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Abstract

We propose a PAC-Bayes sample compres-
sion approach to kernel methods that can
accommodate any bounded similarity func-
tion and show that the support vector ma-
chine (SVM) classifier is a particular case of
a more general class of data-dependent clas-
sifiers known as majority votes of sample-
compressed classifiers. We provide novel risk
bounds for these majority votes and learning
algorithms that minimize these bounds.

1. Introduction

Kernel methods such as the support vector ma-
chine (SVM) have provided state-of-the-art machine
learning algorithms over the last decade. Despite
their success, these methods are currently limited
by the fact that the similarity function that they
use must be a symmetric positive semi-definite ker-
nel. However, for many applications, we would
like to be able to use any similarity measure of
input examples and not be limited by the fact
that the chosen measure should be expressible as
an inner product of feature vectors. We there-
fore propose here a PAC-Bayes sample-compression
approach to kernel methods that can accommo-
date any bounded similarity function. Within the
sample-compression framework (Floyd & Warmuth,
1995; Laviolette & Marchand, 2007) each sample-
compressed classifier is partly represented by a sub-
sequence of the training data, called the compres-
sion sequence. We show here that the SVM clas-
sifier is actually a particular case of a (weighted)
majority vote of sample-compressed classifiers where
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the compression sequence of each classifier consists
of at most a single training example. Inspired by
the work of Germain et al. (2009) on general loss
bounds for stochastic classifiers, we propose two dif-
ferent PAC-Bayes risk bounds for majority votes of
sample-compressed classifiers which are valid for any
similarity measure of input examples. Consequently,
the proposed bounds also apply to the class of linear
classifiers of similarity-based features that were stud-
ied by Chen et al. (2009a). Indeed, for the class of in-
definite similarity measures, their risk bound is trivial
(and useless) in the limit where each training example
is used for a prototype. In contrast, the risk bounds
presented here do not suffer from such a limitation.

For each proposed risk bound, we provide a learning
algorithm that minimizes it. One of the PAC-Bayes
risk bound depends on the KL divergence between
the prior and the posterior over the set of sample-
compressed classifiers and, consequently, the corre-
sponding bound-minimizing learning algorithm is KL-
regularized. The other PAC-Bayes risk bound has the
unusual property of having no KL divergence when
the posterior is aligned with the prior in some precise
way defined below. Consequently, to minimize this
risk upper bound, we only need to minimize the pro-
posed empirical loss under the constraint that the pos-
terior is kept aligned with the prior. When a positive
semi-definite (PSD) kernel is used, our experiments in-
dicate that the proposed algorithms are very competi-
tive with the SVM. Good empirical results are also ob-
tained when the proposed algorithms are used with a
non-PSD kernel. Finally, the proposed algorithms are
also competitive with the best similarity-based learn-
ing algorithms proposed by Chen et al. (2009a).

2. PAC-Bayesian Sample Compression

We consider binary classification problems where an
example z = (x, y) ∈Z is an input-output pair where
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x ∈ X and y ∈ Y = {−1,+1}. We adopt the PAC
setting where each example z is drawn according
to a fixed, but unknown, probability distribution
D on Z. In the sample compression setting, learn-
ing algorithms have access to a data-dependent
set of classifiers, that we refer to as sc-classifiers.
Given a training sequence S = 〈z1, .., zm〉, each
sc-classifier is described by a subsequence Si of S
called the compression sequence, and a message µ
which represents the additional information needed
to obtain a classifier from Si. The compression se-
quence Si is defined by the following vector i of indices

i
def
= 〈i1, i2, . . . , i|i|〉 ,

with 1 ≤ i1<i2 <. . .<i|i| ≤ m. The number of indices
present in i is denoted by |i|, and the vector of indices
of a sc-classifier h by ih. The set of all the 2

m possible
vectors of indices is denoted by I. The fact that each
sc-classifier is described by a compression sequence and
a message implies that there exists a reconstruction
function R that outputs a classifier

hµ
S′

def
= R(S′, µ) (1)

when given an arbitrary compression sequence S′ and
a message µ chosen from the set MS′ of all messages
that can be supplied with the compression sequence
S′. MS′ must be defined a priori (before observing
the training data) for all possible sequences S′. The
messages can be strings or values taken from a contin-
uous set. In our case, MS′ will be continuous.

Given a training sequence S, HS denotes the set
of all sc-classifiers R(Si, µ) such that µ ∈ MSi

and
i ∈ I. The perceptron learning rule and the SVM
are examples where the final classifier can be recon-
structed solely from a compression sequence. In con-
trast, the reconstruction function of the Set Cover-
ing Machine (Marchand & Shawe-Taylor, 2002) needs
both a compression sequence and a message string.

