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Abstract

We propose a spectral clustering algorithm
for the multi-view setting where we have ac-
cess to multiple views of the data, each of
which can be independently used for cluster-
ing. Our spectral clustering algorithm has a
flavor of co-training, which is already a widely
used idea in semi-supervised learning. We
work on the assumption that the true under-
lying clustering would assign a point to the
same cluster irrespective of the view. Hence,
we constrain our approach to only search for
the clusterings that agree across the views.
Our algorithm does not have any hyperpa-
rameters to set, which is a major advantage
in unsupervised learning. We empirically
compare with a number of baseline methods
on synthetic and real-world datasets to show
the efficacy of the proposed algorithm.

1. Introduction

Unlabeled data is plentiful, and increasing quanti-
ties of it come in multiple views from diverse sources
(Blum & Mitchell, 1998; Chaudhuri et al., 2009). Our
goal is to derive clustering algorithms that can lever-
age these multiple views. The central idea to our work
is that the clustering from one view should agree with
the clustering from another view. We present a mathe-
matically clean extension of standard spectral cluster-
ing approaches (Shi & Malik, 2000) to multiple views
based on the co-training idea (Blum & Mitchell, 1998).
Our approach is based on the assumption that the
true underlying clustering would assign corresponding
points in each view to the same cluster.

Multi-view data is common in a wide variety of ap-
plication domains. In natural language tasks, we can
have a document or a corpus available in multiple lan-
guages (Amini et al., 2009). Internet webpages can
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be represented as page-text as well as the hyperlinks
pointing to them, giving rise to two views of the en-
tity it represents. In computer vision problems, we
can have an object or a scene captured from multi-
ple viewing angles. In automatic speech recognition,
we can also have access to the image sequence of lip-
movements along with the speech sounds.

In the context of clustering, we seek to partition our
data based on a similarity measure between the exam-
ples. Spectral clustering algorithms have gained atten-
tion in the recent past due to their good performance
on arbitrary shaped clusters, and due to their well-
defined mathematical framework (von Luxburg, 2007).
Spectral clustering operates on a graph that is con-
structed from the data points as nodes, with edges
between them representing the similarities. Because
the input to a spectral clustering method is a similar-
ity graph, in the rest of the paper we use the terms
graph and view interchangeably. Our algorithm uses
the idea of co-training (Blum & Mitchell, 1998) that
was originally introduced (and is still mostly used) in
the setting of semi-supervised learning. We take this
idea to unsupervised learning setting, specifically in
the framework of spectral clustering. We bootstrap
the clusterings of different views using information
from one another. In particular, we use the spectral
embedding from one view to constrain the similarity
graph used for the other view. By iteratively applying
this approach, the clusterings of the two views tend
to each other. We evaluate the proposed approach
on four real-world datasets against several competitive
baselines and observe consistent improvements in per-
formance. The graph Laplacians obtained during the
course of the algorithm are low rank, which is an ad-
vantage in large scale clustering problems. Moreover,
our algorithm has no hyperparameters to set, which is
especially encouraging in an unsupervised setting.

2. Spectral Clustering

Spectral clustering is a technique that exploits the
properties of the Laplacian of the graph, whose edges
denote the similarities between the data points. The
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top k eigenvectors of the normalized graph Laplacian
are relaxations of the indicator vectors that assign each
node in the graph to one of the k clusters. Apart
from being theoretically well-motivated, spectral clus-
tering has the advantage of performing well on arbi-
trary shaped clusters, which is otherwise a shortcom-
ing with several other clustering algorithms such as
the k-means algorithm. Here we briefly outline the
spectral clustering algorithm due to (Ng et al., 2002):

• Construct an n×n positive semi-definite similarity
matrix (or kernel) K, where Kij quantifies the
similarity between samples i and j.

• Compute the normalized graph Laplacian L =
D−1/2KD−1/2, where D is a diagonal matrix with
Dii =

∑

j Kij .
• Let U denote a n× k matrix with columns as the

top k eigenvectors of L
• Normalize each row of U to obtain V.
• Run the k-means algorithm to cluster the row vec-

tors of V.
• Assign example i to cluster c if the i-th row of V

is assigned to cluster c by the k-means algorithm.

