrite
f(x) using its first order Taylor expansion w.r.t. µ:

f(x) = f(µ) +∇f(µ)TR(x) + ∆x (1)

where R(x) = x−µ, and ∆x is the correction residual
term with the following integral form:

∆x =

∫ 1

0

(1− β)RT (x)H(µ+ βR(x))R(x)dβ (2)

with H(x) being the Hessian matrix of f(x).

Because E[R(x)] = 0, taking expectation on both sides
yields the following:

E[f(x)] = f(µ) + E[∆x]

Similarly, the variance term can be computed by the
following Taylor expansion:

Var[f(x)] = Var[f(µ) +∇x] = Var[∇x]

where ∇x is the residual term:

∇x =

∫ 1

0

∇f(µ+ βR(x))R(x)dβ (3)

This suggests to estimate the expected prediction func-
tion as its value on weighted mean f(µ) plus a correc-
tion residual term E[∆x], as well as the variance in an
integral form. Since µ can be trivially precomputed,
our problem boils down to computing E[∆x] in an ef-
ficient way with only simple off-line statistics.

Because most popular kernels are functions of inner
product between two vectors, the expectation of ker-
nels can be transformed into a function of their norms
and the angle between them. Therefore, let us de-
fine the centroid distance d = ‖µ − z‖, the within-
SV distance rx = ‖x − µ‖ with mean r, and θx as

Figure 2. The distribution of cos θx closely fits a normal
distribution N (0, λ/K).

the angle between the vectors µ − z and x − µ. In
the following, we focus our analysis on the RBF ker-
nel1 f(x) = K(x, z) = e−ρ‖z−x‖

2

, which can then be
rewritten as f(x) = exp(−ρ(d2 + r2x + 2drx cos θx)).

Given that rx and θx are the sufficient statistics for
x in the kernel function, we make the following two
assumptions before establishing the main theorem:

Assumption 1. The distance between rx and r be-
comes indiscernible when the feature dimension K →
∞, i.e., limK→∞(rx − r) = 0.

Related to the curse of dimensionality, this assump-
tion states that rx are close to each other for a suffi-
ciently large feature dimension. A similar statement
is proved by Beyer et al. (Beyer et al., 1999), showing
that (D − d)/d converges to 0 where D = max{rx} is
the maximal distance, and d = min{ri} is the minimal
distance. In practice, d can be bounded by feature
normalization, and thus our assumption can be satis-
fied. To validate, we generated a synthetic dataset by
randomly drawing 105 random samples xi ∈ RK from
a uniform distribution, with K varying between 1 and
100, and computed the distance ri of each point. Fig-
ure 1 shows that our results are aligned with (Beyer
et al., 1999). The ratio between maximal and mini-
mal distance drops down quite fast as dimensionality
increases, e.g. D/d ≈ 3 for K = 20 and D/d < 2 for
K = 100. This experiment is repeated on the empiri-
cal datasets in Section 3, obtaining D/d < 2 for all of
them (Table 1).

Assumption 2. cos θx follows an independent normal
distribution cos θx ∼ N(0, σ2), where σ2 = λ/K where
λ is a constant dependent on training data.

This assumption is based on (Hammersley, 1950)
which shows that the distance d between two points
uniformly distributed on a sphere follows the normal
distribution of N (a

√
2, a2/2K), where a is the radius.

1Our method can be straightforwardly extended to
other kinds of kernels, e.g. polynomial, in a similar fashion,
although we skip the discussion due to space limit.

Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction

Denoting the angle between these vectors as θx, we can
derive cos θx to approximately follow a normal distri-
bution N(0, 1/K), given that d = 2a cos(θx/2).