The risk RD(h) (or generalization error) and the em-
pirical risk RS(h) on S of a sc-classifier h are defined as

RD(h)
def
= E

(x,y)∼D
I(h(x) 6= y) = Pr

(x,y)∼D
(h(x) 6= y)

RS(h)
def
= E

(x,y)∼S
I(h(x) 6= y) =

1

m

m
∑

i=1

I(h(xi) 6= yi)

where I(a) = 1 if predicate a is true and 0 otherwise,
and where (x, y) ∼ S means that (x, y) is drawn ac-
cording to the uniform distribution on S.

Note that both RD and RS are defined only within
the context of a training sequence S. In the non-
sample compressed setting, mRS(h) is a binomial ran-
dom variable of parameters (m,RD(h)). In our setting

this is no longer the case because the risk can then be
biased by the elements of S that are in the compression

sequence. However, if ah
def
=

∑

(x,y)∈Sih
I(h(x 6= y),

then mRS(h) − ah is a binomial random variable
with parameters (m − |i|, RD(h)). As mentioned
in Laviolette & Marchand (2007), the empirical risk
of a sc-classifier is usually computed on S \ Si. In or-
der to obtain risk bounds having simpler statements,
we decide not to follow this strategy and, therefore,
deal with this bias directly in the proposed theory.

After observing the training sequence S, the task of
the learner is to choose a posterior distribution Q over
HS such that the Q-weighted majority vote classifier
BQ will have the smallest possible risk. On any input
example x, the output BQ(x) of the majority vote
classifier (also called the Bayes classifier) is given by

BQ(x)
def
= sgn

[

E
h∼Q

h(x)

]

, (2)

where sgn(s)=+1 if s>0 and sgn(s)=−1 otherwise.

Given a training sequence S, we denote by QI(i), the
probability that a compression sequence Si is chosen
by Q, and by Q

Si

(µ), the probability distribution of
choosing µ given Si. Consequently,

QI(i)
def
=

∫

µ∈M(Si)

Q(hµ
Si
) dµ and Q

Si

(µ)
def
= Q(hµ

Si
| Si) .

Priors on sc-classifiers. In PAC-Bayes theory, risk
bounds are obtained by comparing a posterior dis-
tribution Q on HS to a prior defined before ob-
serving the training sequence S. Therefore, in stan-
dard PAC-Bayes bounds (McAllester, 2003; Seeger,
2002), the prior is independent of S. In our set-
ting, this seems problematic since sc-classifiers are de-
fined upon S. To overcome this difficulty, we fol-
low Laviolette & Marchand (2007) and define a prior
P as a couple

(

PI , (PS′)S′∈Zj , j≤m

)

, where PI is a
distribution on I, and, for every possible compression
sequence S′, PS′ is a distribution on MS′ . Given a
training sequence S, P denotes the distribution on HS

associate with the prior P. Consequently,

P (hµ
Si
) = PI(i)PSi

(µ) . (3)

Hence, although P (and thus PI) is defined without
reference to any specific training sequence S, the dis-
tribution P on HS refers to a specific realization of the
prior P on the observed training sequence S. As a re-
sult, the risk bounds of this paper only depend on the
observed training sequence and not on some prior dis-
tribution over all possible training sequences. The way
it is accomplished is detailed in the proof of Claim 1
of Theorem 5 in Germain et al. (2011).
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Gibbs classifier. In the usual PAC-Bayes setting,
a bound on RD(BQ) is indirectly obtained by bound-
ing the risk of an associated stochastic classifier known
as the Gibbs classifier. To assign an output label to
an input example x, the Gibbs classifier GQ randomly
chooses a classifier h according to Q and uses h(x) for
the assigned label. In the sample-compressed PAC-
Bayes setting, given a training sequence S, GQ ran-
domly chooses i according to QI , then chooses a mes-
sage µ according toQSi

, and then classifies x according
to hµ

Si
(x). Given a distribution D and a training se-

quence S generated by D, the true risk RD(GQ) and
its empirical estimate RS(GQ) on S are thus given by

RD(GQ) = E
h
µ
S
i
∼Q

E
(x,y)∼D

I(hµ
Si
(x) 6= y)

RS(GQ) = E
h
µ
S
i
∼Q

E
(x,y)∼S

I(hµ
Si
(x) 6= y) .

Note that whenever BQ errs on (x, y), at least half of
the classifiers, under measureQ err on (x, y). It follows
that RD(BQ) ≤ 2RD(GQ). Hence, an upper-bound
on R(GQ) also provides an upper bound on R(BQ)
via this well-known factor-of-two rule. However, we
focus in this paper on majority votes of sc-classifiers
having a small compression size. In this setting, HS

consists mostly of “weak” classifiers having large risk
R(h). Then, RD(GQ) is (almost) always large (near
1/2) for any Q even if the majority vote BQ has very
low risk. Thus, the disparity between RD(BQ) and
RD(GQ) is enormous. Consequently, trying to mini-
mize an upper-bound on RD(GQ) should not lead to
a majority vote BQ having low risk. In fact, our ex-
periments of Section 2.4 empirically confirm this to be
the case. One way to obtain a more relevant bound on
RD(BQ) from the PAC-Bayes theory is to use a loss
function for stochastic classifiers which is distinct from
the zero-one loss used for the deterministic classifiers.
In order to obtain a tractable optimization problem,
we propose to use a convex loss function of the margin
of the Q-convex combination of sc-classifiers where the
margin, on example (x, y), is defined as

