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Abstract

Numerous applications in statistics, signal pro-

cessing, and machine learning regularize us-

ing Total Variation (TV) penalties. We study

anisotropic (ℓ1-based) TV and also a related

ℓ2-norm variant. We consider for both vari-

ants associated (1D) proximity operators, which

lead to challenging optimization problems. We

solve these problems by developingNewton-type

methods that outperform the state-of-the-art al-

gorithms. More importantly, our 1D-TV al-

gorithms serve as building blocks for solving

the harder task of computing 2- (and higher)-

dimensional TV proximity. We illustrate the

computational benefits of our methods by apply-

ing them to several applications: (i) image de-

noising; (ii) image deconvolution (by plugging in

our TV solvers into publicly available software);

and (iii) four variants of fused-lasso. The results

show large speedups—and to support our claims,

we provide software accompanying this paper.

1. Introduction

Applications in statistics, signal processing, and machine

learning frequently involve problems of the form

min
x∈Rn

L(x) +R(x), (1)

where L is a differentiable, convex loss, and R is a con-

vex, possibly nonsmooth regularizer. Nonsmoothness of R
makes optimizing (1) hard; but often the difficulties raised

by this nonsmoothness can be alleviated by passing to R’s

proximity operator, defined by the following operation:

proxR(y) := argminx
1
2‖x− y‖22 +R(x). (2)
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Within machine learning and related fields, the bene-

fits of invoking the proximity operator (2) are well-

recognized (Nesterov, 2007; Combettes & Pesquet, 2009;

Duchi & Singer, 2009), and several choices of R have al-

ready been considered.

We study a special choice for R: one and higher dimen-

sional total-variation (TV)1; for x ∈ R
n, this is defined as

Tv1Dp (x) :=
(

∑n−1

i=1
|xi+1 − xi|

p
)1/p

, (3)

and for matricesX ∈ R
m×n it is defined as

Tv2Dp,q(X) :=
∑m

i=1

(

∑n−1

j=1
|xi,j+1 − xi,j |

p
)1/p

+
∑n

j=1

(

∑m−1

i=1
|xi+1,j − xi,j |

q
)1/q

, (4)

where usually p, q ∈ {1, 2}. We focus on two

key variants of (3) and (4): anisotropic-TV (see e.g.

Bioucas-Dias & Figueiredo, 2007), with p, q = 1; and TV

with both p and q = 2. Extension of (3) to tensor data is

relegated to (Barbero & Sra, 2011), for paucity of space.

The regularizers Tv1D1 and Tv2D1,1 arise in many

applications—e.g., image denoising and deconvolu-

tion (Dahl et al., 2010), fused-lasso (Tibshirani et al.,

2005), logistic fused-lasso (Kolar et al., 2010), and

change-point detection (Harchaoui & Lévy-Leduc, 2010);

also see the related work (Vert & Bleakley, 2010). This

fairly broad applicability motivates us to develop efficient

proximity operators for TV. Before beginning the technical

discussion, let us summarize our key contributions.

Algorithms: For Tv1D1 - and Tv1D2 -proximity, we derive

efficient Newton-type algorithms, which we subsequently

use as building blocks for rapidly solving the harder case

of Tv2Dp,q-proximity (also higher-D TV) with p, q ∈ {1, 2}.

Applications: We highlight some of the benefits of our

fast algorithms by showing their application to image de-

noising; we also show their use as efficient subroutines in

1Our definitions of TV are different from the original ROF
model of TV (Rudin et al., 1992); also see §5.2.
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larger solvers for image deconvolution and for solving four

variants of fused-lasso.

Software: To support our numerical results, we provide

efficient implementations of our algorithms.2

An additional important message of our paper is: even for

large-scale machine learning problems, Newton-typemeth-

ods can be superior to first-order methods, provided the

problem has enough structure. This viewpoint, though ob-

vious, seems to be espoused by a surprisingly small fraction

of researchers within the machine learning community.

The literature on TV is huge, so it cannot be summarized

here. However, we do mention here some of the most di-

rectly relevant work.

