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Abstract

A Bayes Point machine is a binary classifier
that approximates the Bayes-optimal classi-
fier by estimating the mean of the posterior
distribution of classifier parameters. Past
Bayes Point machines have overcome the in-
tractability of this goal by using message pass-
ing techniques that approximate the poste-
rior of the classifier parameters as a Gaussian
distribution. In this paper, we investigate
alternative message passing approaches that
do not rely on Gaussian approximation. To
make this possible, we introduce a new com-
putational shortcut based on linear multiple-
choice knapsack problems that reduces the
complexity of approximating Bayes Point be-
lief propagation messages from exponential
to linear in the number of data features. Em-
pirical tests of our approach show significant
improvement in linear classification over both
soft-margin SVMs and Expectation Propaga-
tion Bayes Point machines for several real-
world UCI datasets.

1. Introduction

The Bayesian approach to classification begins with
the Bayes-optimal classifier. This technique requires
evaluating all possible classifiers and allowing them to
vote on the classifications of novel inputs, weighted
by their performance over the training data and their
prior likelihood. More formally, given training data
Z = {~xi, yi} and novel input vector ~x, the Law of Total
Probability allows us to express the most likely output
class y∗ in terms of the marginal over all possible data
models:

y∗ = argmax
y

P (y|~x, Z) (1)
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= argmax
y

∫
H
P (y|~x, h)P (Z|h)P (h)dh (2)

Here, H is the space of all possible models, or hypothe-
ses, of the data. The advantage of the Bayes-optimal
classifier is that, on average, it outperforms any other
classifier that uses the same hypothesis space H and
prior knowledge (Bishop, 1995). Unfortunately, evalu-
ating all possible classifiers is generally intractable.

Decisions made by the Bayes-optimal classifier may not
correspond to any single hypothesis within H. One
common way to approximate the Bayes-optimal classi-
fier is to locate a single “average” hypothesis whose be-
havior resembles the Bayes-optimal classifier as closely
as possible, and whose expected generalization error
reaches a minima over H. Such classifiers are known
as Bayes Point Machines (Ruján, 1997).

Consider the case where H consists of all linear clas-
sifiers, so that h(~x) = sign(~w · ~x). If needed, the el-
ements of input vectors ~x may be the nonlinear fea-
tures ψ : U → R of some underlying space U , so that
~x = (ψ1(u), · · · , ψD(u)). This allows for nonlinear de-
cision boundaries within the input space U , including
affine bias (ψ0 ≡ 1). Data likelihood P (Z|h) can be
defined based on the error rate of the classifier h:

P (Z|h) ∝ exp(−Ĉ
S∑
i=1

L01(yi ~w · ~x)) (3)

L01(x) = I[x < 1] (4)

where I ∈ {0, 1} is the indicator function, and S is the
number of training samples in Z. Ĉ is a hyperparam-
eter of the model, which describes the degree of noise
present in the training data. The prior P (h) is usually
taken to be gaussian: P (h) = exp(|~w|2/(2σ2)). The
full posterior distribution P (h|Z) can then be given as:

P (~w|Z) ∝
S∏
i=1

e−βCI(yi ~w·~xi≥1)
D∏
d=1

e−βw
2
d/2 (5)

with C and β hyperparameters related to Ĉ and σ.

It has been shown that for linear classifiers, the Bayes-
optimal classifier is closely approximated by the output
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of a the average classifier: ~wopt = EP (~w|Z)[~w] (Herbrich
et al., 2001; Ruján, 1997). Unfortunately, ~wopt still
requires integrating over H, and remains highly chal-
lenging to estimate. Past approaches to finding the
mean of the posterior P (~w|Z) have most commonly
used sampling techniques to sample from the version
space (Ruján, 1997; Herbrich et al., 2001). The ver-
sion space is the set of linear classifiers that correctly
classify every training sample, which is equivalent to
P (~w|Z) as β goes to infinity. This strategy is only
available when the training data is separable and free
of noise, and so attempts have been made to apply
sampling techniques in the non-separable case by ap-
proximating P (~w|Z) as a uniform distribution over an
enlarged polyhedra (Herbrich et al., 2001). However,
this approximation has not been successful in outper-
forming the traditional soft-margin SVM.