MQ(x, y)
def
= E

h
µ
S
i
∼Q

yhµ
Si
(x) . (4)

Note that RD(GQ) =
1
2− 1

2 E(x,y)∼DMQ(x, y) gives a
relation between RD(GQ) and MQ(x, y).

Similarly as in Germain et al. (2009), we only con-
sider losses that upper-bound the zero-one loss of BQ.
Hence, we consider functions ζ : [−1, 1]→R of the form

ζ(α) =

deg(ζ)
∑

k=0

ak α
k such that ζ(α) ≥ I(−α ≤ 0) ,

with ak ≥ 0. Then, we will provide PAC-Bayes bounds
on the following expected loss

ζQD
def
= E

(x,y)∼D
ζ (−MQ(x, y)) , (5)

based on its empirical (possibly biased) estimate

ζQS
def
= E(x,y)∼S ζ (−MQ(x, y)) . Such a ζ is called

a convex margin loss function (or a convex surrogate
loss). Since ζ(α) ≥ I(−α ≤ 0) we have

ζQD ≥ E
(x,y)∼D

I(MQ(x, y) ≤ 0 ) ≥ RD(BQ) .

Thus, ζQD is always an upper bound of RD(BQ). In
particular, the factor-of-two rule RD(BQ) ≤ 2RD(GQ)
simply corresponds to the case where a0=a1=1, and
aj=0 for all j>1, as for these values, ζQD=2RD(GQ).

The next theorem gives a bound on ζQD and, conse-
quently, on RD(BQ). It can be viewed as a generaliza-
tion of Theorem 1.2.1 of Catoni (2007) to the sample
compression setting and to general margin loss func-
tions. (Proof provided in Germain et al. (2011).)

Theorem 1. For any D, any family (HS)S∈Dm of
sets of sc-classifiers of size at most l, any prior P,
any δ ∈ (0, 1], any C1 > 0, and any margin loss
function ζ such that l · deg(ζ) < m, we have

Pr
S∼Dm







∀Q on HS:
ζ
Q
D

≤ ζ(1)[C′ − 1]+

C′ ·
(

ζ
Q
S

+ 2
m·C1

[ζ′(1) · KL(Q‖P ) + ζ(1) · ln 1
δ
]
)






≥ 1 − δ

where KL(·‖·) is the Kullback-Leibler divergence, and

where C ′ =
C1·

m
m−l·deg(ζ)

1−e
−C1·m−l·deg(ζ)

m

.

The bound of Theorem 1 holds for any constant C1.
Even if the bound can be made valid uniformly for k
different values of C1 by replacing δ with δ/k (thanks
to the standard union bound argument), this is a dis-
advantage when one wants to make a bound minimiza-
tion algorithm out of it because such an algorithm will
have to tune this extra hyper-parameter. However,
the next subsection shows that restricting Q to be an
aligned posteriors can provide a PAC-Bayes bound in-
dependent of the Kullback-Leibler divergence between
the posterior and the prior. As a consequence, no con-
stant C1 will be present in the proposed bound. To
our knowledge, this is new in PAC-Bayes theory.

2.1. The Case of Aligned Posteriors

To define the notion of aligned posteriors, we need
to consider the boolean complement −hµ

S′ of any sc-
classifier hµ

S′ . Thus, we now consider that the message
sets are of the form MS′ = M1

S′ × {+,−}, and that

we always have h
(σ,+)
Si

= −h
(σ,−)
Si

∀σ ∈ M1
Si
.
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Definition 2. Given a prior P and a training se-
quence S, a posterior Q is said to be aligned on P

if Q(h
(σ,+)
Si

) + Q(h
(σ,−)
Si

) = P (h
(σ,+)
Si

) + P (h
(σ,−)
Si

) for

all (i, σ) ∈ I ×M1
Si
.

Remark 3. An aligned posterior is completely defined
by the values of

w(i, σ)
def
= Q(h

(σ,+)
Si

)−Q(h
(σ,−)
Si

) , (6)

under the constraints |w(i, σ)| ≤ P (h
(σ,+)
Si

)+P (h
(σ,−)
Si

)

for all (i, σ) ∈ I×M1
Si
. Indeed, it immediately follows

that Q can be recovered from P and w because

Q(h
(σ,±)
Si

) =
1

2

(

P (h
(σ,+)
Si

)+P (h
(σ,−)
Si

) ± w(i, σ)
)

. (7)

Moreover, given any function w : I×M1
Si

→ R satisfy-
ing the constraints following Equation (6) the function
Q given by Equation (7) is a distribution aligned on P .