The validity of this assumption can be demonstrated
by Figure 2, where we computed cos θx after randomly
drawing 100 points xi and other 100 points zj from a
uniform distribution, with feature size K varying be-
tween 10 and 100. We test the null hypothesis that the
resulting samples are distributed as N (0, 1/K) using
a Kolmogorov-Smirnov test at 5% significance level.
After 100 repetitions of the experiment, the null hy-
pothesis was accepted 99% of the times for K ≥ 20.
In practice, we found that cos θx mostly follow a nor-
mal distribution, but the variance is not necessarily
1/K due to non-uniform distributions. Therefore, we
introduced λ as a variance adjustment factor that can
be estimated off-line based on the training data (Table
1). We can now establish our main theorem based on
the above assumptions:

Theorem 1. If Assumption 1 and 2 hold, the mean
and variance of the kernel function can be derived as:

lim
rx→r

E[f(x)] = e−ρd
2

G(d, r) +O(1/K7)

lim
rx→r

Var[f(x)] ≤ d2e−2ρd
2

V (r)
(4)

where βn = n/N , rn = rβn, and

G(d, r) = 1− 1

N

3∑
i=0

σ2id2i

[
N−1∑
n=0

γn(r)Ani(r)

]

V (r) = σ2
N−1∑
n=0

[
2ρe−ρr

2
n(1− 2ρr2n)

]2
An0(r) = (1− 2ρr2n)

An1(r) = (−4ρ2r4n + 10ρr2n − 2)

An2(r) = (−4ρ3r6n + 18ρ2r4n − 12ρr2n)

An3(r) = (−4/3ρ4r8n + 52/3ρ3r6n − 20ρ2r4n)

γn(r) = 2ρ(1− βn)re−ρr
2
n

Proof. See Appendix.

A key observation for this theorem is that except the
distance d, all the other variables do not depend on
the testing data z. Therefore we can precompute and
store these coefficients after the training process with-
out wasting on-line computation resources. The only
required on-line computation comes from d2i, e−ρd

2

and their weighted sum, which has a much lower time
complexity than the original kernel evaluation that
combines a large number of e−ρ‖z−x‖

2

.

Algorithm 1 AdaptSVM: adaptive prediction for
non-linear SVMs
Input: SVs {xi} with weights {αi}, target z, kernel

function K, group size J , tolerance τ
Output: SVM prediction f(·) for z

1. Offline aggregation stage
Cluster pos and neg SVs into J/2 groups each
for j = 1 . . . J do

Compute αj =
∑M
i=1 αi, µj =

∑Mj

i=1 αixi
Compute all the terms irrelevant to distance d in
Theorem 1, e.g. V (r), A(r) and γ(r)

end for
2. Online prediction stage
for j = 1 . . . J do

Estimate E[f] and Var[f] using Theorem 1
if Var[f] < τE2[f] then
f j = yjαjE[f] (approximation)

else
f j = yj

∑Mj

i=1 αif(xi) (original)
end if

end for
return f =

∑J
j=1 f

j

2.2. Overall algorithm

The main theorem provides an efficient way to esti-
mate the mean and variance of kernel functions by us-
ing the aggregated statistics under general conditions.
It also offers a solid foundation to develop the adaptive
SVM prediction algorithm described in this section.
We can now approximate the original SVM prediction
using its expected value by substituting the expected
value in Eq. (4) into the SVM decision function:

M∑
i=1

αiK(xi, z) = αE[f(x)]

where α =
∑M
i=1 αi. On the other hand, the variance

of f can be used to measure the quality of such kernel
approximation. We control the approximation error
by imposing the constraint on the variance:

Var[f] ≤ (

M∑
i=1

|αi|)2Var[f(x)] < τE2[f]

where τ is a predefined threshold indicating the level
of error tolerance. If this constraint is not satisfied, we
will fall back to the original kernel prediction without
using the approximation. In the worst case when fall-
back always happens, the proposed algorithm may suf-
fer from additional cost for checking the constraints.
However, this rarely happens in practice, and Theo-

Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction

2 0.1% 1% 10% 20%

10−2

100

102

Number of Groups

IJCNN

GroupSVM
AdaptSVM

2 0.1% 1% 10% 20%

10−2

100

102

Number of Groups

MNIST

GroupSVM
AdaptSVM

2 0.1% 1% 10% 20%

10−2

100

102

Number of Groups

ALPHA

GroupSVM
AdaptSVM

Figure 3. Comparison of mean squared error (MSE) against the number of SV groups. The y-axis is in log-scale.