Previously, Vogel & Oman (1996) suggested a Newton ap-

proach for TV; they smoothed the objective, but noted that

it leads to numerical difficulties. In contrast, we solve the

nonsmooth problem directly. Recently, Liu et al. (2010)

presented tuned algorithms for Tv1D1 -proximity based on a

careful “restart” heuristic; their methods show strong em-

pirical performance but do not extend easily to higher-D

TV. Our Newton-type methods outperform the tuned meth-

ods of (Liu et al., 2010), and fit nicely in a general algo-

rithmic framework that allows tackling the harder two- and

higher-D TV problems.

TV regularization in itself arises frequently in image de-

noising, whereby a large number of TV-based denois-

ing algorithms exist (see e.g. Zhu & Chan, 2008). How-

ever, in contrast to our paper, most TV-based methods

use the standard isotropic TV or ROF model (Rudin et al.,

1992), and there are few methods tailored to anisotropic

TV, except those developed in the context of fused-

lasso (Friedman et al., 2007; Liu et al., 2010).

It is tempting to assume that existing isotropic algorithms,

such as the state-of-the-art PDHG (Zhu & Chan, 2008)

method, can be easily adapted. But this is not so. PDHG

requires fine-tuning of its parameters, and to obtain fast

performance its authors apply non-trivial adaptive rules

that fail on our anisotropic model. ADMM-style algo-

rithms (Combettes & Pesquet, 2009), whose convergence

speed is highly sensitive to their stepsize parameters, also

pose similar problems. In stark contrast, our solvers do not

require any parameter tuning, and run rapidly.

Our TV methods can be plugged in directly into solvers

such as TwIST (Bioucas-Dias & Figueiredo, 2007) or

SALSA (Afonso et al., 2010) for image deblurring, and

into methods such as FISTA (Beck & Teboulle, 2009) or

TRIP (Kim et al., 2010), for TV-regularized optimization.

2See http://arantxa.ii.uam.es/∼gaa/software.html

2. One dimensional TV-Proximity

We begin with 1D-TV proximity, and devote most atten-

tion to it, since it forms a crucial part of our 2D-TV meth-

ods. Introduce the differencing matrix D ∈ R
(n−1)×n

with dij = 0, except for dii = −1 and di,i+1 = 1. Let

Tv1Dp (x) = ‖Dx‖p; then the TV-proximity problem is

minx∈Rn
1
2‖x− y‖22 + λ‖Dx‖p. (5)

It is often easier to solve (5) via its dual

maxu − 1
2‖D

Tu‖22 + uTDy, s.t. ‖u‖q ≤ λ, (6)

where ‖·‖q is the dual-norm to ‖·‖p. If u is dual feasible,

then the primal variablex = y−DTu. The corresponding

duality-gap is easily computed as

gap(x,u) := λ‖Dx‖p − uTDx. (7)

If u∗ is the optimal dual solution, then the optimal primal

solution is given by x∗ = y −DTu∗.

2.1. TV-L1: Proximity for Tv1D1

For 1D anisotropic TV, the dual (6) becomes

minu φ(u) := 1
2‖D

Tu‖22−u
TDy, s.t. ‖u‖∞ ≤ λ. (8)

This is a box-constrained quadratic program; so it can

be solved by methods such as TRON (Lin & Moré,

1999), L-BFGS-B (Byrd et al., 1994), or projected-Newton

(PN) (Bertsekas, 1982). But these methods can be inef-

ficient if invoked out-of-the-box, and carefully exploiting

problem structure is a must. PN lends itself well to such

structure exploitation, and we adapt it to develop a highly

competitive method for solving the dual problem (8).

The generic PN procedure runs iteratively: it first identi-

fies a special subset of the active variables and uses these

to compute a reduced Hessian. Then, this Hessian is used

to scale the gradient and move in direction opposite to it,

scaling by a stepsize, if needed. Finally, the next iterate is

obtained by projecting onto the constraints, and the cycle

repeats. At each iteration we select the active variables:

I := {i|
(

ui = −λ and [∇φ(u)]i > ǫ
)

or
(

ui = λ and [∇φ(u)]i < −ǫ
)

},

where ǫ ≥ 0 is small scalar. Let Ī := {1 . . . n} \I be the

set of indices not in I . From the Hessian H = ∇2φ(u)
we extract the reduced Hessian HĪ by selecting rows and

columns indexed by Ī , and compute the “reduced” update

uĪ ← P (uĪ − αH−1
Ī

[∇φ(u)]Ī), (9)

where α is a stepsize, and P denotes elementwise projec-

tion onto the constraints. Let us now see how to exploit

structure to efficiently perform the above steps.