The next proposition follows directly from what pre-
cedes and points out that there is no loss of expres-
siveness for majority votes if we restrict ourselves to
aligned posteriors.

Proposition 4. Let P be a prior, S a training se-
quence, and Q a distribution on HS for which there

exists A > 0 such that for all i and σ, A |Q(h
(σ,+)
Si

)−
Q(h

(σ,−)
Si

)| ≤ P (h
(σ,+)
Si

) + P (h
(σ,−)
Si

) . Let Q′ be a distri-

bution aligned on P such that w′(i, σ) = A (Q(h
(σ,+)
Si

)−
Q(h

(σ,−)
Si

)). Then Q′ is Bayes-equivalent to Q (i.e.,
BQ′(x)=BQ(x) ∀x∈X ).

We now provide a PAC-Bayes bound for aligned pos-
teriors which does not depend on how far is an aligned
posterior from the prior.

Theorem 5. For any D, for any m ≥ 8, for any fam-
ily (HS)S∈Dm of sets of sc-classifiers of size at most l,
for any prior P, for any margin loss function ζ such
that l · deg(ζ) < m, and for any δ ∈ (0, 1], we have

Pr
S∼Dm







∀Q aligned on P :

ζ
Q
D

≤ ζ
Q
S

+
ζ(1)

√

1
2
(m−l deg ζ)

√

4 l deg ζ+ln 2
√

m
δ






≥ 1−δ .

Proof. There are three main difficulties in this proof
that prevents a straightforward reduction to a classi-
cal PAC-Bayes proof. The first difficulty is that we
want to bound the general loss ζQD instead of the usual
Gibbs’ risk RD(GQ). We overcome this first difficulty
by defining a new family of “abstract” sc-classifiers
whose Gibbs’ risk is closely related to ζQD by Equa-
tion (9) below. The second difficulty comes from the
fact that a part of the training data is used to con-
struct the sc-classifiers and, consequently, the empir-
ical risk ζQS provides a biased estimate of ζQD . This

complicates a lot the evaluation of the expected value
of XP defined below, which is an essential step in all
PAC-Bayes proofs. Claim 1 deals with this problem.
Finally, in classical proofs, one can only relate XP ,
computed with distribution P , to XQ, computed with
another distribution Q, at the cost of generating an
extra term which is the Kullback-Leibler divergence
between Q and P . Claim 2, below, shows that if Q
is aligned on P , both random variables are the same.
To our knowledge, this unexpected result is new in
PAC-Bayes theory.

Let S be any training sequence and d
def
= deg ζ . For

each k ∈ {0, .., d} and any k-tuple (h1, .., hk), let us de-
fine h as an “abstract” sc-classifier h1..hk whose “ab-
stract” true risk and empirical risk (resp. the cases
where U=D and U=S) are defined as

RU (h )
def
= E

(x,y)∼U

1

2

[

1 +
k
∏

i=1

−yhi(x)

]

. (8)

For the k=0 case, we have RU (h)=RU (h1..h0)=1.

For each S, let HS be the set of all such sc-classifiers.
For each distribution P and Q on HS , denote by P
and Q, the following distributions on HS :

P (h )
def
=

ak
ζ(1)

k
∏

i=1

P (hi) and Q(h )
def
=

ak
ζ(1)

k
∏

i=1

Q(hi) .

Since ζ(1) =
∑d

k=0 ak, both P and Q are probability
distributions. Moreover, for U=D and U=S, we have

RU (GQ) = E
h∼Q

RU (h)

=

d
∑

k=0

ak

ζ(1)
E

h1∼Q
. . . E

hk∼Q
E

(x,y)∼U

1

2

[

1 +

k
∏

i=1

−yhi(x)

]

=

d
∑

k=0

ak

ζ(1)
E

(x,y)∼U

1

2

[

1 +

k
∏

i=1

E
hi∼Q

− yhi(x)

]

=
1

2

[

1 +
1

ζ(1)
E

(x,y)∼U

d
∑

k=0

ak( E
h∼Q

− yh(x))k
]

=
1

2

[

1 +
1

ζ(1)
ζ
Q
U

]

. (9)

Because the compression sequence size of each hi is
at most l, we have |ih| ≤ l · k for any h = h1..hk.

Similarly as McAllester (2003), we consider the follow-
ing Laplace transform:

XP

def
= E

h∼P

e(m−|ih|)·2(RS(h)−RD(h))2 . (10)

In Germain et al. (2011), we prove the following:

Claim 1 : ES∼DmXP ≤ e4ld · 2√m.
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The fact that there is no KL-divergence in the bound
is a consequence of the following claim.

Claim 2 : For any posterior Q aligned on P , we have

XP = XQ

def
= E

h∼Q

e(m−|ih|)·2(RS(h)−RD(h))2 .