Note that support vector machines (SVMs) can also
be viewed as an approximation of the Bayes point.
First, the mean of the posterior is approximated by
its mode, the maximum a posteriori (MAP) estimate.
Secondly, in place of the 0-1 loss function of equation
4, SVM uses a surrogate loss function known as the
hinge loss: LH(x) = max(0, 1− x). Because the hinge
loss is convex, SVMs can be solved using traditional
optimization techniques. This is a powerful advantage
for SVMs, because the MAP can be found both quickly
and exactly. The disadvantage of the hinge loss is that
it is unbounded: the effect of a misclassified point on
the decision boundary grows without bound as the
point is placed farther away. Thus, classifiers using
the hinge loss may be susceptible to outliers. Several
attempts have been made to exploit 0-1 loss (Li & Lin,
2007) or a close approximation (Perez-Cruz et al., 2003)
for SVMs. Unfortunately, the resulting error function
is highly non-convex (Fig. 1a).

Another approach to estimating EP (~w|Z)[~w] is the use
of Gaussian expectation propagation (EP) (Minka,
2001; Opper & Winther, 1999). EP is a message pass-
ing algorithm for statistical inference; a generaliza-
tion of assumed density filtering and belief propaga-
tion. EP requires that the posterior distribution be
approximated by an exponential family distribution.
In general, applying EP to the Bayes Point problem
requires solving a large integral over the hypothesis
space (as in equation 2). When the approximating
distribution is Gaussian, a closed form solution to EP
messages can be derived via integration by parts. Un-
fortunately, the Bayes Point posterior P (~w|Z) is highly
non-convex (as in figure 1a), and its coarse structure of-
ten exhibits non-negligible skew, so that the Gaussian
approximation may not be ideal. While EP methods
outperformed hard-margin SVMs, results against soft-

margin SVMs were mixed (Opper & Winther, 1999).
The Gaussian assumption also inhibits the use of sparse
(non-gaussian) priors over ~w, including the l0 norm or
the l1 norm used by LASSO (Tibshirani, 1994). A sim-
ilar Gaussian approximation is often used by Gaussian
process classifiers (Rasmussen & Williams, 2005).

In this paper, we investigate the benefits of estimat-
ing the Bayes point without approximating the poste-
rior as a Gaussian. Exactly computing ~wopt is an NP-
complete problem, and so we will be forced to use other
approximations. In spite of these approximations, in
section 5, we show that our approach significantly out-
performs both soft-margin SVMs and EP Bayes point
machines in six out of seven real-world UCI datasets.

In order to estimate ~wopt without relying on a Gaus-
sian assumption, we use message passing algorithms
that pass full vector-valued messages at each iteration.
Straightforward application of these message passing
techniques for Bayes point estimation would be in-
tractable, and in fact would require more computa-
tion than a brute force evaluation of the intractable
integrand in equation 2. In section 4, we propose a
new optimization technique based on linear multiple
choice knapsack problems that reduces the computa-
tional cost of each message from exponential to linear
in the number of features D, while simultaneously re-
ducing numerical error.

2. Formulating SVMs as a Factor
Graph

Our goal is to perform probabilistic inference over the
posterior of ~w listed in Eq. 5. Unfortunately, this
distribution is highly non-convex, and may have many
dimensions. Worse yet, it is not smooth; it is non-
differentiable at many points. One way to gain leverage
against such a problem is to exploit the local structure
underlying this probability distribution by expressing
it as a factor graph. A factor graph is a graphical
representation of a probability distribution that has
been written as a product of potential functions φ:

p( ~X) =
∏

φi(~xi) ~xi ⊆ ~X (6)

Specifically, a factor graph is a bipartite graph in which
each potential function φi(~xi) is represented by a factor
node f , which is connected to one variable node v for
each element of the vector ~xi.