For a detailed introduction to both theoretical and
practical aspects of spectral clustering, the reader is
referred to (von Luxburg, 2007).

3. Co-training

We provide a brief overview of co-training in this
section. It was originally proposed for the problem
of semi-supervised learning, where we have access to
labeled as well as unlabeled data (Blum & Mitchell,
1998). It considers a setting in which each example
can be partitioned into two distinct views, and makes
three main assumptions for its success: (a) Sufficiency:

Each view is sufficient for classification on its own, (b)
Compatibility: the target functions in both views pre-
dict same labels for co-occurring features with high
probability, and (c) Conditional independence: the
views are conditionally independent given the class la-
bel.

The central idea of co-training algorithms is to limit
the search for target hypothesis to the set of “com-
patible hypotheses” that predict same labels for co-
occurring patterns in each view. Unlabeled data al-
lows us to do this pruning of the hypothesis space. In
the original co-training algorithm (Blum & Mitchell,
1998), two initial hypotheses h1 and h2 are trained
in the individual views using the labeled data. Both
hypotheses then label a certain number of unlabeled
examples on which they are most confident. These ex-
amples are added to the labeled pool, and h1, h2 are
retrained. This process is repeated for a pre-chosen

number of iterations. The intuition behind co-training
algorithm is that h1 adds examples to the labeled set
that are used for training h2, and vice versa. This pro-
cess should slowly drive h1 and h2 to agree with each
other on labels.

Variants of the original co-training algorithm were
also proposed later and evaluated on different
datasets. We specifically mention the co-EM algo-
rithm (Nigam & Ghani, 2000). It differs with the orig-
inal co-training algorithm in a couple of places. Firstly,
it is not incremental in nature, i.e., all of unlabeled
data is labeled in each iteration for further use. Sec-
ondly, only the data labeled by h2 is used to retrain
h1 (and vice versa), unlike the original co-training al-
gorithm that uses data labeled by both h1 and h2 in
retraining each of these. Nigam and Ghani (2000) ob-
serve that co-EM is a closer match to the theoretical
argument of Blum and Mitchel (1998) than the origi-
nal co-training algorithm.

4. Co-training for Spectral Clustering

In this section, we apply the idea of co-training to the
problem of multi-view spectral clustering. There is
no labeled data in unsupervised learning problems, so
semi-supervised co-training cannot be applied directly.
However, the motivation still remains the same as in
semi-supervised problems: to limit our search to hy-
potheses (in our problem, clusterings) that agree with
those in other views. Specifically, we want the rela-
tionship within a pair of points to be consistent across
the views. If two points are assigned in same cluster
in one view, it should be so in all the views. On the
other hand, if two points belong to different clusters, it
should be so in all the views. This is a reasonable ap-
proach to take in the light of compatibility assumption
of co-training.

We know that the first k eigenvectors of a graph
Laplacian with exactly k number of connected com-
ponents are the component (or cluster) indicator vec-
tors, i.e., each vector is associated to a cluster and has
non-zero values only at positions that correspond to
points in the cluster. In another words, these eigenvec-
tors only contain discriminative information about the
clusters, ignoring the within-cluster details. For a fully
connected graph (one connected component), spectral
clustering solves a relaxed version of the min-cut prob-
lem (normalized or unnormalized). The eigenvectors
in this case are not the cluster indicator vectors, yet
they still contain discriminative information which is
used in spectral clustering. In the multi-view setting,
we can make use of eigenvectors obtained from one
view to “label” the points in other view, and vice versa.
Our proposed multi-view algorithm aims to work along
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the lines of Figure 1.

1. Solve spectral clustering on individual graphs
to get the discriminative eigenvectors in each view,
say U1 and U2.
2. Cluster points using U1 and use this clustering
to modify the graph structure in view 2.
3. Cluster points using U2 and use this clustering
to modify the graph structure in view 1.
4. Go to Step 1 and repeat for a number of itera-
tions.