Proof of Claim 2. For each k ∈ {0, .., d}, define HS
(k) as

the set of abstract classifiers h that are k-tuples h1..hk.

Now, for each h ∈ HS
(k) and each j = 0, .., 2k−1, define

h
[j] def

= h
(s1)
1 ..h

(sk)
k , where s1s2..sk is the binary rep-

resentation of the number j, and where h(0) = h and

h(1)=−h. For any h ∈ HS
(k), let G(h) be the set of all

h
[j]

for the different choices of j. Note that, given any

two h, h′ ∈ HS
(k), both G(h) and G(h′) either coincide

or are disjoint. They will coincide iff h′ = h
[j]

for some
j, and i

h
[j] = ih. Moreover, if Q is aligned on P :

2k−1
∑

j=0

P (h
[j]
) =

ak

ζ(1)

∑

s∈{0,1}k

k
∏

i=1

P

(

h
(si)
i

)

=
ak

ζ(1)

k
∏

i=1

[

P
(

h
(0)
i

)

+ P
(

h
(1)
i

)]

=
ak

ζ(1)

k
∏

i=1

[

Q
(

h
(0)
i

)

+Q
(

h
(1)
i

)]

=
ak

ζ(1)

∑

s∈{0,1}k

k
∏

i=1

Q

(

h
(si)
i

)

=

2k−1
∑

j=0

Q(h
[j]
) . (11)

Also, it follows directly from Equation (8) and the
property (q − p)2 = ((1− q)− (1− p))2 that

(RS(h)−RD(h))2 = (RS(h
[j]
)−RD(h

[j]
))2 . (12)

From Equations (11) and (12), we now have
∫

h∈HS
(k)

P (h)e(m−|i
h
|)·2(RS(h)−RD(h))2

=
1

2k

2k−1
∑

j=0

∫

h∈HS
(k)

P (h)e(m−|i
h
|)·2(RS(h)−RD(h))2

=
1

2k

2k−1
∑

j=0

∫

h∈HS
(k)

P (h
[j]
)e

(m−|i
h[j] |)·2(RS(h

[j]
)−RD(h

[j]
))2

=
1

2k

2k−1
∑

j=0

∫

h∈HS
(k)

P (h
[j]
)e(m−|i

h
|)·2(RS(h)−RD(h))2

=
1

2k

∫

h∈HS
(k)

2k−1
∑

j=0

P (h
[j]
)e(m−|i

h
|)·2(RS(h)−RD(h))2

=
1

2k

∫

h∈HS
(k)

2k−1
∑

j=0

Q(h
[j]
) e(m−|i

h
|)·2(RS(h)−RD(h))2

...

=

∫

h∈HS
(k)

Q(h)e(m−|i
h
|)·2(RS(h)−RD(h))2

. (13)

Thus, the following proves Claim 2:

E
h∼P

e
(m−|i

h
|)·2(RS(h)−RD(h))2

=

deg ζ
∑

k=0

∫

h∈HS
(k)

P (h)e(m−|i
h
|)·2(RS(h)−RD(h))2

=

deg ζ
∑

k=0

∫

h∈HS
(k)

Q(h)e(m−|i
h
|)·2(RS(h)−RD(h))2

= E
h∼Q

e
(m−|i

h
|)·2(RS(h)−RD(h))2

.

Now, by Markov’s inequality we have

Pr
S∼Dm

(

XP ≤
1

δ
E

S∼Dm
XP

)

≥ 1− δ .

Now, by applying the two claims and taking the loga-
rithm on each side of the innermost inequality, we have

Pr
S∼Dm

(

∀Qaligned on P :

lnXQ ≤ ln
[

1
δ
e4ld · 2√m

]

)

≥ 1− δ . (14)

By using Jensen’s inequality on the concavity of ln(x)
and on the convexity of (q−p)2, and by using the fact
that m− |ih| ≥ m− l · d, we find

lnXQ ≥ E
h∼Q

(m− |ih|) · 2 · (RS(h)−RD(h))2

≥ (m− ld) · 2 ·
(

E
h∼Q

RS(h)− E
h∼Q

RD(h)

)2

.

The theorem then follows from Equations (9) and (14)
and straightforward calculations.

2.2. Majority Votes of sc-classifiers of

Compression Size of at Most One

For the rest of the paper, we specialize ourselves to the
case where each sc-classifier has a compression set size
of at most one. In that case, each sample compression
sequence Si consists of at most a single training ex-
ample and, consequently, each possible vector i has at
most only one index (i.e., |i| ≤ 1). When |i| = 1 and
its single index points to example (xi, yi) of S, we have
i = 〈i〉 and Si = S〈i〉 = (xi, yi). When |i| = 0, then
i = 〈〉 and Si = S〈〉 = ∅. In this latter case, the two sc-

classifiers h
(ε,+)
S〈〉

and h
(ε,−)
S〈〉

are constant classifiers so

that h
(ε,+)
S〈〉

(x) = +1 and h
(ε,−)
S〈〉

(x) = −1 for all x ∈ X .

