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Abstract

We present a new multiclass algorithm in the
bandit framework, where after making a pre-
diction, the learning algorithm receives only
partial feedback, i.e., a single bit of right-or-
wrong, rather then the true label. Our al-
gorithm is based on the 2nd-order Percep-
tron, and uses upper-confidence bounds to
trade off exploration and exploitation. We
analyze this algorithm in a partial adversar-
ial setting, where instances are chosen adver-
sarially, while the labels are chosen accord-
ing to a linear probabilistic model, which is
also chosen adversarially. We show a regret
of O(

√
T logT ), which improves over the cur-

rent best bounds of O(T 2/3) in the fully ad-
versarial setting. We evaluate our algorithm
on nine real-world text classification prob-
lems, obtaining state-of-the-art results, even
compared with non-bandit online algorithms,
especially when label noise is introduced.

1. Introduction

Consider a book recommendation system. Given a
customer’s profile, it recommends a few possible books
to the user, with the aim of choosing books that the
user will like and eventually purchase. Typical feed-
back in such a system is the actual action of the
user, or specifically what books has she bought, if any.
The system cannot observe what would have been the
user’s actions had other books got recommended.

Generally, such problems are referred to as learning
with partial feedback. Unlike the full information case,

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

where the system or the learning algorithm knows the
outcome of each possible response, e.g., the user’s ac-
tion for each and every possible book recommended, in
the partial setting, the system observes the response
only to very limited options and, in particular, the
option that was actually recommended.

We consider an instantiation of this problem in the
multiclass prediction problem within the online bandit
setting. Learning is performed in rounds. On each
round the algorithm receives an instance and outputs
a label from a finite set of size K. It then receives
a single bit indicating whether the predicted label is
correct or not, which the algorithm uses to update its
internal model and proceed to the next round. Note
that for rounds where the feedback indicates wrong
prediction, the algorithm’s uncertainty about the true
label for that instance is almost not reduced, since
the number of alternatives is only reduced from K to
K − 1. Hence the algorithm needs somehow to follow
an exploration-exploitation strategy.

Related work. Our algorithm trades off explo-
ration and exploitation via upper-confidence bounds,
in a way that is somewhat similar to the work of Auer
(2003) and Dani et al. (2008). Yet, the result most
closely related to our work is the Banditron algorithm
of Kakade et al. (2008), which builds on the immortal
Perceptron algorithm. Kakade et al. (2008) investi-
gated this problem in an online adversarial setting, and
showed a O(T 2/3) bound on the regret compared to
the hinge loss of a linear-threshold comparator. Wang
et al. (2010) extended their results to a more general
potential-based framework for online learning.

Multiclass classification with bandit feedback can be
seen as a multi-armed bandit problem with side infor-
mation. Relevant work within this research thread in-
cludes the Greedy-Epoch algorithm analyzed by Lang-
ford & Zhang (2007), where a O(T 2/3) regret bound



Multiclass with Bandit Feedback

has been proven under i.i.d. assumptions, yet covering
more general learning tasks than ours. We are aware
of at least three more papers that define multi-armed
bandit problems with side information, also called ban-
dits with covariates: (Wang et al., 2005; Lu et al.,
2010; Rigollet & Zeevi, 2010). However, the models in
these paper are very different from ours, and not eas-
ily adapted to our multiclass problem. Another paper
somewhat related to this work is (Walsh et al., 2009),
where the authors adopt a similar linear model as ours
(and similar mathematical tools) in a setting where an
online prediction algorithm is allowed to sometimes an-
swer ”I don’t know” (the so-called KWIK setting). A
direct adaptation of their results to our setting seems
to lead to inferior cumulative regret bounds.

2. Multiclass Bandit Online Learning

Standard online learning with full information is per-
formed in rounds. On round t the algorithm receives
an instance xt ∈ R

d to be classified, and predicts a la-
bel ŷ ∈ {1 . . .K}. It receives the true label yt, updates
its internal model, and is ready for the next round.