Figure 1. General framework for co-training based cluster-
ing

Now, the question remains of how to modify the graph
structure using clustering information from the other
view. One näıve way could be to reduce the edge-
weight of a pair in a graph if its points belong to differ-
ent clusters according to the other view. Alternatively,
we can amplify the edge-weight of a pair if the other
view puts it in same cluster. A similar idea could be
applied for the other graph. However, this would re-
quire us to cluster points at each step, which may not
be computationally efficient. In addition, there is also
a question of how to decide the amounts or factors by
which to reduce the different edge weights.

Instead of completely solving the clustering at each it-
eration and then “labeling” the other graph, we take
an indirect approach that results in extra computa-
tional savings, and is also more elegant. For a similar-
ity matrix Kn×n, we can consider each column ki of
it as an n-dimensional vector that indicates the sim-
ilarities of ith point with all the points in the graph.
The eigenvectors of the graph Laplacian are vectors in
the n-dimensional space. Since we know that the first
k eigenvectors have the discriminative information for
clustering, we can project the similarity vectors along
these directions to retain the information needed for
clustering and throw away the within cluster details
that might confuse us in clustering. We back-project
to the original n-dimensional space to get back the
modified graph. Since the projection matrix is or-
thogonal, the inverse projection can be done using its
transpose. This process is equivalent to steps 2 and 3
in Figure 1. Algorithm 1 gives a detailed description
of the algorithm. We perform the symmetrization step
on S1 and S2 in the algorithm since the projection of
similarity matrix K on the eigenvectors does not yield
a symmetric matrix. Symmetrization operator on a
matrix S is defined as sym(S) = (S + ST )/2.

To further reinforce the idea of projection along the
eigenvectors, let us consider a simple case where the
first graph has exactly k components in it, i.e., the

Algorithm 1 Co-trained Multi-view Spectral Cluster-
ing

Input:
Similarity matrix for both views: K1, K2

Output: Assignments to k clusters

Initialize: Lv = D
−1/2
v KvD

−1/2
v for v = 1, 2

U0
v = argmax

U∈Rn×k

tr(UT LvU), s.t. UT U = I for v =

1, 2
for i = 1 to iter do

1: S1 = sym
(

Ui−1
2 Ui−1T

2 K1

)

2: S2 = sym
(

Ui−1
1 Ui−1T

1 K2

)

3: Use S1 and S2 as the new graph similarities
and compute the Laplacians. Solve for the largest
k eigenvectors to obtain Ui

1 and Ui
2.

end for
4: Row-normalize Ui

1 and Ui
2.

5: Form matrix V = Ui
v, where v is believed to

be the most informative view a priori. If there is no
prior knowledge on the view informativeness, matrix
V can also be set to be column-wise concatenation
of the two Ui

vs.
6: Assign example j to cluster c if the j-th row of V
is assigned to cluster c by the k-means algorithm.

weights of across cluster edges are 0. As we know, the
Laplacian of this graph would have the top k eigen-
vectors as the cluster indicator vectors (von Luxburg,
2007). Let us assume that the second view has a fully
connected graph as follows:

K2 =









0 b c d
b 0 e f
c e 0 g
d f g 0









(1)

The self-similarities of all points are assumed to be
same and equal to 0, since they do not affect the
min-cut solution. Suppose the second graph gives
u1

1 = 1√
3

(1 1 1 0)
T

and u2
1 = (0 0 0 1)

T
as the top two

eigenvectors. This implies that first 3 points are in
one cluster and the fourth point is in the second clus-
ter. Let U1 =

(

u1
1 u2

1

)

. The projection of K2 onto
the subspace spanned by U1 and the subsequent sym-
metrization yields the following modified graph in view
2:

1
3









b+c b+(c+e)/2 c+(b+e)/2 2d+(f+g)/2

b+(c+e)/2 b+e e+(b+c)/2 2f+(d+g)/2

c+(b+e)/2 e+(b+c)/2 c+e 2g+(d+f)/2

2d+(f+g)/2 2f+(d+g)/2 2g+(d+f)/2 0









Let us pay attention to the shaded sub-matrix in the
above matrix. The new weight of edge (i, j) is ob-
tained by averaging out the edges within the cluster.
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The across cluster edges are also averaged out in the
new graph. This implies that the projection in the
subspace of discriminative eigenvectors makes edges
within a cluster close to each other, throwing away the
intra-cluster information that is irrelevant for cluster-
ing. As the number of iterations increase, the edges
within a cluster diffuse to one another. The across
cluster edges also diffuse to one another. All points
within a cluster are treated in a similar way, and dif-
ferent from points in other clusters. In other words,
this process “glues” all the points in a cluster, and
they tend to appear together in the subsequent spec-
tral clustering solution.

It is possible to extend the proposed co-training frame-
work for more than two views. We can take the
similarity matrix Kv of a view, and project it onto
the union of subspaces spanned by top k discrim-
inative eigenvectors of the other views. More for-
mally, steps 1 and 2 in Algorithm 1 are replaced by

Sv = sym
((

∑

i6=v UiU
T
i

)

Kv

)

for all the views.

4.1. Computational Efficiency

The projection of the similarity matrix K using the
projection matrix UUT gives a matrix that has a rank
of k. After symmetrization, each of the new similarity
matrices S1 and S2 has a maximum rank of 2k. Hence,
the normalized Laplacian L = D−1/2SD−1/2 also has
a maximum rank of 2k. This can be of great advan-
tage in large scale problems, since there exist efficient
randomized algorithms for doing SVD if the original
matrix is low rank and a good upper bound on the rank
is known in advance (Liberty et al., 2007). The ma-
trix S̃ = UUT K is a diagonalizable matrix and has all
real non-negative eigenvalues (refer to Theorem 7.6.3
in (Horn & Johnson)). However, it is not necessary for
sym(S) = (S̃ + S̃T )/2 to have non-negative eigenval-
ues. The individual entries of sym(S) can also be neg-
ative, and so the corresponding Laplacian can be non-
positive definite. In our experiments, we add a rank-1
matrix to sym(S) that has all its entries equal to the
minimum negative entry of sym(S). This makes sure
that the corresponding Laplacian is positive semidefi-
nite at each iteration.

5. Experiments

We compare our co-trained multi-view spectral clus-
tering approach with a number of baselines. In partic-
ular, we compare with:

• Single View: Using the most informative view,
i.e., one that achieves the best spectral clustering
performance using a single view of the data.

• Feature Concatenation: Concatenating the
features of each view, and then running standard

spectral clustering using the graph Laplacian de-
rived from the joint view representation of the
data.

• Kernel Addition: Combining different kernels
by adding them, and then running standard spec-
tral clustering on the corresponding Laplacian.
As suggested in earlier findings (Cortes et al.,
2009), even this seemingly simple approach often
leads to near optimal results as compared to more
sophisticated approaches for classification. It can
be noted that kernel addition reduces to feature
concatenation for the special case of linear kernel.
In general, kernel addition is same as concatena-
tion of features in the Reproducing Kernel Hilbert
Space.

• Kernel Product (element-wise): Multiplying
the corresponding entries of kernels and apply-
ing standard spectral clustering on the resultant
Laplacian. For the special case of Gaussian ker-
nel, element-wise kernel product would be same
as simple feature concatenation if both kernels
use same width parameter σ. However, in our
experiments, we use different width parameters
for different views so the performances of kernel
product may not be directly comparable to fea-
ture concatenation.

• CCA based Feature Extraction: Applying
CCA for feature fusion from multiple views of the
data (Blaschko & Lampert, 2008), and then run-
ning spectral clustering using these extracted fea-
tures. We apply both standard CCA and kernel
CCA for feature extraction and report the clus-
tering results for whichever gives the best perfor-
mance on test data.

• Minimizing-Disagreement Spectral Clus-
tering: Our last baseline is the minimizing-

disagreement approach to spectral cluster-
ing (de Sa, 2005), and is perhaps most closely
related to our co-training based approach to
spectral clustering. This algorithm is discussed
more in Sec. 6.