Here ε denotes the empty message. Each sc-classifier

h
(σ,s)
S〈i〉

(that we will define below) of compression size 1

uses a message (σ, s) ∈ M1 × {−,+} where M1 is a
real interval having a length denoted by |M1|. Fur-
thermore, we use a uniform prior over all the relevant
parameters. More precisely, for all i ∈ {1, . . . ,m}, and
s ∈ {−,+}, we have

PI(〈〉) = PI(〈i〉) =
1

m+ 1
; PS〈〉(ε, s) =

1

2

PS〈i〉(σ, s) =
1

2|M1|
I(σ ∈ M1) .
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Equation (3) implies that P (h
(ε,s)
S〈〉

) = PI(〈〉)PS〈〉(ε, s)

and P (h
(σ,s)
S〈i〉

) = PI(〈i〉)PS〈i〉(σ, s). We do have

∑

s∈{−,+}

P (h
(ε,s)
S〈〉

) +
m
∑

i=1

∑

s∈{−,+}

∫

M1

dσP (h
(σ,s)
S〈i〉

) = 1 .

In the rest of the paper, we restrict ourselves to what
we call strongly aligned posteriors, i.e., aligned poste-
riors such that the function w(i, σ) is constant on its
second argument. More precisely, for sc-classifiers of
compression size zero, we use

Q(h
(ε,s)
S〈〉

) =
1

2

(

P (h
(ε,+)
S〈〉

) + P (h
(ε,−)
S〈〉

) + s·w(〈〉, ε)
)

=
1

2

(

1

m+ 1
+ s·w0

)

, (15)

where w0
def
= w(〈〉, ε) and must satisfy |w0| ≤ 1

m+1 .

For sc-classifiers of compression size one, we use

Q(h
(σ,s)
S〈i〉

) =
1

2

(

P (h
(σ,+)
S〈i〉

) + P (h
(σ,−)
S〈i〉

) + s·w(〈i〉, σ)
)

=
1

2

(

1

m+ 1
+ s·wi

)

1

|M1|I(σ∈M1) , (16)

where we have defined wi by the equality w(〈i〉, σ) =
wi

1
|M1|I(σ ∈ M1). Thus, we must satisfy |wi| ≤ 1

m+1 .

The specialization to strongly aligned posterior might
seem too restrictive. However, this setting remains
powerful enough to include kernels methods such as
the SVM as a special case. Indeed, for any such
strongly aligned posterior Q, the output of BQ(x) is

BQ(x) = sgn

(

w0 +

m
∑

i=1

wik(xi, x)

)

, (17)

since E
h∼Q

h(x), in Equation (2), is given by

∑

s∈{-,+}

Q(h
(ε,s)
S〈〉

)h
(ε,s)
S〈〉

(x)+
m
∑

i=1

∑

s∈{-,+}

∫

M1

dσQ(h
(σ,s)
S〈i〉

)h
(σ,s)
S〈i〉

(x)

= w0 +

m
∑

i=1

wi

1

|M1|

∫

M1

h
(σ,+)
S〈i〉

(x)dσ = w0 +

m
∑

i=1

wik(xi, x) .

The last equality is obtained whenever h
(σ,+)
S〈i〉

satisfies
∫

M1 h
(σ,+)
S〈i〉

(x)dσ = |M1|k(xi, x) . Hence, we choose

h
(σ,+)
S〈i〉

(x) = sgn

(

1

2
|M1|k(xi, x) > σ

)

∀x ∈ X , (18)

for σ ∈ M1 = [−1,+1] and k(x′, x) ≤ 1 ∀(x′, x) ∈ X 2.
This last condition implies that k must be bounded by
1. However, note that no other condition need to be

satisfied for k. Indeed, k can be any normalized simi-
larity measure; it does not even need to be symmetric.

If we compare the set of majority-vote classifiers de-
scribed by Equation (17) to the set of SVM classi-
fiers where the output fSVM(x) for any x ∈ X is given

by fSVM(x) = sgn
(

∑m
i=1 yiαik(xi, x) + b

)

, we con-

clude that the latter set forms a strict subset of the
former set. Indeed, even if for BQ we must have
k(x′, x) ≤ 1 ∀(x′, x) ∈ X 2 and |wi| ≤ 1

m+1 for all i,
while no such restriction exists for fSVM, we can al-
ways multiply b and each αi by a positive constant
such that fSVM(x) = BQ(x) ∀x ∈ X . However, k in
BQ can be any similarity measure (possibly not sym-
metric in its two arguments), while k in fSVM must be
a positive semi-definite kernel. Note that Theorems 1
and 5 do apply to this larger class of majority votes of
sc-classifiers of compression size of at most one.

Several generalizations from the above are possible.

Indeed, for Q(h
(σ,s)
S〈i〉

), we could consider distributions

over σ that vary with i. This would effectively provide
a mechanism for adapting the similarity measure to
each training example. We could also use sc-classifiers
having a compression size larger than one.