2 0.1% 1% 10% 20%0

0.5

1

Number of Groups

IJCNN

GroupSVM
AdaptSVM
SVM

2 0.1% 1% 10% 20%0

0.05

0.1

Number of Groups

MNIST

GroupSVM
AdaptSVM
SVM

2 0.1% 1% 10% 20%0

0.2

0.4

0.6

0.8

Number of Groups

ALPHA

GroupSVM
AdaptSVM
SVM

Figure 4. Comparison of classification error (Error) against the number of SV groups.

rem 1 indicates Var[f]/E2[f] has only polynomial terms
involved and thus can be computed efficiently.

Theoretically, as long as our assumptions are satisfied,
the proposed algorithm can aggregate all the support
vectors into only two points, one for positive SVs and
the other for negative SVs. However, since real data
are typically not uniformly distributed and the feature
dimension is limited, our assumptions are not guaran-
teed to hold empirically. To mitigate this issue, we
cluster the support vectors into a small number of
groups, where the distances rx are sufficiently close
to each other. Though any clustering method can be
applied, such as k-means or even random grouping, we
choose hierarchical clustering in our experiments due
to its simplicity. Formally, we equally cluster the set
of positive and negative SVs into J/2 groups, each of
which has its own mean µj and contains Mj SVs de-

noted as xji . We should limit the size of groups as much
as possible in order to achieve the maximum speedup.
The proposed algorithm is described in Algorithm 1.

3. Experimental results

This section presents our experimental results on three
large-scale datasets, i.e., IJCNN2, MNIST3 and AL-
PHA4, to demonstrate the effectiveness of our algo-

2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools
3http://www.csie.ntu.edu.tw/~cjlin/libsvmtools
4ftp://largescale.ml.tu-berlin.de/largescale/

rithm (AdaptSVM). Each data collection was split
into two disjoint sets, one for training and another for
testing. We considered a binary classification task be-
tween digit 0 and all other digits for MNIST, while
using the standard settings for the other two collec-
tions. Table 1 summarizes the main characteristics of
the datasets, including their distance ratios D/d and
scaling factor λ for cos θx distribution, which show that
our key assumptions are reasonable for these datasets.

The support vectors were learned from the training
sets using LibSVM (Chang & Lin, 2001) with RBF
kernel, then treated as input for all the prediction al-
gorithms. Unless stated otherwise, we adopted the de-
fault RBF kernel parameters for training, i.e., ρ = 1/K
where K is feature number. We compared AdaptSVM
with two baseline approaches, i.e., the standard SVM
prediction by summing up kernel functions of every
support vector (SVM), and the group-based predic-
tion (GroupSVM), which uses the function value of
cluster centroids as outputs without correction terms
and dynamic fallback. For both GroupSVM and
AdaptSVM, we applied single-linked hierarchical clus-
tering to construct SV groups, with the number of
groups varying based on experimental settings.

3.1. Empirical evaluation

To measure the quality of our adaptive approxima-
tion method, Figure 3 shows the mean squared error
(MSE) between AdaptSVM and the original SVM pre-

Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction

2 0.1% 1% 10% 20%10−1

101

103

105

Number of Groups

IJCNN

GroupSVM
AdaptSVM
SVM

2 0.1% 1% 10% 20%10−1

101

103

105

Number of Groups

MNIST

GroupSVM
AdaptSVM
SVM

2 0.1% 1% 10% 20%10−1

101

103

105

Number of Groups

ALPHA

GroupSVM
AdaptSVM
SVM

Figure 5. Comparison of prediction time against the number of SV groups. The y-axis is in log-scale.

Table 1. Details of the considered datasets: number of fea-
tures, training samples, test samples, and original support
vectors. Distance ratio and λ are also shown.

K Train Test SVs D/d λ
IJCNN 22 49990 91701 9597 1.27 0.25
MNIST 780 50000 10000 2233 1.95 16
ALPHA 500 50000 50000 47007 1.16 100

Table 2. Comparison of prediction speedup among ball
tree, SV tree and AdaptSVM. The table shows the max-
imum achievable speedup with < 0.5% loss of accuracy.
The median, average and best performance are reported.