Fast Newton-type Methods for Total Variation Regularization

First, notice that the Hessian H = DDT is symmetric

and tridiagonal, with 2s on the main diagonal and −1s
on the sub- and superdiagonals. Next, observe that what-

ever the active set I , the corresponding reduced Hessian

HĪ remains symmetric tridiagonal. This is crucial be-

cause then we can quickly compute the updating direction

dĪ by solving HĪdĪ = [∇φ(ut)]Ī . This linear system

can be solved by computing the Cholesky decomposition

HĪ = RTR in linear time using the LAPACK routine

DPTTRF (Anderson et al., 1999). The resulting R is bidi-

agonal, so we can solve for dĪ in linear time too. Thus, a

full PN iteration takes O(n) time.

The next crucial ingredient is stepsize selection. Bertsekas

(1982) recommends Armijo-search along projection arc.

However, for our problem Armijo-search is disproportion-

ately expensive. So we resort to a backtracking strategy

using quadratic interpolation (Nocedal & Wright, 2000).

This strategy is as follows: if the current stepsize αk does

not provide enough decrease in φ, we build a quadratic

model using φ(u), φ(u−αkd), and ∂αφ(u−αkd). Then,
stepsize αk+1 is set to the value that minimizes this model.

If the new αk+1 is larger than or too similar to αk, its value

is halved. Note that the gradient ∇φ(u) might be mis-

leading if u has components at the boundary and d points

outside this boundary (because then, due to the subsequent

projection no real improvement would be obtained by step-

ping outside the feasible region). To address this concern,

we modify the computation of the gradient∇φ(u), replac-
ing by zeros the entries that relate to direction components

pointing outside the feasible set.

Algorithm 1 PN algorithm for TV-L1-proximity

SolveDDTu∗ = Dy.
if ‖u∗‖∞ ≤ λ return u∗; end if
u0 = P [u∗], t = 0
while duality-gap > tolerance do

Identify set of active constraints I ; let Ī = {1 . . . n} \ I
Construct reduced HessianHĪ

Solve HĪdĪ = [∇φ(ut)]Ī
Compute stepsize α using backtracking + interpolation
Update ut+1

Ī
= P [ut

Ī
− αdĪ ].

t← t+ 1.
end while
return ut.

Finally, we must account for the case when λ is so large that

the unconstrained optimum coincides with the constrained

one. In this case, we just obtain u∗ via DDTu∗ = Dy.

All the above ideas are encapsulated as Algorithm 1.

2.2. TV-L2: Proximity for Tv1D2

For TV-L2 proximity p = 2, so the dual (6) becomes

minu φ(u) := 1
2‖D

Tu‖22 − uTDy, s.t. ‖u‖2 ≤ λ.
(10)

Algorithm 2 MSN based TV-L2 proximity

Initialize: α0 = 0, t = 0.
while (¬ converged) do

Compute Cholesky decomp. DDT + αtI = RTR.
Obtain u by solvingRTRu = Dy.
Obtain q by solving RT q = u.
Update α using (15)
t← t+ 1.

end while
return ut

Problem (10) is an instance of the well-known trust-region

subproblem, whereby a variety of numerical methods are

available for it (Conn et al., 2000). Below we derive an

algorithm based on the Moré-Sorensen Newton (MSN) it-

eration (Moré & Sorensen, 1983), which in general is ex-

pensive, but in our case proves to be efficient thanks to the

tridiagonal Hessian. Curiously, experiments show that for a

certain range of λ values, gradient-projection (GP) (without

line-search though) can also be competitive. Thus, for best

performance we prefer a hybrid MSN-GP method for (10).