2.3. Bound Minimization Learning Algorithms

For the task of finding the posterior Q minimizing an
upper bound on ζQD , note that theorems 1 and 5 indi-
cate that l · deg(ζ) should be small for the risk bound
to be small. Hence, we consider sc-classifiers of com-
pression sequence size of at most one and margin losses
that are quadratic1, i.e. ζ(α) = (1 + 1

q
α)2. Hence,

we have ζ(1) = (1 + q−1)2 and ζ
′
(1) = (2q + 2)/q2.

Algorithm PBSC-A finds a strongly aligned Q mini-
mizing ζQS and, thus, the bound of Theorem 5. Equa-
tions (15) and (16) show that any strongly aligned Q

is determined by w
def
= (w0, w1, . . . , wm). When HS

consists of sc-classifiers of compression sequence size
of at most one, as defined in Section 2.2, the margin of
Q on (x, y) is MQ(x, y) = y [w0 +

∑m
i=1 wik(xi, x) ].

Thus, PBSC-A minimizes

ζ
Q
S =

1

m

m
∑

j=1

ζ (−MQ(xj , yj))
2

=
1

mq2

m
∑

j=1

(

q − yj

[

w0 +
m
∑

i=1

wik(xi, xj)

])2

,

subject to |wi| ≤ 1
m+1 for i = 1, . . . ,m. Hence

PBSC-A solves a least-square problem under an ℓ∞
norm constraint.

1The sc-classifiers being weak, we have seen that linear
margin losses are not suitable for model selection.
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The objective function to minimize is convex in Q
(with continuous first derivatives) and the domain of
all strongly aligned posteriors is also convex. The
set of solutions is therefore convex and coordinate de-
scent methods, such as the one we have implemented
(see Germain et al. (2011) for the details), are thus
always guaranteed to converge to a solution.

Similarly, algorithm PBSC-N finds the posterior Q
that minimizes the bound of theorem 1, without re-
stricting Q to be aligned to the prior. It considers
the same set of sc-classifiers of size one defined previ-
ously. However, the non-aligned posterior Q is defined

by v
def
= (v+, v1, . . . , v2m, v−) such that :

Q(h
(ε,+)
S〈〉

) = v+, Q(h
(σ,+)
S〈i〉

) = vi
1

|M1|I(σ ∈ M1),

Q(h
(ε,−)
S〈〉

) = v−, Q(h
(σ,−)
S〈i〉

) = vm+i
1

|M1|I(σ ∈ M1),

where i ∈ {1, . . . ,m}. For Q to be a distribution, v
must satisfy

v ≥ 0 for all v ∈ v and
∑

v∈v

v = 1 . (19)

Note that the posterior Q minimizing the bound of
Theorem 1 is the one that minimizes C ·ζQS +KL(Q‖P ),
subject to the constraints of Equation (19). The pa-
rameter C > 0 allows to tune the influence of the reg-
ularizer. However, in Theorem 1, C is a constant ob-
tained from C1, ζ

′(1) and m.

To express ζQS in terms of v, note that the margin
MQ(x, y), on example (x, y), is given by

MQ(x, y) = y

[

(v+−v−) +

m
∑

i=1

(vi−vi+m)k(xi, x)

]

.

Consequently, we have

ζQS =
1

mq2

m
∑

j=1

(

q−yj

[

v+−v−+

m
∑

i=1

(vi−vi+m)k(xi, xj)

])2

.

Moreover, the KL-divergence between Q and an uni-
form prior P is given by

KL(Q‖P ) = E
h∼Q

ln Q(h)
P (h) = ln(2m+ 2) +

∑

v∈v

v ln v .

The optimization problem for PBSC-N is thus a
KL-regularized least-square problem. The objective
function to minimize is convex in v (with contin-
uous first derivatives) and v lies in a convex do-
main. A coordinate-pair descent algorithm that works
iteratively exchanging weights between two compo-
nents of v, such as the one we have implemented
(see Germain et al. (2011) material for details), is thus
assured to converge to a global optimum.

2.4. Empirical Results

We first compare both PBSC algorithms to the popu-
lar SVM, to the Regularized Least Squares Classifier
(RLSC) 2 , and to an algorithm, denoted here as LIN-

EAR, that just consists at minimizing ζQS for the linear
margin loss function ζ(α) = α + 1. The comparison
with the latter is only to point out the need of a non-
linear margin loss function. Note that PBSC-N has
two hyper-parameters (C, q) to tune whereas PBSC-A
needs only one (q). SVM and RLSC also need to tune
only one hyper-parameter (C).