One way to express equation 5 as a factor graph is to
represent each dimension of ~w as a separate variable
node. We construct this factor graph to have S factor
nodes, one for each training sample. Each factor is
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Figure 1. The posterior distribution P (~w|Z) is often non-smooth and non-Gaussian. Both MAP and Gaussian approxi-
mations can lead to errors when estimating the Bayes Point.
a) A plot of the P (~w|Z) (Eq. 5) for the simple Gaussian training data shown in subfigure c. Each point in this plot
corresponds to a different decision boundary (described by its angle θ and offset ρ). The margin width |~w| is fixed at the
width that minimizes error. The green dot represents the ground-truth optimal decision boundary for this data. The red
x shows the maximum a posteriori (MAP) estimate over P (~w|Z). The blue line shows the decision boundary chosen by
our knapsack-based algorithm, using values of β ranging from 5 to 50.
b) A plot of the ground-truth test-set performance of each decision boundary, computed using the data’s known distribu-
tion. Here, theoretical P (~w|Z) is Gaussian only because Z is Gaussian; non-Gaussian data leads to non-Gaussian P (~w|Z).
c) Simple toy training data. 50 points each are generated from unit-variance Gaussians centered at (1, 1) and (−1,−1).
Ground-truth optimal (solid) and MAP decision boundaries (dashed) are drawn in.
d) A factor graph for inferring the optimal decision hyperplane given four sample points of two-dimensional data. Variable
node ρ corresponds to affine bias (ψ0≡ 1).
e-g) Three example max-marginals from the Heart and Liver UCI datasets. Often, marginals are sufficiently skewed so
that a Gaussian approximation is not accurate, and the MAP estimate (red x) does not lie near the mean (blue line, β = 1).
In other cases, the marginal is flat or even bimodal near its peak, which may also place the MAP far from the mean.
These examples illustrate the potential advantages of estimating the mean without making a Gaussian approximation.
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connected to each variable node, and has the potential

φi(~w) = exp(−I[yi(~w · ~xi) ≥ 1])Cβ (7)

Each variable node wd also has a single-variate prior
with potential function φd(wd) = exp(w2

d/2)β . An
example factor graph is pictured in Figure 1d.

Because this framework learns the weights ~w directly,
this approach is constrained to use a linear kernel. A
kernelized version can also be constructed, where the
variable nodes are the coefficients αi. The posterior
distribution is then given by:

P (~α|Z) = exp
(
− 1

2

S∑
i=1

S∑
j=1

αiαjyiyj(~xi · ~xj)

− C
S∑
i=1

L01

( S∑
j=1

αjyiyj(~xi ·~xj)
))β

(8)

While the approach we outline here is applicable to
the kernelized version, in this paper we will focus on
the non-kernelized formulation of figure 1d. Note that
using random features often allows low-dimensional lin-
ear classifiers to outperform large-scale kernel machines
(Rahimi & Recht). While kernelizing our approach is
feasible, it may not always be necessary.

3. Convergent Message Passing

Highly factorized distributions such as Eq. 5 are often
optimized using message passing techniques, such as
belief propagation, expectation propagation,or TRW-S.
These methods exploit the factorization of the distri-
bution to achieve efficient inference. As mentioned ear-
lier, Gaussian expectation propagation, which approx-
imates the posterior as a Gaussian, has been applied
to this problem before (Minka, 2001).

In this paper, we explore the application of message
passing algorithms that do not rely on a Gaussian ap-
proximation of the posterior. The primary reason that
such methods have never been applied to the Bayes
point problem is the highly connected nature of the
underlying factor graph. A straightforward applica-
tion of traditional message passing algorithms would
not provide any advantage in computational complex-
ity over a brute-force solution (i.e. the evaluation of all
possible classifiers). In section 4, we introduce a new
computational shortcut that reduces the complexity of
computing such messages from exponential to linear in
the number of features D.