Consider the KKT conditions for (10):

(DDT + αI)u = Dy,

α(‖u‖2 − λ) = 0, α ≥ 0,
(11)

where α is a Lagrange multiplier. There are two cases:

‖u‖2 < λ; or ‖u‖2 = λ. If ‖u‖2 < λ, then α = 0 and u

is obtained by solving DDTu = Dy. Conversely, if the

solution toDDTu = Dy lies in the interior, then it solves

(11). Thus, we need to only consider ‖u‖2 = λ.

Given α, one has u(α) = (DDT + αI)−1Dy. So we

must compute the “true” α. This can be done by solving

‖u(α)‖22 = λ2, or alternatively solving the MSN equation

h(α) := λ−1 − ‖u(α)‖−1
2 = 0, (12)

which is written so, as it is almost linear in the search

interval, resulting in fast convergence (Moré & Sorensen,

1983). Newton’s iteration for (12) is

α← α− h(α)/h′(α), (13)

and a simple calculation shows that

1

h′(α)
=

‖u(α)‖32
u(α)T (DDT + αI)−1u(α)

. (14)

The key idea in MSN is to eliminate the matrix in-

verse in (14) by introducing the Cholesky decomposition

DDT +αI = RTR and defining a vector q = (RT )−1u.

As a result, iteration (13) becomes

α← α−
‖u‖22
‖q‖22

(

1−
‖u‖2
λ

)

. (15)
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Observe that bothR and q can be computed in linear time,

so the overall iteration (15) runs in linear time.

The MSN iteration (15) is fairly sophisticated. Let us look

at a much simpler one: GP with a fixed stepsize α0

ut+1 = P‖·‖2≤λ(u
t − α0∇φ(u

t)), (16)

which is set to the inverse of the largest eigenvalue of the

HessianDDT . This is easily done as the eigenvalues have

a closed-form expression, namely λi = 2− 2 cos
(

iπ
n

)

(for

0 ≤ i ≤ n). The largest λn−1 = 2 − 2 cos
(

(n−1)π
n

)

,

which tends to 4 as n→∞; so α0 = 1/4 is a good approx-
imation. Furthermore, the projection P‖·‖2≤λ is also triv-

ial. Thus, the GP iteration (16) can be attractive, and it in-

deed can outperform the more sophisticated MSN method,

though only for a very limited range of λ values. Therefore,

in practice we recommend a hybrid of GP and MSN.

3. Two-dimensional TV Proximity

Nowwe advance to the harder problem of two-dimensional

TV. Let X ∈ R
m×n be an input matrix, and let xi denote

its i-th row, and xj its j-th column. Further, let Dn and

Dm be differencing matrices for the row and column di-

mensions. Then, the regularizer (4) can be written as

Tv2p,q(X) =
∑

i
‖Dnx

i‖p +
∑

j
‖Dmxj‖q. (17)

The corresponding Tv2Dp,q-proximity problem is

min
X

1
2‖X − Y ‖2F + λTv2p,q(X), (18)

where λ > 0 is a penalty parameter. Unfortunately, in gen-

eral, the proximity operator for a sum of convex functions

is difficult to compute. However, if we could split (18) into

min
X

1
2‖X − Y ‖2F + λ

∑

i
‖Dnx

i‖p (19)

min
X

1
2‖X − Y ‖2F + λ

∑

j
‖Dmxj‖q, (20)

then our task would be greatly simplified, especially be-

cause (19) and (20) themselves further decompose into

1D-TV proximity problems. Fortunately, at the cost of

slight additional storage, we can do precisely this splitting

via the proximal Dykstra method (Combettes & Pesquet,

2009). Algorithm 3 presents pseudocode.