The algorithm we present employs linear models. The
algorithm maintainsK weight vectorswi ∈ R

d, for i =
1, ...,K. Given an instance xt, the algorithm computes
a score associated with each of the K classes, defined
by w

⊤
i xt, and outputs a prediction to be the label with

the highest score, that is,

ỹt = arg max
i=1...K

w
⊤
i xt . (1)

We emphasize that two quantities are considered: the
label with maximal score ỹt defined in Eq. (1) (this
quantity is internal to the algorithm), and the label
that is actually output by the algorithm, denoted by
ŷt. In the full-information case, most algorithms just
output their prediction, that is we have ŷt = ỹt. In this
paper, we focus on the partial information setting, aka
the bandit setting. Here, after the algorithm makes a
prediction, it does not receive the correct label yt but
only a single bit Mt indicating whether its output ŷt
was correct or not, i.e., Mt = {yt 6= ŷt}, where {A} is
1 iff the predicate A is true.

Since learning algorithms receive only very limited
feedback there is a natural tradeoff between explo-
ration and exploitation. On the one hand, the al-
gorithm should output the best scoring label ỹt =
argmaxi=1...K w

⊤
i xt, this step being called exploita-

tion. Yet, it may be the case that the model used
at some point will not perform well (for example, the
initial model), and thus the algorithm will make many
mistakes and most of its feedback will indicate that the
output is not correct, that is Mt = 1. This feedback is

almost useless, as there is still uncertainty about the
true label (one of K−1 options remain). On the other
hand, the algorithm may perform exploration and out-
put another label, to get useful feedback.

The Banditron algorithm implements one approach to
exploration-exploitation tradeoff. From time to time,
the algorithm outputs another label than its prediction
ỹ. The banditron chooses such examples at random
with some probability γ, and then chooses a random
label uniformly with probability 1/K. This approach
ignores few aspects of the state. First, it ignores the
specific input xt to be labeled, although some inputs
may be classified well by the current model. Second, it
ignores the difference in score values w⊤

1 xt, . . . ,w
⊤
Kxt.

For example, it may be the case that two of the score
values are very large compared to the others; then it
makes sense to output only one of the two, rather than
sampling from the entire label set. Third, it ignores
the example index t, as it is reasonable to assume that
as the algorithm learns more it needs to query less.

An alternative approach, which we employ in this
work, is to maintain additional confidence informa-
tion about the predictions. Specifically, given an input
xt, the algorithm not only computes score values, but
also non-negative uncertainty values for these scores,
denoted by ǫi,t. Intuitively, high values of ǫi,t indi-
cate that the algorithm is less confident in the value of
the score w

⊤
i xt. Given a new example, the algorithm

outputs the label with the highest upper confidence
bound (UCB), computed as the sum of score and un-
certainty, ŷt = argmaxi(w

⊤
i xt + ǫi,t) . Intuitively, a

label ŷ is output by the algorithm if either its score
is high or the uncertainty in predicting it is high, and
there is need to obtain information about it. Specifi-
cally, our algorithm maintains a positive semidefinite
matrix per label, Ai,t ∈ R

d×d. Given an input instance
xt to be classified, we define the confidence intervals
to be ǫ2i,t = ηtx

⊤
t A

−1
i,t xt for some scalar ηt which is

used to tradeoff the exploration and exploitation. The
matrices Ai,t (or their inverses) are used to measure
uncertainty in the score, and input examples are used
to update them as well as the wi’s.

We now describe the specific model we use to mo-
tivate our algorithm, and later analyze it. Our set-
ting is slightly less adversarial than the one considered
in Kakade et al. (2008); Wang et al. (2010). In particu-
lar, we assume the following parametric model for the
multiclass labels:1 We assume that the labels of an
example xt are generated according to the following

1This model is a natural extension of the binary la-
bel noise model considered elsewhere (Cesa-Bianchi et al.,
2009; Dekel et al., 2010).
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probabilistic model,

P(yt = i |xt) =
α+ u

⊤
i xt

α+ 1
, (2)

for some K vectors u1, . . . ,uK ∈ R
d, and a scalar

α ∈ (−1, 1]. The model is well defined if, for all x ∈ R
d

chosen by the adversary, we have
∑K

i=1 u
⊤
i x = α +

1 − Kα and −α ≤ u
⊤
i x for all i. (Notice that this

implies u
⊤
i x ≤ 1 for all i). For simplicity we also

assume ||xt|| = 1 for all t. Intuitively, α quantifies the
closeness of the K tasks according to model (2). On
the one hand, the closer α gets to −1 the more the
scores u

⊤
i x are forced to be close to each other (i.e.,

u
⊤
i x ≈ 1 for all i, independent of x). On the other

hand, setting α = 1 yields P(yt = i |xt) =
1+u

⊤

i xt

2

under the constraints−1 ≤ u
⊤
i x ≤ 1 and

∑K
i=1 u

⊤
i x =

2 −K. This choice allows the probability mass to be
concentrated on the i-th label by setting u