The message passing algorithm we apply in this pa-
per is a convergent variant of belief propagation due
to Heskes (Heskes et al., 2003). Like belief propaga-
tion, Heskes’ algorithm is an algorithm that utilizes the

factorization of a distribution (Eq. 6) to perform proba-
bilistic inference. In its sum-product form, Heskes’ algo-
rithm computes estimates the single-variate marginals
µi(xi) =

∑
X\xi

p(~x) by iteratively computing vector-
valued messages along each edge of the factor graph.
The mean of the distribution can be computed easily
from these marginals. In its max-product form, Heskes’
algorithm estimates the single-variate max-marginals
νi(xi) ∝ maxX\xi

p(~x).

Heskes’ algorithm was developed in response to short-
comings of the original belief propagation algorithm.
The original formulation of belief propagation was lim-
ited in that it was not guaranteed to converge in graphs
containing loops. The theoretical justifications of belief
propagation were later greatly advanced when it was
shown that fixed points of belief propagation were the
minima of the Bethe free energy, a quantity from statis-
tical physics which can be thought of as an approximate
measure of the distance between a multivariate proba-
bility distribution and a set of marginals (Yedidia et al.,
2000). Furthermore, this discovery has lead to a vari-
ety of new methods that minimize Bethe free energy
directly, and are guaranteed to converge (Yuille, 2002),
including Heskes’ algorithm. These variants typically
benefit not only from guaranteed convergence, but also
improved performance.

Like all belief propagation algorithms, Heskes’ algo-
rithm proceeds by iteratively passing vector-valued
messages m along each edge in the factor graph. These
include messages from variable nodes to factor nodes
mt
i→f (xi), and messages from factor nodes to variable

nodes mt
f→i(xi), as given below:

mt
i→f (xi) = mt

i→f (xi)
1−ni

ni

∏
g∈N (i)\f

mt−1
g→i(xi)

1
ni (9)

mt
f→i(xi) =

∫
~xN(f)\i

φ̂f
(
~xN (f)

) ∏
j∈N (f)\i

mt
j→f (xj) d~x

(10)

bti(xi) ∝
∏

g∈N (i)

mt
g→i(xi) (11)

where f and g are factor nodes, i and j are variable
nodes, N (i) is the set of neighbors of node i, and
ni = |N (i)|. Here, bi(xi) is the estimated marginal of
variable i, also known as the beliefs of node i. In Heskes’
variant of belief propagation, φ̃f is initialized to φf .
Equations 9 and 11 are then iterated until convergence
is reached. At this time, φ̃f is updated by multiplying
with bτj (xj)(nj−1)/nj , where bτj is the beliefs of variable
node j at the time of this convergence. Equations 9
and 11 are then iterated to convergence again, and the
process is repeated until the potentials φ̃f converge.
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Convergent max-product belief propagation is achieved
by replacing the integrand of equation 10 with a maxi-
mization:

mt
f→i(xi) = max

~xN(f)\i
(φ̃f
(
~xN (f)

) ∏
j∈N (f)\i

mt
j→f (xj)) (12)

Notice that the beliefs and messages require us to rep-
resent probability distributions over the real-valued
weights wd. Most often, this is achieved by discretizing
the possible values of each wd, and representing beliefs
and messages using histograms. In the experiments
in this paper, we use adaptive histograms where the
discretization is adjusted after each iteration to best
capture the distribution, as done in (Potetz, 2007).

4. Efficient Message Passing for 0-1
Potential Functions Using L-MCKP

The computational bottleneck of belief propagation is
the integral in equation 10; computing messages mt

f→i
takes O(Mnf ) operations, where M is the number of
possible states of each variable node, and nf is the
number of variable nodes neighboring on f . For the
bipartite factor graph in figure 1d, each message mt

f→i
requires O(MD) operations. At each iteration, a mes-
sage must be passed along every edge, making each
iteration of Heskes’ algorithm O(SDMD) for figure 1d.
By contrast, suppose we were performing an exhaustive
search for a linear classifier ~w given S samples of D-
dimensional data, and we discretized the search space
so that each variable wd can take on one of M possi-
ble values. An exhaustive search of this space would
require O(SMD) operations, and computing the single-
variate marginals or max-marginals would in general
take O(SDMD) operations. Thus, for estimating the
Bayes point, a naive implementation of belief propaga-
tion does not provide any computational advantages
over the brute force solution.