Remarks: Since (19) and (20) decompose into indepen-

dent 1D-TV subproblems, we could solve these subprob-

lems in parallel if desired. Also, as shown, Algorithm (3)

cannot solve (19) and (20) in parallel due to the shared de-

pendence on Zt. A variant of Algorithm 3 allows us to

overcome this limitation, though it is usually more prefer-

able for multi-dimensional TV (Barbero & Sra, 2011). Em-

pirically, Algorithm 3 converges rapidly and usually (19)

Algorithm 3 Proximal Dykstra Algorithm for (18)

InitializeX0 = Y , P0 = 0,Q0 = 0, t = 0
while (¬ converged) do

Zt = Solve (19) with Y = Xt + Pt

Pt+1 = Xt + Pt −Zt

Xt+1 = Solve (20) with Y = Zt +Qt

Qt+1 = Zt +Qt −Xt+1

t← t+ 1
end while
return Xt

and (20) must be solved only about 4–6 times. When

p, q ∈ {1, 2}, we invoke our Newton-type methods to effi-

ciently solve the corresponding 1D-TV subproblems.

4. Numerical Results: Proximity operators

In this section, we provide experimental results illustrating

the performance of our Newton-type algorithms for 1D-TV

proximity. We test them under two scenarios: (i) with in-

creasing input size n; and (ii) with varying penalty param-

eter λ. For scenario (i) we select a random λ ∈ [0, 50]
for each run; the data vector y is also generated randomly

by picking yi ∈ [−2λ, 2λ] (proportionally scaled to λ) for
1 ≤ i ≤ n. For scenario (ii), yi ranges in [−2, 2], while the
penalty λ is varied from 10−3 (negligible regularization) to

103 (the TV-term dominates).

4.1. Results for TV-L1 proximity

We compare running times of our PN approach (C imple-

mentation) against two methods: (i) the FLSA function

(C implementation) of the SLEP library (Liu et al., 2009),

which seems to be the state-of-the-art method for Tv1D1 -

proximity (Liu et al., 2010); and (ii) the Pathwise Coordi-

nate Optimization method (R + FORTRAN implementation)

from (Friedman et al., 2007). For PN and SLEP, we use du-

ality gap of 10−5 as the stopping criterion. For Coordinate

Optimization, duality gap is not supported so we use its de-

fault stopping criteria. Timing results are presented in Fig-

ure 1 (left panel) for increasing input sizes and penalties.

From the plots we see that both SLEP and PN are much

faster than Coordinate Optimization. Though, it must be

mentioned that the latter returns the full regularization path,

while SLEP and PN compute the solution for only one λ.
But this is no limitation; SLEP and PN run much faster

and with warm-starts one can rapidly compute solutions for

several λ values, if needed.

With increasing input sizes PN finds a solution faster than

SLEP, taking roughly at most 60% of the time: explicit nu-

merical values are reported Table 1 for easy reference. Fig-

ure 1 indicates that larger speedups are observed for small

λ, while for large λ, both SLEP and PN perform similarly.

The rationale behind this behavior is simple: for smaller

λ the active set I is prone to become larger, and PN ex-
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Figure 1. Running times (in secs). Left panel: PN, SLEP and Coordinate Optimization solvers for Tv1D1 -proximity with increasing input

sizes and penalties. Right panel: MSN, GP, and hybrid MSN-GP solvers for Tv1D2 -proximity with increasing input sizes and penalties.

Table 1. Running times (in milliseconds) for PN, SLEP and Coor-

dinate Optimization solvers for TV-L1 problems with increasing

input sizes (in log-scale); n denotes problem size.

log10 n SLEP PN COORD.

1.00 1.19 3.6561 1.63
1.53 0.17 0.2476 1.37
2.06 0.30 0.29 1.52
2.58 0.59 0.41 2.69
3.11 1.33 1.04 6.74
3.64 5.25 3.10 22.20
4.17 15.10 8.22 92.41
4.70 67.60 39.35 359.50
5.23 221.58 137.81 1550.27
5.75 759.62 464.32 5678.25
6.28 2874.83 1655.25 23285.00
6.81 9457.11 5659.42 93366.00

plicitly takes advantage of this set by updating only the not

indexed by I . On the other hand, for large λ, PN’s strategy
becomes similar to that of SLEP, hence the similar perfor-

mance. Finally, as Coordinate Optimization computes the

full regularization path, its runtime is invariant to λ.