⊤
i x = 1 for

some i and u
⊤
i x = −1 otherwise. Two natural choices

of α are α = 1
K−1 and α = 0. The former yields P(yt =

i |xt) = (1 + u
⊤
i xt(K − 1))/K under the constraints

−1/(K − 1) ≤ u
⊤
i x ≤ 1 and

∑K
i=1 u

⊤
i x = 0, which

can be satisfied by a constraint that is independent of
xt, namely,

∑K
i=1 ui = 0. The latter choice α = 0

forces (u⊤
1 x, . . . ,u

⊤
Kx) to be a probability vector. For

the sake of our analysis (Section 4), we will restrict our
attention to the case α ≥ 0.

We will bound the extent to which the number of pre-
diction mistakes of our learning algorithms exceeds
the number of prediction mistakes of the Bayes op-
timal predictor bt = b(xt) = argmaxi=1,...,K(u⊤

i xt)
for this label noise model. In particular, we are aimed
at bounding from above the cumulative regret

RT ≡
∑T

t=1

(

Pt(yt 6= ŷt)− Pt(yt 6= b(xt))
)

with high probability over past y’s, possibly taking
into account the internal randomization of the al-
gorithms. In the above, Pt denotes the conditional
probability P(· |x1, . . . xt, y1, . . . yt−1, σt−1), where it
is understood that xt can also be chosen adversar-
ially as a function of past x and y, and σt−1 is
the (possible) internal randomization of the algo-
rithm under consideration up to round t − 1. Simi-
larly, we denote by Et[·] the conditional expectation
Et[· |x1, . . . xt, y1, . . . yt−1, σt−1].

Our algorithm is a variant of the multiclass second-
order Perceptron algorithm that maintains at time t a
set of K vectors w1,t, . . . , wK,t ∈ R

d, where ∆̂i,t =
w

⊤
i,t−1xt is intended to approximate ∆i,t = u

⊤
i xt for

all i and t. The bandit algorithm also maintains a
set of K matrices Ai,t, which are used to compute a

Parameter: α ∈ (−1, 1]
Initialization: A0 = (1 + α)2 I ∈ R

dK×dK ,

W0 = (w1,0,w2,0, . . . ,wK,0) = 0 ∈ R
dK

For t = 1, 2 . . . , T :

1. Get instance xt ∈ R
d : ||xt|| = 1

2. W ′
t−1 = argminW∈Ct

dt−1(W,Wt−1), where
Ct is defined in Eq. (4)

3. Set ∆̂′
i,t = x

⊤
t w

′
i,t−1, i = 1, . . . ,K

4. Output ŷt = argmaxi(∆̂
′
i,t + ǫi,t), where ǫ2i,t

is as in Eq. (5)
5. Get feedback Mt = {yt 6= ŷt}
6. If Mt = 1 then:

6a. with prob. (1− α)/2 set
Xt = (0, . . . , 0,xt, 0, . . . , 0)

6b. with prob. (1 + α)/2 set
Xt = (0, . . . , 0,−xt, 0, . . . , 0)

7. Else (Mt = 0) set
Xt = (0, . . . , 0,xt, . . . , 0)

8. Update:
At = At−1 +XtX

⊤
t ,

Wt = A−1

t (At−1W
′
t−1 +Xt).

Figure 1. The multiclass bandit algorithm.

standard upper confidence scheme of the form

ŷt = arg max
i=1...K

(

∆̂i,t + ǫi,t

)

, (3)

where ǫi,t is a suitable upper confidence level for class
i at time t, which is a function of both xt and Ai,t.

3. The New Bandit Algorithm

Our algorithm, described in Figure 1, is parameter-
ized by the model parameter α ∈ (−1, 1], assumed to
be known. The algorithm maintains, for each class
i = 1, . . . ,K, a weight vector wi ∈ R

d and a corre-
lation matrix Ai ∈ R

d×d, and operates similarly to
2nd-order (or ridge regression)-like algorithms (Hoerl
& Kennard, 1970; Azoury & Warmuth, 2001; Cesa-
Bianchi et al., 2005) (see also, e.g., (Strehl & Littman,
2008; Crammer et al., 2009a; Cesa-Bianchi et al., 2009;
Dekel et al., 2010)). The weight vectors are initialized
to zero, and the matrices Ai to (1 + α)2 times the
identity matrix I of size d. For brevity, we denote
by A a single matrix of size dK × dK defined to be
the block-diagonal matrix A = diag(A1, A2, . . . , AK).
We denote by W the dK-dimensional vector which is
defined to be the concatenation of the K vectors wi.
Similarly, U ∈ R

dK is the concatenation of the K vec-
tors ui defined in (2). We use both notations, each in
turn to simplify the presentation in place.