For all algorithms, we used the standard RBF kernel
kRBF(x, x

′) = exp(−γ‖x− x′‖) and the sigmoid kernel
kSIG(x, x

′) = tanh(s x·x′+d). All hyper-parameters (C,
q, γ, s, d) were determined by performing 10-fold cross
validation on the training data. The experiments were
performed on 22 data sets that, except for MNIST,
were taken from the UCI repository3. Each data set
was randomly partitioned into a training set S of size
|S| and a testing set T of size |T |.
Table 1 shows that, when using the RBF kernel,
PBSC-A is very competitive with PBSC-N, SVM,
and RLSC, and outperforms LINEAR. More precisely,
PBSC-A has a better test risk than SVM on 11
datasets (the opposite occurs 6 times), and PBSC-A
has a better test risk than RLSC on 12 datasets (the
opposite occurs 4 times). Using the sign test metho-
dology of Mendenhall (1983), this yields to a p-value
of 16.6% for the hypothesis that PBSC-A and SVM
algorithms are equivalent and a p-value of 3.8% for
the hypothesis that PBSC-A and RLSC algorithms are
equivalent. By using the common significance thresh-
old of 5%, we conclude that PBSC-A is better than
RLSC whereas no such conclusion holds for PBSC-A
vs SVM. We also have a p-value of 10.5% when com-
paring PBSC-A and PBSC-N . Note that PBSC-A has
a better practical value than PBSC-N as it requires
one hyper-parameter less. Finally, we have a p-value
of 0.0005% when comparing PBSC-A with LINEAR,
supporting strongly the choice of the quadratic loss
over the linear loss for algorithm design.

Unlike the RBF kernel, the sigmoid kernel is indef-
inite for certain parameter values. In this case, the
standard SVM algorithm might not converge to a so-
lution (like the popular SVM-Light implementation).
In our experiments, we used the LIBSVM implemen-
tation of Chang & Lin (2001) because it returns a so-
lution even if the kernel is indefinite. It turns out that

2RLSC also minimizes a quadratic loss function but
with a regularizer different from the one used by PBSC.

3Table 1 displays the results for the largest data sets.
See Germain et al. (2011) for all the results.
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Table 1. Empirical risk measured on the testing set T for the five different algorithms.
Dataset RBF kernel Sigmoid kernel

Name |T | |S| SVM RLSC PBSC-A PBSC-N LINEAR SVM PBSC-A

Adult 10000 1809 0.158 0.157 0.156 0.160 0.193 0.163 0.157

BreastC 340 343 0.038 0.038 0.044 0.038 0.144 0.038 0.038

Letter:AB 1055 500 0.001 0.002 0.001 0.001 0.038 0.009 0.005

Letter:DO 1058 500 0.014 0.015 0.011 0.012 0.069 0.022 0.028
Letter:OQ 1036 500 0.016 0.011 0.016 0.014 0.123 0.018 0.039
Mnist:0vs8 1916 500 0.003 0.009 0.004 0.004 0.031 0.007 0.003

Mnist:1vs7 1922 500 0.014 0.008 0.008 0.007 0.161 0.012 0.007

Mnist:1vs8 1936 500 0.011 0.010 0.010 0.011 0.292 0.014 0.015
Mnist:2vs3 1905 500 0.020 0.022 0.019 0.020 0.114 0.025 0.031
Mushroom 4062 4062 0.000 0.000 0.000 0.000 0.022 0.000 0.010
Ringnorm 3700 3700 0.015 0.017 0.013 0.013 0.103 0.020 0.035
Tic-tac-toe 479 479 0.015 0.019 0.019 0.052 0.365 0.023 0.159
Waveform 4000 4000 0.068 0.067 0.068 0.066 0.143 0.067 0.067

Table 2. Mean and standard deviation (in parentheses) of the empirical risk across 20 partitions.
Dataset Linear SVM k-NN PBSC-A

Aural Sonar 0.1425 (0.694) 0.1825 (0.597) 0.1500 (0.827)
Voting 0.0534 (0.193) 0.0546 (0.174) 0.0529 (0.184)
Yeast-5-7 0.2688 (0.622) 0.3063 (0.580) 0.2975 (0.668)
Yeast-5-12 0.1075 (0.482) 0.1275 (0.439) 0.1088 (0.598)

PBSC-A and LIBSVM are competitive. Indeed, the
sign test methodology gives a p-value of 50% for the
hypothesis that both algorithms are equivalents.

To pursue the exploration with indefinite similarity
measures, we ran PBSC-A on four binary data sets
referenced by Chen et al. (2009a;b) and used the pro-
vided similarity measures. We followed the same ex-
perimental methodology as Chen et al. (2009a;b) and
computed the mean and standard deviation of the em-
pirical risk across 20 test/training standardized par-
titions. Table 2 shows that PBSC-A is competitive
with the Linear SVM using similarities as features and
is better than the k-Nearest Neighbor using similari-
ties as a measure of distance. Note that Chen et al.
(2009b) suggests an algorithm having generally better
achievements on these data sets. But these results are
obtained by substituting a “surrogate kernel function”
to the real similarity function that one wants to use.
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