4.2. Results for TV-L2

To compare the running times of MSN and GP, we again

use duality gap of 10−5 as the stopping criterion. Further,

as MSN might generate infeasible solutions during the op-

timization, we also apply a boundary proximity criterion

for MSN with tolerance 10−6. Looking at the results it

can be seen that the performance of MSN and GP differs

noticeably in the two experimental scenarios. While Fig-

ure 1 (first plot; right panel) might indicate that GP con-

verges faster than MSN for large inputs, it does so depend-

ing on the size of λ relative to ‖y‖2. Indeed, Figure 1 (last

plot) shows that although for small values of λ, GP runs

faster than MSN, as λ increases, GP’s performance wors-

ens dramatically, so much that for moderately large λ it is

unable to find an acceptable solution even after 10000 it-

erations (an upper limit imposed in our implementation).

Conversely, MSN finds a solution satisfying the stopping

criterion under every situation, thus showing a more ro-

bust behavior. Therefore, we propose a hybrid approach

that combines the strengths of MSN and GP. This hybrid is

guided using the following (empirically determined) rule of

thumb: if λ < ‖y‖2 use GP, otherwise use MSN. Further,

as a safeguard, if GP is invoked but fails to find a solution

within 50 iterations, the hybrid should switch to MSN. This

combination guarantees rapid convergence in practice. Re-

sults for this hybrid approach are included in the plots in

Figure 1, and we see that it successfully mimics the behav-

ior of the better algorithm amongst MSN and GP.

5. Numerical Results: Applications

To highlight the potential benefits of our algorithms we

show below three main applications: (i) fused-lasso; (ii)

image denoising; and (iii) image deblurring. However, we

note here that the exact application itself is not as much a

focus as the fact that our solvers apply to a variety of appli-

cations while leading to noticeable empirical speedups.

5.1. Results for 1D Fused-Lasso

Our first application is to fused-lasso for which we plug in

our algorithms as subroutines into the generic TRIP solver

of Kim et al. (2010). We then apply TRIP to solve the fol-

lowing variants of fused-lasso:

1. Fused-lasso (FL): Here L(x) = 1
2‖y −Ax‖22, and

R(x) = λ1‖x‖1 + λ2‖Dx‖1; this is the original

fused-lasso problem introduced in (Tibshirani et al.,

2005), and used in several applications, such

as in bioinformatics (Tibshirani & Wang, 2008;

Rapaport & Vert, 2008; Friedman et al., 2007).

2. ℓ2-variable fusion (VF): Same as FL but with

λ2‖Dx‖2 instead. This FL variant seems to be new.

3. Logistic-fused lasso (LFL):A logistic lossL(x, c) =
∑

i log
(

1 + e−yi(a
T

i
x+c)

)

can be introduced in the

FL formulation to obtain a more appropriatemodel for
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classification on a dataset {(ai, yi)}. For an applica-

tion to time-varying networks see Kolar et al. (2010).

4. Logistic + ℓ2-fusion (LVF): This model combines lo-

gistic loss with the VF setting.

Table 2. Running times (secs) for SLEP and TRIP for optimizing

different versions of fused-lasso with increasing input sizes. Both

methods were run to satisfy the same convergence criterion.

MODEL SLEP TRIP

n 103 104 105 103 104 105

FS 0.089 1.43 41.80 0.02 0.10 0.86
VS 0.16 1.26 35.77 0.02 0.10 0.90
LFL 0.21 15.01 144.81 0.78 5.35 53.88
LVF 0.86 0.02 132.13 0.81 0.15 11.24

Synthetic data. We first compare TRIP equipped with our

proximity solvers with the approach of Liu et al. (2010).

Here random matrices A ∈ R
n×m are generated, whose

entries are selected to follow a zero mean, unit variance

normal distribution. We fix m = 100, and set λ1 = λ2 =
0.01. Then, we sample matrices with number of columns

n varying as 103, 104, and 105. To select the vector of re-

sponses y, we use the formula y = sgn(Axt + v), where
xt, and v are random vectors whose entries have vari-

ances 1 and 0.01, respectively. The numerical results are

summarized in Table 2, where we compare SLEP (version

4.0) (Liu et al., 2009) against the TRIP-based approach.3

While for smaller matrices with n = 103 both methods run

similarly fast, as the size of the input matrices increases, the

TRIP-based fused-lasso solvers run much faster than SLEP.