Our algorithm works in rounds. On round t, the algo-
rithm receives the (normalized) instance xt ∈ R

d and
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defines the following time-t convex set

Ct=

{

W =(w1, . . . ,wK) ∈ R
dK : −α ≤ w

⊤
i xt

i = 1, . . . ,K ;
∑K

i=1 w
⊤
i xt = 1 + α−Kα

}

(4)

We remind the reader that for each t, set Ct includes
the parameter space where vectors ui are assumed to
live (see text surrounding Eq. (2)). The algorithm
then projects the current vector Wt−1 onto Ct yield-
ing W ′

t−1 = (w′
1,t−1, . . . ,w

′
K,t−1). The projection is

performed using the multiclass Mahalanobis distance
dt−1(U,W ) = 1

2 (U −W )⊤At−1(U −W ) . This projec-
tion can be computed efficiently in time O(K logK),
the details are omitted due to lack of space.

The algorithm uses w′
i,t−1 to estimate the score-values

∆̂′
i,t =x

⊤
t w

′
i,t−1, and the upper confidence prediction

ŷt=argmaxi(∆̂
′
i,t+ǫi,t) is output. Upon receiving the

binary feedback Mt, the algorithm performs either a
deterministic or a randomized update, depending on
Mt. Specifically, if a mistake has been made (Mt=1)
the algorithm flips a coin with bias 1+α

2 and sets the
vector Xt = (0, . . . , 0,±xt, 0, . . . , 0) accordingly. On
the other hand, if no mistake is made (Mt = 0), the
associated update vector is Xt=(0, . . . , 0,xt, 0, . . . , 0),
independent of α. In all cases, the nonzero block of
Xt is in position ŷt, i.e., only the ŷt’s predictor gets
directly affected by Xt. The constructed update vec-
tors are used within a standard 2nd-order updating
scheme: matrix At−1 undergoes a rank-one update
At←At−1+XtX

⊤
t , and vector W ′

t−1 turns to Wt via
an additive update AtWt← At−1W

′
t−1+Xt. We call

this algorithm Confidit, for (upper) confidence based
bandit algorithm.

The construction of the update vector Xt essentially
determines the algorithm’s behavior: The updating
sign βt = ±1 of xt within Xt acts either as a pro-
moter for class ŷt or a demoter, depending on the
sign of βt. First, observe that, if the algorithm makes
a mistake, then βt is on average equal to −α, i.e.,
Et[βt |Mt = 1] = −α. Hence on a mistaken trial we
demote (the mistaken) class ŷt only if α is positive.
On the contrary, if α is negative the algorithm deems
all class predictors ∆i,t to be very close to each other,
hence promoting one class is somewhat similar to pro-
moting all the other ones (recall that the projection
step forces them to stay very close anyway). Second,
it is worth observing that, conditioning only on the

past, and setting pt = Pt(Mt = 0) =
α+∆ŷt,t

1+α , we have
Et[βt] = Et[βt |Mt = 1] (1− pt) + Et[βt |Mt = 0] pt =
∆ŷt,t. Hence this expectation is positive if and only if
∆ŷt,t > 0. One way of stating this is that on any given

time step (mistaken or not), ∆̂ŷt,t progresses through
the updates in Step 8 of the algorithm towards ∆ŷt,t

by growing more positive or more negative depending
on the sign of ∆ŷt,t, at an average pace of |∆ŷt,t|.
The above behavior is similar to the upper-confidence
algorithms under bandit feedback of Auer (2003); Dani
et al. (2008) for multiarmed bandits, where our update
sign βt plays the role there of a random observation
whose (conditional) average is the average payoff ∆ŷt,t

of the chosen arm. The randomization in the algorithm
serves just to ”symmetrize” the unbalanced feedback
received in this online protocol, to gather information
about the true margin ∆ŷt,t of the chosen class.