Ball tree SV tree AdaptSVM
Datasets 10 11 3
Median 3 18 3400
Average 60 20 5833

Best 500 50 13000

diction value, compared with the baseline GroupSVM
method. The group size is growing from 0.1% to 20%
of the original SV size. Figure 4 compares the classifi-
cation error (Error) of AdaptSVM against both SVM
and GroupSVM in similar settings. For both figures,
we also include an extreme case where we only use two
groups by aggregating all positive SVs into one group
and all negative SVs into the other one. In this exper-
iment, we set the error tolerance threshold τ = 1000.

As can be observed from Figures 3 and 4, AdaptSVM,
benefited from its accurate mean estimation, can sig-
nificantly outperform GroupSVM in terms of both er-
ror metrics. In contrast, GroupSVM prediction is
not as reliable and may severely degrade the predic-
tion performance. In terms of classification errors,
AdaptSVM almost always provide comparable perfor-
mance to SVM with no considerable loss of accuracy.
Its performance is in fact better than SVM for Al-
pha dataset. Surprisingly, the case with only two SV

groups can produce a reasonable performance on par
with baseline SVM in two out of three datasets. Since
the original SV number of these datasets is in the or-
der of 103 ∼ 104, we can obtain an up-to-104 speedup
without a noticeable increase on errors.

For both types of errors, AdaptSVM tend to decrease
with a growing number of SV groups, which can be ex-
plained by the fact that our assumptions can be better
justified as the group size increases, leading to a more
precise approximate prediction. The trend of such er-
ror drop is not as significant as expected, possibly be-
cause of the imperfect clustering output and a decreas-
ing number of SV number in each group. The mere
exception of error dropping trend happens in IJCNN
with 0.1% of original SV size. Our investigation shows
that the reason for this error peak stems from an unex-
pected bad clustering distribution, where many clus-
ters contain one data point. In fact, this behavior
appears to go away when the SVs were clustered with
other more robust clustering methods.

Figure 5 compares the prediction time of SVM,
GroupSVM and AdapSVM. As expected, a linear be-
havior is observed with a speedup close to the ratio
between the original number of SVs and the number of
groups. The figure also confirms that the overhead in-
troduced by computing correction term and estimated
variance is negligible with respect to prediction time.

When the estimated variance of the correction term
is below the threshold τ for all the groups, we can
achieve the maximum speedup by always using ap-
proximated prediction. However, this is not always de-
sirable given the accuracy requirement. Therefore, we
vary the threshold τ to obtain different degrees of ap-
proximation, and Figure 6 shows the accuracy change
patterns when the number of groups is fixed to 1% of
the original number of SVs. As τ increases from 0.5 to
500, the number of groups using the approximated pre-
diction increases from 0 up to 1%. At the same time,
the speedup increases from 1 up to 100, while the ac-
curacy fluctuates within a small range, i.e., −0.3% to
0.5%, which shows the robustness of our algorithm.

Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction

100 101 102−0.5

0

0.5

1

1.5

2

2.5

Speedup

Ac
cu

ra
cy

 C
ha

ng
e

(%
)

ALPHA
IJCNN
MNIST

Figure 6. Accuracy change against speedup for different
values of the threshold.

The proposed algorithm was also evaluated on two ad-
ditional collections: ADULT5 (K=123, 20073 SVs),
and a second version of MNIST (K=580, 18711 SVs).
Both datasets show AdapSVM can achieve signifi-
cantly better approximation (10x smaller w.r.t MSE)
than GroupSVM while preserving accuracy. The de-
tailed analysis is skipped due to space constraints.

3.2. Comparison with related methods

We now compare the speedup of the proposed
AdaptSVM algorithm with related SVM acceleration
methods reported in the literature. Adopting the most
common settings, we collected the maximum predic-
tion speedup without a significant loss of accuracy
(< 0.5%) on each dataset. Table 2 compares the per-
formance of AdaptSVM with the ball tree (Liu et al.,
2003) and SV tree (Ukkonen, 2010) methods, which
have a complete focus on improving the prediction pro-
cess as well. The table shows the median, average, and
largest speedup achievable with each method, where
the number of ball tree and SV tree are directly re-
ferred from the related publications. We also reported
the number of tested collections for each algorithm.
We observe that AdaptSVM can on average achieve
an additional two orders of magnitude speedup on top
of the other two methods, the improvement of which is
arguably significant. We believe this provides another
data point to support the benefits AdaptSVM against
other related methods.