We report experimental results on one synthetic and
three real-world datasets. We give a brief description
of each dataset here.

• Synthetic data: Our synthetic data consists
of three views and is generated as follows. We
first choose the cluster ci each sample belongs to,

and then generate each of the views x
(1)
i , x

(2)
i

and x
(3)
i from a two-component Gaussian mix-

ture model. These views are combined to form
the sample (x

(1)
i , x

(2)
i , x

(3)
i , ci). We sample 1000

points from each view. The cluster means in view

1 are µ
(1)
1 = (1 1) , µ

(1)
2 = (3 4); in view 2 are
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µ
(2)
1 = (1 2) , µ

(2)
2 = (2 2); and in view 3 are

µ
(3)
1 = (1 1) , µ

(3)
2 = (3 3). The covariances for

the three views are given below. The notation

Σ
(v)
c denotes the parameter for cth cluster in vth

view.

Σ
(1)
1 =

(

1 0.5
0.5 1.5

)

, Σ
(1)
2 =

(

0.3 0.2
0.2 0.6

)

Σ
(2)
1 =

(

1 −0.2
−0.2 1

)

, Σ
(2)
2 =

(

0.6 0.1
0.1 0.5

)

Σ
(3)
1 =

(

1.2 0.2
0.2 1

)

, Σ
(3)
2 =

(

1 0.4
0.4 0.7

)

• Reuters Multilingual data: The test collec-
tion contains feature characteristics of documents
originally written in five different languages (En-
glish, French, German, Spanish and Italian), and
their translations, over a common set of 6 cat-
egories (Amini et al., 2009). We use documents
originally in English as the first view, and their
French and German translations as the second
and third views. We randomly sample 1200 doc-
uments from this collection in a balanced man-
ner, with each of the 6 clusters having 200 docu-
ments. The documents are in bag-of-words repre-
sentation which implies that the features are ex-
tremely sparse and high-dimensional. The stan-
dard similarity measures (like Gaussian kernel) in
very high dimensions are often unreliable. Since
spectral clustering essentially works with similar-
ities of the data, we first project the data using
Latent Semantic Analysis (LSA) (Hofmann, 1999)
to a 100-dimensional space and compute similar-
ities in this lower dimensional space. This is akin
to a computing topic based similarity of docu-
ments (Blei et al., 2003).

• UCI Handwritten digits data: Our second
real-world dataset is taken from the handwritten
digits (0-9) data from the UCI repository. The
dataset consists of 2000 examples, with view-1 be-
ing the 76 Fourier coefficients, and view-2 being
the 216 profile correlations of each example image.

• BBC and BBCSPORTS data: These
datasets consist of news articles from the
BBC (Greene & Cunningham, 2005). BBC data
contains 2225 complete news articles correspond-
ing to stories in five topical areas (business,
entertainment, politics, sport, tech). BBC-
SPORTS data consists of 737 sports news ar-
ticles in five classes (athletics, cricket, football,
rugby, tennis). These are synthetic multi-view
datasets, wherein each document is segmented
and segments are randomly assigned to the two
views (Greene & Cunningham, 2009).
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Figure 2. NMI scores in different views vs number of itera-
tions of co-trained spectral clustering for Synthetic data
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Figure 3. NMI scores in different views vs number of iter-
ations of co-trained spectral clustering for Reuters mul-

tilingual data

We compare all the approaches on a number of eval-
uation measures. Here, we report precision, recall, F-
score, normalized mututal information (NMI), aver-
age entropy, and adjusted rand index (Manning et al.,
2008; Hubert & Arabie, 1985). For all these measures,
the higher value indicates better clustering quality,
except for average cluster entropy, for which lower
value signifies better clustering quality. Each evalu-
ation measure penalizes or favors different properties
in the clustering, hence we report results on these di-
verse measures to do a comprehensive evaluation.