Real Data. We tested each of the four FL mod-

els on binary classification tasks for the following mi-

croarray datasets: ArrayCGH (Stransky et al., 2006),

Leukemias (Golub et al., 1999), Colon (U. Alon et al.,

1999), Ovarian (Rogers et al., 2005) and Rat (Hua et al.,

2009). Each dataset was split into three equal parts (en-

suring both classes are present in every split) for training,

validation and test. The penalty parameters where found by

grid search in the range λ1, λ2 ∈ [10−3, 101] to maximize

classification accuracy on the validation splits.

Table 3 shows test accuracies. We see that in general,

logistic-loss based FL models yield better classification ac-

curacies than those based on least-squares. This result is

natural: logistic-loss is more suited for classification in

tasks like the ones proposed for these datasets. Regarding

the TV-regularizer, three out of five datasets seem to be in-

sensitive to this choice, though the Tv1D1 -penalty performs

better for Ovarian, while Tv1D2 works best for ArrayCGH.

3Both TRIP and SLEP are implemented in MATLAB; only the
crucial proximity operators are implemented in C.

Table 3. Classification accuracies on microarray data.

DATASET FL VF LFL LVF

ARRAYCGH 73.6% 78.9% 73.6% 73.6%
LEUKEMIAS 92.0% 92.0% 96.0% 96.0%
COLON 77.2% 77.2% 77.2% 77.2%
OVARIAN 88.8% 83.3% 77.7% 77.7%
RAT 67.2% 65.5% 70.4% 70.4%

5.2. Results for 2D-TV

We now show application of our two-dimensional Tv2D1,1-

proximity solver. We are not aware of natural applications

for two or higher-dimensional Tv2D2,2-proximity, so we do

not discuss it further. The most basic and natural applica-

tion of our Tv2D1,1-proximity is to image denoising. Among

the vast number of denoising methods, we compare against

the well-established method based on the classic ROF-TV

model (Rudin et al., 1992). This model takes an n×n noisy

image Y and denoises it by solving

minX
1
2‖X − Y ‖2F + λTvrof(X), (21)

where the ROF version of TV is defined as

Tvrof(X) =
∑

1≤i,j<n
‖(∇x)i,j‖2,

(∇x)i,j =

[

xi+1,j − xi,j

xi,j+1 − xi,j

]

.

That is, the TV operator is applied on the discrete gra-

dient over the image. This TV regularization is known

as isotropic TV, in contrast to our anisotropic TV. Al-

though often the isotropic version Tvrof is preferred, for

some applications anisotropic TV shows superior denois-

ing. We show a simple example that illustrates this set-

ting naturally, namely, denoising of two-dimensional bar-

codes (Choksi et al., 2010). We apply our 2D-TV op-

erator to this setting and compare against the isotropic

model which we solved using the state-of-the-art PDHG

method (Zhu & Chan, 2008). For further reference we also

compare against: (i) the anisotropic TV solver proposed

in (Friedman et al., 2007); (ii) an adapted (anisotropic)

PDHG solver obtained easily bymodifying the original for-

mulation; and (iii) a median filter. We note that the step-

size selection rules recommended for PDHG, failed to pro-

duce fast runtimes when applied to anisotropic TV. Thus, to

make PDHG competitive, we searched for optimal stepsize

parameters for it by exhaustive grid search.

Table 4 presents runtimes and Improved Signal-to-Noise

Ratio (ISNR) values obtained for a series of denoising ex-

periments on barcode images that were corrupted by addi-

tive (variance 0.2) and multiplicative (variance 0.3) gaus-
sian noise. To compensate for the loss of contrast produced

by TV filtering, intensity values are rescaled to the range
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Table 4. Barcodes denoising results obtained via PN, Coordinate Optimization and adapted PDHG for the anisotropic model, genuine

PDHG for the isotropic model, and a median filter. ISNR (dB) values (higher is better) and running times in seconds are shown.