We note in passing that the running time of each round
of the algorithm is dominated by the inversion of the
matrix Aŷt,t−1, which is O(d2) if done incrementally.
Moreover, it is easy to see that the algorithm can also
be run in dual variables (i.e., in a RKHS). This has a
twofold implication: (a) The resulting noise model (2)
can be made highly nonlinear in the input space, and
(b) the running time per round can be made quadratic
in the number of rounds so far, rather than d2. In
practice, and also in the experiments described in Sec-
tion 5, we actually used a version of the algorithm
which maintains a (fully) diagonal matrix A instead of
a block-diagonal one. All the steps remain the same
except step 8 of Alg. 1 where we define the rth diagonal
element of the matrix to be (At)r,r = (At−1)r,r+(Xt)

2
r .

The running time is now O(K d+K log(K)), as all the
operations are linear in the dimensions of X , W and
A, except the projection.

4. Analysis

Our analysis, omitted from this version of the paper,
allows us to set the upper confidence level ǫi,t in Algo-
rithm 1 to be

ǫ2i,t = 2x⊤
t A

−1
i,t−1xt

(

1
2 (1 + α)2||U ||22 (5)

+
(1 + α)2

2

t−1
∑

s=1

x
⊤
s A

−1
ŷs,s

xs + 9(1 + α)2 log
t+ 4

δ

)

,

where ||U ||2 is either the actual Euclidean length of
vector U or a (known) upper bound thereof. The
following is the main theoretical result of this pa-
per, where we emphasize both the data and the time-
dependent aspects of the bound.

Theorem 1. In the adversarial setting described so
far with α ∈ [0, 1], the cumulative regret RT of Algo-
rithm 1 satisfies

RT = O
(

√

B1 T
(

√

B2 B3 +B3

))

,



Multiclass with Bandit Feedback

where

B1 = 1 + (1 + α)−2, B2 = ||U ||22 + 18 log((T + 4)/δ),

B3 =

K
∑

i=1

log
|Ai,T |
|Ai,0|

≤ dK log
(

1 +
T

dK(1 + α)2

)

with probability at least 1− δ uniformly over the time
horizon T . In the above | · | denotes the determinant
of the matrix at argument.

The bound described in Theorem 1 is essentially a√
T logT regret bound, as both B2 and B3 are log-

arithmic in T . The best previous bound for multiclass
prediction in an adversarial bandit setting is O(T 2/3),
which was first shown for the Banditron algorithm in
the case when also the labels are adversarial, rather
than being stochastically generated.

Low-Noise Assumptions: By making further as-
sumptions on the distribution of the xt, such as low
noise, one can improve the

√
T log T bound and in-

terpolate between log2 T (hard-margin separation as-
sumption) and

√
T logT (no assumptions on xt). In

fact, we can proceed by defining the multiclass mar-
gin of a label yt as ∆bt,t −maxi6=bt ∆i,t. A low-noise
assumption places restrictions (lower bounds) on the
probability that xt is drawn in such a way that this
margin is small. For instance, under hard-margin sep-
aration assumptions we can easily prove the following
logarithmic regret result.

Corollary 1. In the adversarial setting described so
far with α ∈ [0, 1], if there is an ǫ > 0 such that for
any t and any i 6= bt we have ∆bt,t−∆i,t > ǫ, then the
cumulative regret RT of Algorithm 1 satisfies

RT = O
(B1

ǫ

(

B2 B3+B2
3

))

, for B1 = 1+α+
1

1 + α

where B2 and B3 are as in Theorem 1.

This result is essentially a log2 T regret bound, which
is a log-factor worse than the one achieved by the ran-
dom projection-based algorithm described by Kakade
et al. (2008), working in the linearly separable case.
However, unlike ours, their algorithm does not seem
to lend itself to an efficient implementation.

5. Experiments

We evaluate our algorithm using five natural language
classification tasks over nine datasets, with various size
and number of labels. Their characteristics are sum-
marized in Table. 1. Below we summarize their main
properties, more information can be found in (Cram-
mer et al., 2009b), where they have previously been
used.

Table 1. A summary of the nine datasets, including the
number of instances, features and labels and whether the
number of examples in each class are balanced.