We use Gaussian kernel for computing the graph sim-
ilarities in all the experiments. The standard devia-
tion of the kernel is taken equal to the median of the
pair-wise Euclidean distances between the data points,
except for the BBC data for which it gives extremely
low performance. We use a kernel std. dev. of 100 for
both BBC datasets. In all the result tables, the num-
bers in the brackets are the standard deviations of the
performance measures obtained with 20 different runs
of k-means with random initializations.

The results for synthetic data are shown in Table 1.
As it can be seen, the proposed approach outperforms
all the baselines. Baselines are run using first using
two views and then using all three views, and the best
results are reported here. The closest performing ap-
proach is kernel addition. For synthetic data, order-2
polynomial kernel based kernel-CCA gives best perfor-
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Table 1. Clustering performance on synthetic data. Number (2) or (3) indicates the number of views used in the
approach. Std. deviations of all performance metrics are zero for this synthetic data.

Method F-score Precision Recall Entropy NMI Adj-RI

Best Single View 0.971 0.975 0.968 0.097 0.898 0.942
Feature Concat 0.980 0.983 0.977 0.068 0.928 0.960
Kernel Addition 0.996 0.996 0.996 0.020 0.973 0.992
Kernel Product 0.990 0.988 0.991 0.041 0.959 0.980

CCA 0.984 0.984 0.984 0.067 0.932 0.968
Min-Disagreement 0.984 0.986 0.983 0.062 0.936 0.968

Co-trained spectral(2) 0.996 0.995 0.996 0.019 0.981 0.992
Co-trained spectral(3) 0.998 0.998 0.997 0.010 0.989 0.996

Table 2. Clustering performance on Reuters multilingual data. The languages used are English, French, and German.
Number (2) or (3) indicates the number of views used in the approach. Numbers in parentheses are the std. deviations.

Method F-score Precision Recall Entropy NMI Adj-RI

Best Single View 0.342(0.010) 0.296(0.015) 0.407(0.025) 1.878(0.052) 0.287(0.019) 0.186(0.014)

Feature Concat 0.368(0.012) 0.330(0.016) 0.416(0.017) 1.841(0.057) 0.298(0.020) 0.225(0.017)

Kernel Addition 0.386(0.012) 0.358(0.017) 0.420(0.023) 1.770(0.058) 0.323(0.021) 0.252(0.016)

Kernel Product 0.258(0.003) 0.198(0.011) 0.381(0.058) 2.306(0.034) 0.123(0.010) 0.052(0.014)

CCA 0.262(0.007) 0.222(0.005) 0.322(0.034) 2.232(0.009) 0.147(0.003) 0.082(0.003)

Min-Disagreement 0.381(0.014) 0.341(0.004) 0.435(0.035) 1.736(0.052) 0.342(0.024) 0.240(0.012)

Co-trained spectral(2) 0.401(0.009) 0.363(0.007) 0.450(0.030) 1.651(0.024) 0.373(0.012) 0.267(0.007)

Co-trained spectral(3) 0.412(0.001) 0.369(0.001) 0.467(0.003) 1.616(0.017) 0.388(0.007) 0.279(0.001)

mance among all CCA variants, while Gaussian kernel
based kernel-CCA performs poorly. We do not report
results for Gaussian kernel CCA here. All the base-
lines outperform the single view case for the synthetic
data.

Table 2 shows the document clustering results on
Reuters multilingual data with English, French and
German documents as the three views. On this dataset
too, our approach outperforms all the baselines by
a significant margin. The next best performance is
attained by minimum-disagreement spectral cluster-
ing (de Sa, 2005) approach. It should be noted that
CCA and element-wise kernel product performances
are worse than that of single view.

Table 3 shows the results on UCI Handwritten dig-
its dataset. On this dataset, quite a few approaches
including kernel addition, element-wise kernel multi-
plication, and minimum-disagreement are close to our
co-training based spectral clustering approach. Our
approach still manages to perform marginally better
than the best of these on all evaluation metrics. It can
be noted that feature concatenation performs worse
than single view.

Finally, the results on BBC and BBCSPORTS data are
shown in Tables 4 and 5. All baselines perform better
than single view. Our proposed approach outperforms
the closest performing baseline, which is minimum-
disagreement approach, by a significant margin. CCA
again performs worse than single view as was the case

for Reuters multilingual data.