In this section, we describe a technique to reduce the
complexity of computing each message from O(MD) to
O(MD), while at the same time increasing accuracy
and numerical stability. Our method works for the
max-product form of Heskes’ algorithm, which means
we are approximating the Bayes point as the mean of
the max-marginal:

wopti =
∑
~w

wiP (~w|Z) ∝∼
∑
wi

wi(max
~w\wi

P (~w|Z)) (13)

Thus, the result of our algorithm is somewhere be-
tween the MAP computed by SVMs and the true Bayes
Point. Like the Bayes point, our estimate approaches
the MAP as β goes to infinity. The argument in favor of

making this approximation is that, when inferring wopti ,
skew over the marginal P (wi|Z) is much more likely to
distort estimates of wi than skew over P (wj |Z). Thus,
for each element i of ~wopt, we treat the final marginal-
ization as the most important, and approximate only
over the earlier marginalizations. In section 5, we show
promising results in comparison with both soft-margin
SVMs and EP Bayes point machines, which suggests
that this approximation may have some advantages
over the Gaussian approximation made by EP or the
MAP used by SVM.

Our approximation has a significant additional ben-
efit: because exponentiation commutes across maxi-
mization, maxP (~w|Z) = (maxP (~w|Z)1/β)β . Thus,
hyperparameter β can be estimated by n-fold cross-
validation without recomputing the max-marginals. In
contrast, a sum-product approach would require reper-
forming message passing for each value of β.

For max-product message passing, the computational
bottleneck is the multidimensional maximization in
equation 12. Let us write mi(wi) and Mi(wi) as short-
hand for logmt

f→i(wi) and logmt
i→f (wj) respectively.

Substituting in our definition of φ (equation 7), we get:

mi(w∗i ) = max(max
~w∈A

∑
j∈N (f)\i

Mj(wj), (14)

− βC + max
~w∈B

∑
j∈N (f)\i

Mj(wj)) (15)

A = {~w |wi = w∗i , ~w · ~xf ≥ 1} (16)
B = {~w |wi = w∗i } (17)

where the vector ~xf is the training point associated
with factor node f . Intuitively, A is the set of weight
vectors ~w that classify ~xf correctly, and whose ith com-
ponent is given by w∗i . The maximization under condi-
tion B can be found trivially in O(DM) time by maxi-
mizing each Mj(wj) independently. The maximization
under condition A can be seen to be equivalent to
a multiple-choice knapsack problem (MCKP). In this
variant of the classic knapsack problem, we are given D
lists of M items, each with a weight wdi and a profit
pdi. We must fill a knapsack by choosing one item
from each list so as to maximize total profit without
exceeding the capacity of the knapsack c:

maximize profit:
D∑
d=1

M∑
k=1

αdkpdk (18)

subject to:
D∑
d=1

M∑
k=1

αdkwdk ≤ c (19)

αdk ∈ {0, 1} and ∀d,
M∑
k=1

αdk = 1 (20)
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The weights and prices are set according to pdk =
Md(wdk) + p̄d and wdk = −xfdwdk + w̄d, where wdk
is the center of the kth histogram bin of variable wd,
and xfd is the dth feature of training point xf . p̄d and
w̄d are constants to ensure that weights and prices
are never negative. Total capacity c is given by c =
xfi w

∗
i − 1 +

∑D
d=1 w̄d.

The multiple choice knapsack problem is often solved
using dynamic programming. One such method resem-
bles a special case of the linear constraint node tech-
nique for efficient belief propagation (Potetz, 2007).
The linear constraint node method would allow us
to compute each message in time O(SD2M2). Un-
fortunately, given the large number of messages that
must be computed, a procedure that is quadratic in
the number of histogram bins M remains prohibitively
slow. Despite our adaptive procedures for placing the
histogram bins of each message, we have found that
M must be set relatively high to accurately represent
messages and achieve good performance. In the experi-
ments of section 5, M is fixed at 128. In the remainder
of this section, we demonstrate a method for comput-
ing messages that is linear with respect to M, thus
improving speed by over 50-fold. At the same time,
our method uses implicit interpolation to reduce the
level of discretization error that is caused by represent-
ing messages mi(wi) and Mi(wi) as histograms.