Task Instances Features Labels Balanced

20 News 18,828 252,115 20 Y
Amazon7 13,580 686,724 7 Y
Amazon3 7,000 494,481 3 Y
Enron A 3,000 13,559 10 N
Enron B 3,000 18,065 10 N
NYTD 10,000 108,671 26 N
NYTO 10,000 108,671 34 N
NYTS 10,000 114,316 20 N
Reuters 685,071 268,170 4 N

Data: We use two datasets based on Amazon prod-
uct reviews, which are used for domain classification
datasets from seven product types (Amazon7 ) (books,
dvds, music, apparel, electronics, kitchen, video) and
a smaller subset with reviews on the first three prod-
uct types. The 20 Newsgroups2 is a very popular
dataset with about 20,000 newsgroup messages, di-
vided into 20 different newsgroups. Two aditional
datasets are based on the automatic classification of
Enron emails into one of the 10 largest folders3. Two
users are used, denoted by Enron A and Enron B. The
NY Times (Sandhaus, 2008) dataset contains 1.8 mil-
lion articles, published across 20 years starting from
1987. We used a subset with three annotations for
each article: the desk that produced the story (Fi-
nancial, Sports, etc.) (NYTD), the online section to
which the article was posted (NYTO), and the section
in which the article was printed (NYTS ). Finally, we
also used documents from RCV1v2 dataset, based on
newsfeeds from Reuters. We performed topic classi-
fication with the four general topics: corporate, eco-
nomic, government, and markets. In all datasets, we
followed the experimental setting described by Cram-
mer et al. (2009b), including data preprocessing.

Algorithms: Five algorithms are evaluated: two
of them work in the bandit setting, the other three
in the full information setting. The two bandit al-
gorithms are the Banditron algorithm (Kakade et al.,
2008), and the following modification to our algorithm.
First, as is typical of many upper confidence-based
algorithms, the width of the confidence interval is a
pessimistic overestimation of the actual uncertainty,
which suggests that implementing our algorithm and
testing it on real data in the exact form given by the
theory may not work well in practice. Hence, we re-
placed the multiplier of x⊤

t A
−1
i,t−1xt in the definition

of ǫ2i,t (see Eq. (5)) with some constant η whose

value was set by cross validation, that is, we used4

2
http://people.csail.mit.edu/jrennie/20Newsgroups/

3
http://www.cs.cmu.edu/ enron/

4On top of this, observe that the multiplier in (5) is
dependent on the norm ||U || of the comparison classifier,
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Figure 2. Cumulative no. of prediction mistakes in the first training epoch (top; linear-linear scale), and in all 10 epochs
(middle; log-log scale), no label noise. Bottom: Cumulative number of examples for which a prediction ŷ of a bandit
algorithm is not the label output ỹ. Four datasets are used (left to right): 20 Newgroups, Amazon3, NYTS and Reuters.

ǫ2i,t = η x⊤
t A

−1
i,t−1xt. Second, the projection step in Al-

gorithm 1 is only needed for technical purposes in the
analysis. On preliminary experiments (not reported in
this paper) we observed that the actual length of the
vectors did not grow large, thereby making the projec-
tion immaterial. Thus, we decided to remove this step
from our implementation. Third, for computational ef-
ficiency reasons, the inverse matrices A−1

i,t−1 have been

replaced by diagonal versions thereof.5 The three al-
gorithms that work in the full information setting are
the classical (multiclass) Perceptron algorithm (Rosen-
blatt, 1958), a diagonal multiclass version of the 2nd-
order perceptron algorithm (Cesa-Bianchi et al., 2005),
and AROW (Crammer et al., 2009a). Only AROW is
margin-based among them. All other algorithms are
mistake driven (at most).

We performed 10-fold cross validation for all algo-
rithms. Algorithm’s parameters (γ for Banditron, r for
AROW, η for Confidit and a for the 2nd order Percep-
tron) were tuned using a single split of the data. We
set α = 1 in Confidit, since optimizing this parameter

which need not be known to the algorithm.
5Note that the multiplier in (5) is logarithmic in t and

thus we evaluated another variant where ηt = η log(t)
which yielded very similar results to the one we report be-
low – we omit the details due to lack of space.

yielded optimal values very close to 1 anyway, with no
significant improvement in the results.

Online Results: Evaluation of all algorithms in
the online setting is summarized in Fig. 2. We re-
fer to the best scoring label (prediction) as ỹt =
argmaxi w

⊤
i,t−1xt, and to the one actually output as

ŷt. For Perceptron, 2nd-order Perceptron and AROW,
these two are always the same. Yet, bandit algorithms
need to explore and thus the prediction ỹt and output
label ŷt may not be the same. The top row of Fig. 2
summarizes (in linear scale) the cumulative number of
prediction mistakes each of the five online algorithms
makes during its first training epoch over the data.
The results for four datasets are shown: (left to right):
20 NG,Amazon3, NYTS and Reuters. AROW makes
the least number of mistakes, while Banditron makes
the most. There is no clear ordering between the other
algorithms. This is surprising since Confidit has only
partial information, while the Perceptron and the 2nd-
order Perceptron do rely on full label information.