We also show the variation in NMI score as the num-
ber of iterations increase in Figures 2 and 3. For the
synthetic data, algorithm converges after four itera-
tions for all the three views and remains constant af-
ter that. For Reuters data, the major improvement
in performance for all views is obtained after the first
iteration. It keeps varying around that value in the
subsequent iterations. In general, we observe that the
algorithm does not converge, as is also the case with
semi-supervised co-training algorithm, which is also
not guaranteed to converge. In all our experiments, we
observed that the biggest increment in performance is
obtained in the first iteration. We stop after a fixed
number of iterations in our experiments. However, it
is possible to apply some heuristic clustering perfor-
mance measures (e.g. cluster compactness measure)
to decide the stopping criterion.

6. Related Work

A number of clustering algorithms have been pro-
posed in the past to learn with multiple views of the
data. Some of them first extract a set of shared fea-
tures from the multiple views and then apply any
off-the-shelf clustering algorithm such as k-means on
these features. The Canonical Correlation Analysis
(CCA) (Chaudhuri et al., 2009; Blaschko & Lampert,
2008) based approach is an example of this. Alter-
natively, some other approaches exploit the multiple
views of the data as part of the clustering algorithm
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Table 3. Clustering performance on Handwritten digits data. Numbers in parentheses are the std. deviations.
Method F-score Precision Recall Entropy NMI Adj-RI

Best Single View 0.577(0.015) 0.569(0.020) 0.586(0.012) 1.198(0.029) 0.641(0.008) 0.530(0.017)

Feature Concat 0.536(0.027) 0.514(0.026) 0.561(0.032) 1.283(0.050) 0.619(0.015) 0.480(0.026)

Kernel Addition 0.707(0.052) 0.688(0.065) 0.727(0.037) 0.862(0.110) 0.744(0.030) 0.673(0.059)

Kernel Product 0.719(0.049) 0.698(0.064) 0.742(0.032) 0.832(0.102) 0.754(0.026) 0.687(0.055)

CCA 0.638(0.027) 0.616(0.037) 0.662(0.020) 1.073(0.071) 0.682(0.019) 0.596(0.031)

Min-Disagreement 0.693(0.047) 0.663(0.066) 0.729(0.026) 0.870(0.096) 0.745(0.024) 0.658(0.053)

Co-trained spectral 0.726(0.048) 0.709(0.058) 0.745(0.039) 0.793(0.109) 0.765(0.031) 0.695(0.054)

Table 4. Clustering performance on BBC data. Numbers in parentheses are the std. deviations.
Method F-score Precision Recall Entropy NMI Adj-RI

Best Single View 0.546(0.001) 0.522(0.001) 0.572(0.001) 1.221(0.003) 0.478(0.001) 0.424(0.001)

Feature Concat 0.559(0.019) 0.526(0.016) 0.598(0.022) 1.152(0.027) 0.512(0.013) 0.439(0.024)

Kernel Addition 0.558(0.013) 0.525(0.013) 0.595(0.013) 1.166(0.016) 0.506(0.008) 0.437(0.017)

Kernel Product 0.572(0.033) 0.536(0.028) 0.614(0.039) 1.132(0.053) 0.522(0.025) 0.455(0.042)

CCA 0.220(0.001) 0.193(0.001) 0.257(0.002) 1.861(0.003) 0.214(0.001) 0.178(0.001)

Min-Disagreement 0.854(0.047) 0.849(0.065) 0.860(0.026) 0.479(0.093) 0.794(0.033) 0.816(0.062)

Co-trained spectral 0.898(0.000) 0.894(0.000) 0.902(0.000) 0.369(0.000) 0.841(0.000) 0.873(0.000)

itself. For example, (Bickel & Scheffer, 2004) proposed
an Co-EM based framework for multi-view clustering
in mixture models. Co-EM approach computes ex-
pected values of hidden variables in one view and uses
these in the M-step for other view, and vice versa. This
process is repeated until a suitable stopping criteria is
met. The algorithm often does not converge.