One tool that is commonly used in solving MCKPs is
to compute an upper bound on the maximum profit
by allowing knapsack items to be divided into pieces.
Specifically, we relax the constraint in equation 20.
This is known as the linear multiple choice knapsack
problem (L-MCKP). It can be shown that an opti-
mal solution to L-MCKP can always be found that
subdivides at most one item (i.e. at most one αdi is
fractional) (Kellerer et al., 2004).

In the special case that each messageMj(wj) is concave
(i.e. pd2−pd1

wd2−wd1
≥ pd1−pd0

wd1−wd0
), solutions to the L-MCKP

give the global maximum of:

max
~w∈A

∑
j∈N (f)\i

M̂j(wj) (21)

where M̂j(wj) is a continuously-valued function given
by the linear interpolation of Mj(wj) (Kellerer et al.,
2004). For our purposes, this approximation is not only
acceptable, but desirable; while the joint distribution
P (~w|Z) is merely piece-wise continuous (as in figure
1a), single-variate max-marginals over that distribu-
tion tend to be quite smooth. Thus, interpolating the
messages Mj(wj) and solving in the continuous domain
is an improvement over solving the discrete problem.

In general, L-MCKP can be solved inO(DM log(DM))

time using a greedy algorithm (Kellerer et al., 2004).
This algorithm first sorts each list by weight, and then
constructs D new lists of M − 1 items, with weights
w′d,i = wd,i − wd,i−1 and profits p′d,i = pd,i − pd,i−1.
These items are then merged into a single list, and
sorted by item efficiency p′d,i/w

′
d,i. We can then scan

this list, iterating until the total weight
∑k′

k=1 w′d,i
reaches capacity c. The sum profit up to this point
(plus the fractional profit of the final item) is equal to
the L-MCKP solution.

The computational bottleneck of this algorithm is sort-
ing the item lists into a single list, which typically re-
quires O(DM log(DM)) operations. Histograms are
always stored sorted by item weight w so for con-
cave messages, each of the D lists is already sorted.
Thus, we only need to merge the sorted lists together,
which reduces the algorithm to O(DM logD). We
also need to recompute the L-MCKP solution for each
value of w∗i . Fortunately, the sorted item list can be
reused for each computation. Thus, when all messages
are concave, we can derive mi(w∗i ) in equation 15 in
O(DM logD) time.

When not all messages are concave, we can still take
advantage of the above computational shortcuts by us-
ing a dynamic programming framework. One dynamic
programming approach to solving the MCKP requires
recursively computing the maximum profit of choosing
one item from the first K lists:

TK(cK) = max
~α

K∑
d=1

M∑
k=1

αdkpdk (22)

subject to:
K∑
d=1

M∑
k=1

αdkwdk ≤ cK (23)

Solving for each TK is equivalent to solving the MCKP
on two item lists: MK and TK−1. If we order the mes-
sages so the first K ′ messages are concave, then TK′

can be solved efficiently (and without first computing
TK′−1) using the techniques above. Finally, we can
utilize the L-MCKP shortcut to more quickly compute
each TK for nonconcave messages as well. Recall that
computing TK requires solving a MCKP of two mes-
sages. It can be shown that there is a solution (ŵ1, ŵ2)
to

(ŵ1, ŵ2) = argmax
w1x

f
1+w2x

f
2<c1

(
M̂1(w1) + M̂2(w2)

)
(24)

such that both ŵ1 and ŵ2 lie within undominated re-
gions of M̂1 and M̂2 (Kellerer et al., 2004). A point t
of M̂1 is dominated if M̂1(t) ≤ M̂1(s) for some s < t.
It can also be shown that ŵ1 and ŵ2 must satisfy one
of two conditions. The first possibility is that M̂1 and
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Table 1. Error rates for linear classification over test sets ± the standard deviation of the mean over 500 test/training splits
for soft-margin (hinge loss) linear SVMs, Expectation Propagation (source code from (Minka, 2001)), and our knapsack
programming approach (Knap). Entries in bold show statistically significant improvement over the other two methods
(p < 0.01). The Size row lists the number of samples S and the number of features D, respectively.