The second row of Fig. 2 summarizes (in log scale)
the cumulative number of prediction mistakes over ten
training epochs over the data. The vertical dashed
black line indicates the end of the first epoch. In gen-
eral we observe a similar trend to this behavior after
the first epoch. The Banditron makes the same rate of
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Table 2. Test error with 10-fold cross validation with no label

noise. Bold entries indicate lowest error-rate among the Perceptron,

2nd order Perceptron, Banditron and Confidit algorithms (AROW

is not included, since it is margin-based, unlike the others), and un-

derlined entries indicates lowest error-rate between the two bandit

algorithms. Additional † and ⋆ indicate p-value of 0.01 and 0.001

respectively, when comparing all results, while (†) and (⋆) only in-

clude comparison between the two bandit-based algorithms.

2Ord.
Task Perc. Perc. AROW Bndtr. Confidit

20 News 20.04 13.92 8.14 50.52 ⋆12.41
Amazon7 25.71 25.73 22.30 29.15 (⋆)24.73
Amazon3 5.52 5.45 4.47 7.54 (⋆)6.67
Enron A 21.39 19.57 16.39 27.35 (⋆)23.01
Enron B 34.02 33.32 27.11 42.49 (⋆)37.89
NYTD 22.02 20.95 17.61 31.23 (⋆)27.02
NYTO 21.84 22.69 17.20 31.64 (⋆)25.20
NYTS 49.16 51.23 43.05 56.06 (†)54.24
Reuters 4.29 3.96 2.92 4.59 ⋆3.55

Table 3. Same as Table 2, with 30% training label noise.
2Ord.

Task Perc. Perc. AROW Bndtr. Confidit

20 News 45.88 39.92 21.41 65.71 ⋆30.45
Amazon7 42.33 41.41 27.47 45.28 ⋆36.24
Amazon3 28.70 27.38 6.22 31.70 ⋆17.16
Enron A 46.85 46.09 24.04 49.20 ⋆33.01
Enron B 55.52 54.89 37.17 61.10 ⋆50.57
NYTD 43.14 43.36 24.40 50.74 ⋆34.93
NYTO 44.43 42.40 24.78 48.85 ⋆33.85
NYTS 63.39 63.66 48.99 65.63 ⋆55.84
Reuters 35.34 35.70 4.53 36.61 ⋆11.70

mistakes in later epochs as the first one, yet it is not
always the case for the other algorithms. For example,
on 20 NG (left plots) all other algorithms make notice-
ably fewer mistakes in the last 9 training epochs (on
average) compared to the first one. The parameters of
all algorithms were the ones that minimize the error
on held-out-data, which may be far from optimal when
evaluating just on the number of online mistakes.

Finally, the bottom row of Fig. 2 summarizes the cu-
mulative number of examples for which the prediction
and the output of bandit-based algorithms are not the
same. This may be thought of as an exploration rate.
Clearly, this only applies to Banditron and Confidit.
The plots are in linear-linear scale. By definition, Ban-
ditron has a fixed exploration rate (of γ), as opposed
to Confidit whose exploration rate varies as more ex-
amples are observed. In seven out of the nine datasets
(only 4 are plotted) Confidit has lower and monotoni-
cally decreasing exploration rate. Confidit has more
cumulative exploration rate in two of the datasets:
Amazon3 and Amazon7. A possible explanation is
that the number of features in these datasets is large
(the largest among the nine datasets). Since the ex-
ploration rate of Confidit is based on a term which is
linear in the square of the features, and there are many
rare features that are introduced at a high-rate during
training, Confidit gets biased towards exploring classes

Table 4. Same as Table 2, with 10% training label noise.
2Ord.

Task Perc. Perc. AROW Bndtr. Confidit

20 News 31.27 22.03 13.10 53.04 ⋆17.70
Amazon7 30.96 31.53 23.46 34.74 †29.49
Amazon3 12.51 12.17 5.42 16.12 ⋆8.90
Enron A 32.52 27.65 19.73 36.85 (⋆)27.58
Enron B 41.14 40.64 34.05 46.15 (⋆)41.27
NYTD 28.46 28.15 19.57 37.60 (⋆)28.94
NYTO 29.35 27.66 20.14 39.00 (⋆)27.87
NYTS 53.31 54.55 44.26 58.22 (⋆)54.82
Reuters 16.79 16.86 3.64 18.92 ⋆5.96

with a high number of relatively rare features.