Multi-view clustering algorithms have also been
proposed in the framework of spectral clus-
tering (Zhou & Burges, 2007; de Sa, 2005).
In (Zhou & Burges, 2007), the authors obtain a
graph cut which is good on average over the multiple
graphs but may not be the best for a single graph.
They give a random walk based formulation for the
problem. (de Sa, 2005) approaches the problem of
two-view clustering by constructing a bipartite graph
from nodes of both views. Edges of the bipartite
graph connect nodes from one view to those in
the other view. Subsequently, they solve standard
spectral clustering problem on this bipartite graph.
In (Tang et al., 2009), the information from multiple
graphs are fused using Linked Matrix Factorization.

Consensus clustering approaches can also be applied to
the problem of multi-view clustering (Strehl & Ghosh,
2002). These approaches do not generally work with
original features. Instead, they take different cluster-
ings of a dataset coming from different sources as input
and reconcile them to find a final clustering.

7. Discussion

We proposed a multi-view spectral clustering approach
using the idea of co-training, that has been widely
used in semi-supervised learning problems. The gen-

eral framework of our proposed algorithm is to learn
the clustering in one view and use it to “label” the
data in other view so as to modify the graph structure
(similarity matrix). The modification to the graph
is dictated by the discriminative eigenvectors and is
achieved by projection along these directions.

Our key assumption that the true underlying cluster-
ing is same for all views is safe in most scenarios, and is
necessary for multi-view algorithms to succeed. This
assumption can potentially be violated in situations
where the data assumes more than one natural clus-
tering, and different clusterings become prominent in
different views. However, in this work, we were not
concerned with the problem of multiple clusterings so
compatibility of clustering across views was safe to as-
sume.

It is possible to extend the proposed framework to the
case where some of the views have missing data. For
missing data points, the corresponding entries in the
similarity matrices would be unavailable. We can es-
timate these missing similarities by the corresponding
similarities in other views. One possible approach to
estimate the missing entry could be to simply average
the similarities from views in which the data point is
available. Proper normalization of similarities (pos-
sibly by Frobenius norm of the whole matrix) might
be needed before averaging to make them comparable.
Other methods for missing kernel entries estimation
can also be used.

Theoretical analysis of the proposed approach can also
be pursued as a separate line of work. There has
been very little prior work analyzing spectral cluster-
ing methods. For instance, there has been some work
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Table 5. Clustering performance on BBCSPORTS data. Numbers in parentheses are the std. deviations.
Method F-score Precision Recall Entropy NMI Adj-RI

Best Single View 0.387(0.015) 0.405(0.021) 0.370(0.015) 1.565(0.066) 0.286(0.028) 0.210(0.022)

Feature Concat 0.609(0.040) 0.636(0.019) 0.585(0.059) 0.919(0.009) 0.575(0.004) 0.497(0.047)

Kernel Addition 0.604(0.038) 0.634(0.020) 0.578(0.054) 0.898(0.014) 0.584(0.004) 0.491(0.045)

Kernel Product 0.603(0.036) 0.635(0.018) 0.575(0.053) 0.910(0.011) 0.578(0.003) 0.490(0.043)

CCA 0.173(0.008) 0.187(0.010) 0.161(0.006) 1.89(0.074) 0.115(0.011) 0.089(0.005)

Min-Disagreement 0.718(0.082) 0.751(0.051) 0.690(0.109) 0.646(0.080) 0.697(0.045) 0.638(0.102)

Co-trained spectral 0.850(0.078) 0.866(0.057) 0.836(0.095) 0.392(0.091) 0.817(0.047) 0.807(0.099)

on consistency analysis of single view spectral clus-
tering (von Luxburg et al., 2008), which provides re-
sults about the rate of convergence as the sample size
increases, using tools from theory of linear operators
and empirical processes. Similar convergence proper-
ties could be studied for multi-view spectral clustering.
We can expect the convergence to be faster for multi-
view case. Co-training reduces the size of hypothesis
space by limiting the search for compatible clusterings,
and hence less number of examples should be needed
to converge to the solution.
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