ANISOTROPIC ISOTROPIC MEDIAN

SIZE ISNR TIME PN TIME COORD. TIME PDHG ISNR TIME PDHG ISNR TIME

100 × 100 2.39 0.11 2.85 0.64 2.04 0.03 1.24 0.00
175 × 175 4.14 0.27 15.99 8.71 3.38 0.11 1.74 0.02
300 × 300 5.48 0.88 140.78 128.72 4.38 0.37 2.35 0.03
375 × 375 6.04 1.39 167.68 93.87 4.39 0.76 2.42 0.07
500 × 500 4.42 2.59 228.55 203.19 3.58 1.30 2.18 0.09

(a) (b) (c) (d) (e)

Figure 2. Example of barcode denoising for the isotropic and anisotropic models on a 175 × 175 image. a) Clean image. b) Noisy

image. c) Anisotropic denoising. d) Isotropic denoising. e) Median filter.

of the original image. The penalty parameter λ for each

model was chosen so as to maximize the on the 300 × 300

image. As expected, the anisotropic TV regularizer is more

appropriate for the underlying structure of the image, and

thus obtains lower reconstruction errors. An example is

shown in Figure 2, where we also observe visually better

reconstructions via the anisotropic model. Additional ex-

perimental results are in (Barbero & Sra, 2011).

Regarding running times, our PN solver vastly outper-

forms Coordinate Optimization and anisotropic PDHG.

The isotropic version of the problem is simpler than the

anisotropic one, so it is no surprise that the carefully tuned

PDHG approach requires less time than PN. It is also worth

mentioning that in (Choksi et al., 2010) an ℓ1 loss is used,

and denoising cast as a Linear Program, to which a generic

solver is applied; this approach requires runtimes of over

103 seconds for the largest image.

5.3. Image deconvolution

With little added effort our two-dimensional TV solver can

be employed for the harder problem of image deconvolu-

tion, which takes the form

minx
1
2‖Kx− y‖22 + λR(x),

where K is a blur operator, R is a regularizer, and x en-

codes an image. As stated before, this problem can also

be solved using proxR as a building block. Precisely this

is done by the solver SALSA (Afonso et al., 2010). We

plug our 2D-TV solver directly into SALSA to obtain a fast

anisotropic deconvolution algorithm. Table 5 presents nu-

merical results (visual results are in (Barbero & Sra, 2011))

for deconvolution of noisy barcode images subjected to

motion blurring. Comparing against SALSA’s default

isotropic denoising operator, again an anisotropic model

produces a better reconstruction. Results for Richardson-

Lucy (RL) (Biggs & Andrews, 1997) as implemented in

Matlab are also presented, showing much faster filtering

times but inferior reconstruction quality.

Table 5. Deconvolution results for anisotropic and isotropic mod-

els using the SALSA solver, and MATLAB’s Richardson-Lucy

(RL) method. ISNR (dB) values and runtimes (in secs) are shown.

ANISOTROPIC ISOTROPIC RL

n ISNR TIME ISNR TIME ISNR TIME

100 1.55 1.19 1.10 0.12 0.73 0.04
175 2.79 0.81 2.15 0.55 0.79 0.18
300 4.07 3.34 3.07 2.40 1.07 0.46
375 4.05 5.41 2.92 3.71 1.13 0.61
500 3.21 8.98 2.37 5.71 1.04 1.26
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Harchaoui, Z. and Lévy-Leduc, C. Multiple Change-Point Esti-
mationWith a Total Variation Penalty. Journal of the American
Statistical Association, 105(492):1480–1493, 2010.

Hua, Jianping, Tembe, Waibhav D., and Dougherty, Edward R.
Performance of feature-selection methods in the classification
of high-dimension data. Pattern Recognition, 42:409–424,
2009.

Kim, Dongmin, Sra, Suvrit, and Dhillon, Inderjit. A scalable
trust-region algorithm with application to mixed-norm regres-
sion. In ICML, 2010.

Kolar, M., Song, L., Ahmed, A., and Xing, E. Estimaging time-
varying networks. The Annals of Applied Statistics, 4(1):94–
123, 2010.
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