Batch Evaluation: Table 2 summarizes averaged
10-fold cross-validation error rates. Bold entries indi-
cate best results within all algorithms except AROW
(which is margin based), while underlined entries indi-
cate superiority when comparing only the two bandit-
based algorithms Banditron and Confidit. It is not sur-
prising that AROW outperforms all other algorithms,
as it works in the full information case with a margin-
sensitive update rule. (This was shown for the binary
case by Crammer et al. (2009a)). Thus we consider be-
low only the Perceptron and 2nd-order Perceptron in
the full information setting, and their bandit counter-
parts: Banditron and Confidit. When comparing the
two algorithms working in the full information setting,
we see that 2nd-order Perceptron outperforms Percep-
tron in 6 datasets, and is worse in 2 (there is a tie on
one dataset). In fact the 2nd-order Perceptron outper-
form all other three algorithms in 4 datasets. Confidit
performs best among all four algorithms (including full
information ones) in three datasets, and outpeforms
the Banditron in all dataset. All results, except one,
are statistically significant with p-value of 0.001.

Label Noise: We repeated the above experiments
with artificial label noise injected into the training
data. Specifically, we picked examples from the train-
ing set with probability p, and replaced the true label
of these examples with a uniformly distributed random
label. This process was performed only for the train-
ing subset of the data, the test results were evaluated
using uncorrupted data. However, parameter tuning
was performed using only corrupted data. The moti-
vation here is that injecting label noise might be more
harmful in the bandit setting than the full information
setting. This is because the bandit algorithms not only
observe partial information, but when they get some,
this information may be incorrect.

We collected online results in a similar way to Fig. 2
(the details are again omitted due to lack of space, and
will be given in the full version). Generally speaking,
we observe that all algorithms make more mistakes, yet
the relative ordering remains the same. More in de-
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tail, all algorithms continue to make mistakes after the
first epoch at a rate that remains similar throughout
time. This is in contrast to the evidence we collected
on noiseless data, where the mistake rate curves tend
to flatten out in later epochs. Finally, compared to
the noise-free case, Confidit has more exploration in
some datasets, and comparable in others. This is also
due to the different value of exploration-exploitation
parameter η automatically set by cross-validation.

Finally, averaged 10-fold cross validation error rates
on label noise rates 10% and 30% are summarized in
Table 4 and Table 3, respectively. Evaluations are
performed using uncorrupted data, the noisy data be-
ing used only during training and parameter tuning.
There are few trends. First, performance degrades
as the level of noise increases. E.g., on the Ama-
zon7 dataset the error rate of Banditron increases from
29.15% via 34.74% via 39.46% to 45.28% as the label
noise levels increase in 0%, 10%, 20%, 30%. Second, as
the level of noise increases, it seems that Confidit suf-
fers the least compared to Perceptron and 2nd-order
Perceptron. E.g., on Amazon3 both Perceptron and
2nd-order Perceptron have about 5.50% error when
trained with no noise, while having about 12% error
with 10% label noise. Confidit, on the other hand, has
6.57% error with no noise, and about 8.90% with noise.
Third, while Confidit performs best (among the 4 non
margin-based algorithms) on only 3 datasets out of 9
when no noise is induced, it is the best in 4 datasets at
a 10% label noise level, and is best on all 9 datasets for
20% and 30% noise. Hence Confidit seems more resis-
tant to label noise compared to Banditron, as well as
to the full information algorithms.

Conclusions and Ongoing Research: We pre-
sented the Confidit algorithm combining 2nd-order
Perceptron for multiclass problems and upper confi-
dence bounds. We proved a regret of O(

√
T logT ) in

a partial adversarial setting, which improves on the
T 2/3 bound proven for the Banditron. Experiments
indicate the superiority of our algorithm. Our current
analysis is not capturing the right dependence on the
α parameter, as we expect the bounds to improve as α
gets closer to −1. We are developing a margin-based
version of the algorithm, as such algorithms often out-
perform mistake-driven algorithms in practice. It still
remains an open problem to show if it is possible to
achieve a regret of

√
T in the full adversarial setting.
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