4. Conclusion

In this paper, we propose an efficient prediction al-
gorithm with performance guarantee for non-linear
SVMs, called AdaptSVM. Powered by our theoretical

5http://archive.ics.uci.edu/ml/datasets/Adult

analysis on approximating the mean and variance of
kernel functions, it can selectively collapse the kernel
function computation to be on a reduced set of support
vectors, compensated by an additional correction term
that can be easily computed on-line. To guarantee the
prediction performance is not degraded, we also de-
velop an adaptive fall-back strategy to switch back to
original kernel computation if the estimated variance
is larger than the maximum error tolerance. Our ex-
perimental results on three large-scale datasets show
that AdaptSVM can speed up the prediction process
up to 104 times with only < 0.5% accuracy loss.

Our future work includes extending the empirical anal-
ysis to more non-linear kernels, e.g. polynomial ker-
nels, evaluating different clustering strategies for SV
grouping, and employing a hierarchical grouping struc-
ture to dynamically choose various size of clusters.

Acknowledgments

This material is based, in part, upon work by Michele
Cossalter and Lu Zheng supported by NSF grants
CCF-0937044 and ECCS-0931978.

References

Beyer, Kevin, Goldstein, Jonathan, Ramakrishnan,
Raghu, and Shaft, Uri. When Is “Nearest Neigh-
bor” Meaningful? In Database Theory - ICDT’99,
volume 1540 of Lecture Notes in Computer Science,
pp. 217–235. Springer Berlin / Heidelberg, 1999.

Boley, Daniel. Training Support Vector Machine using
Adaptive Clustering. In Proc. of SDM’04, pp. 126–
137, Lake Buena Vista, FL, USA, Apr 2004.

Burges, Christopher J. C. A Tutorial on Support Vec-
tor Machines for Pattern Recognition. Data Mining
and Knowledge Discovery, 2(2):121–167, 1998.

Burges, Christopher J. C. and Scholkopf, Bernhard.
Improving the Accuracy and Speed of Support Vec-
tor Machines. In Proc. of NIPS’96, pp. 375–381,
Denver, CO, USA, Dec 1996.

Catanzaro, Bryan, Sundaram, Narayanan, and
Keutzer, Kurt. Fast Support Vector Machine Train-
ing and Classification on Graphics Processors. In
Proc. of ICML’08, pp. 104–111, Helsinki, Finland,
Jul 2008.

Chang, Chih-Chung and Lin, Chih-Jen. LIBSVM:
a library for support vector machines, 2001. Soft-
ware available at http://www.csie.ntu.edu.tw/

~cjlin/libsvm.

Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction

Greengard, L. and Rokhlin, V. A Fast Algorithm
for Particle Simulations. Journal of Computational
Physics, 73(2):325–348, 1987.

Hammersley, John M. The Distribution of Distance
in a Hypersphere. In The Annals of Mathemati-
cal Statistics, volume 21, pp. 447–452. Institute of
Mathematical Statistics, 1950.

Joachims, Thorsten and Yu, Chun-Nam. Sparse Ker-
nel SVMs via Cutting-Plane Training. Machine
Learning, 76(2):179–193, 2009.

Liu, Ting, Moore, Andrew W., and Gray, Alexander.
Efficient Exact k-NN and Nonparametric Classifi-
cation in High Dimensions. In Proc. of NIPS’03,
Whistler, BC, Canada, Dec 2003.

Rai, Piyush, Daume, Hal, and Venkatasubramamian,
Suresh. Streamed Learning: One-Pass SVMs. In
Proc. of IJCAI’09, pp. 1211–1216, Pasadena, CA,
USA, Jul 2009.

Schölkopf, Bernhard and Smola, Alexander J. Learn-
ing with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond. MIT Press,
2001. ISBN 0262194759.

Tsang, Ivor .W., Kwok, James T., and Cheung, Pak-
Ming. Very Large SVM training using Core Vector
Machine. In Proc. of AISTATS’05, Barbados, Jan
2005.

Ukkonen, Antti. The Support Vector Tree. In Al-
gorithms and Applications, volume 6060 of Lecture
Notes in Computer Science, pp. 244–259. Springer
Berlin / Heidelberg, 2010.

Yang, Changjiang, Duraiswami, Ramani, and Davis,
Larry. Efficient Kernel Machines Using the Im-
proved Fast Gauss Transform. In Proc. of NIPS’04,
pp. 1561–1568, Vancouver, BC, Canada, Dec 2004.

Appendix: proof sketch of theorem 1

As the first step to derive E[f(x)], let us first derive the
Hessian matrix of RBF function f(x):

H(x) = −2ρ[I − 2ρD(x)DT (x)]e−ρ‖D(x)‖2

where D(x) = x − z. Based on Assumption 1 and
DT (x)R(x) = drx cos θx, we can compute the limit of the
integral form of the residual in Eq. (2) as follows:

∆ = lim
rx→r

∆x =

∫ 1

0

g(β,x)dβ

where

g(β,x) = −2ρ(1− β)r2e−ρ(d
2+β2r2)g1(β, r, θx)

g1(β, r, θx) = e−2ρβrd cos θx [1− 2ρ(d cos θx + βr)2]

We apply the composite rectangular rule to integrate g
numerically, i.e., we take N sampling points βn = n/N, n =
0 . . . N − 1 and replace the residual expectation into the
following sum:

E[∆] =
1

N

(
N−1∑
n=0

E[g(βn,x)]

)

To compute each E[g(βn,x)], we only need to compute the
value of E[g(βn, r, θx)]. We approximate the exponential
function using a 6-order Taylor expansion. By further sim-
plifying rn = rβn, we can have:

e−2ρrnd cos θx =

6∑
i=0

1

i!
(−2ρrn)idi cosi θx +O(cos6 θx)

We can then simplify the expectation of g1 by ignoring the
O(cos6 θx) term:

E

[
6∑
i=0

1

i!
(−2ρrn)idi cosi θx[1− 2ρ(d cos θx + rn)2]

]

Because Assumption 2 suggests the distribution of cos θx
can be approximated as N (0, σ2), we can compute expec-
tation of g1 based on the Gaussian integral:

E[g1] = (1− 2ρr2n) + (−4ρ2r4n + 10ρr2n − 2)ρσ2

+ (−4ρ3r6n + 18ρ2r4n − 12ρr2n)ρ2σ4

+ (−4/3ρ4r8n + 52/3ρ3r6n − 20ρ2r4n)ρ3σ6

where σ2 = λ/K is the variance of cos θx. On the other
hand, the expectation of residual term E[O(cos6 θx)] =
O(1/K6). Replacing both formulas back to g(β,x), we
can obtain E(f) in Theorem 1.

We can estimate the residual variance using similar tech-
niques. The limit of gradient can be rewritten as

lim
rx→r

∇x =

∫ 1

0

−2ρe−ρ(d
2+βr2)h(dθ)dβ

where dθ = d cos θx, and h(x) = (rx+ βr2)e−2ρβrx. Based
on Delta method, the variance of h(dθ) converges to fol-
lowing value when cos θx approaches 0:

Var[h(dθ)] = [h′(d cos θx)|cos θx=0]2d2Var[cos θx]

= (1− 2ρβ2r2)2r2d2σ2

Replacing Var[h(dθ)] we can obtain the variance of ∇x:

lim
rx→r

Var[∇x] ≤
∫ 1

0

[−2ρe−ρ(d
2+βr2)]2Var[h(dθ)]dβ

which can then be approximated using numerical integra-
tion and the definition of γn(r) in Theorem 1

lim
rx→r

Var[∇x] ≤ d2e−2ρd2σ2
N−1∑
n=0

[
2ρe−ρr

2
n(1− 2ρr2n)

]2