Liver Sonar Heart Contracept. Pima Australian Breast
Size 345; 7 208; 61 270; 14 1473; 10 768; 9 690; 15 683; 11
SVMs 31.93± 0.23 24.18± 0.27 16.05± 0.21 32.10± 0.11 23.02± 0.14 13.56± 0.12 3.26± 0.06
EP 32.60± 0.24 23.21± 0.29 16.25± 0.21 32.49± 0.11 23.15± 0.14 13.32± 0.12 3.24± 0.06
Knap 30.52± 0.22 21.74± 0.29 15.60± 0.21 31.66± 0.11 23.74± 0.14 13.00± 0.12 3.11± 0.06
β=∞ 32.88± 0.25 24.39± 0.28 15.84± 0.21 32.08± 0.11 23.93± 0.15 15.06± 0.13 4.35± 0.08

M̂2 are both concave at ŵ1 and ŵ2, respectively. In
this case, the maxima is equal to the L-MCKP solution
for two item lists consisting of the concave regions of
M̂1 and M̂2. If R is the number of concave regions in
each of the two messages, then we can compute the
L-MCKP solution for all pairs of concave regions of M̂1

and M̂2 in O(R2(M/R)) = O(RM) time. In practice,
we have found that messages Mj(wj) are concave most
of the time, and those that are not concave typically
have a value of R of at most two or three.

The second possibility for (ŵ1, ŵ2) is that (without
loss of generality) M̂1 is nonconcave at ŵ1, while ŵ2

occurs at the edge of an undominated region of M̂2.
Since there are 2R such extrema, we can check all such
possibilities in O(RM) time. Thus, we can find the
solution to equation 24 in O(RM) time. Since fewer
than D intermediate functions TK must be computed,
we can then compute the output message mt

f→i(wi)
in O(RDM) time using dynamic programming and L-
MCKP together. This brings the total computational
complexity of Heskes’ algorithm to O(RSD2M) per it-
eration for the factor graph in figure 1d. Note that the
kernelized factor graph of equation 8 is also eligible for
the computational shortcuts introduced here, bringing
the runtime of the kernelized approach to O(RS3M)
per iteration. By comparison, the complexity of tradi-
tional dual-decomposition SVM algorithms is Ω(S2D)
(Bottou & Lin, 2007; Shalev-Shwartz & Srebro, 2008).

5. Results

Table 1 shows the results of our approach on seven
datasets taken from the UCI machine learning reposi-
tory (Asuncion & Newman, 2007). Our knapsack algo-
rithm obtained a substantial improvement over both
soft-margin SVMs and EP in six of those seven datasets
(in each case, p < 0.001 under both Wilcoxon and
paired Student’s t-tests). Each dataset was randomly
split 500 times into a training set (80% of samples)
and a test set (20% of samples). Each training set was
preprocessed to have unit variance in each dimension
and low bias ρ. For each algorithm, all hyperparam-

eters (C and/or β) were found by performing 5-fold
cross-validation independently on each of the 500 tri-
als. Thus, for each trial, hyperparameter selection is
performed with no foreknowledge of the test set. An
alternative (and common) evaluation procedure is to
choose a single value of the hyperparameters to use for
all 500 trials; under this procedure the performance
advantage of the knapsack method increases.

The results in table 1 were achieved after 50 iterations
of message passing. Empirically we found that results
did not improve significantly after that. As an exam-
ple of running-time, training a classifier for the Liver
dataset took a total of 12 seconds on a 2.8GHz Intel
Xeon processor, and 57 seconds for the larger Contra-
ceptives dataset. Even though belief propagation is
a highly parallelizable algorithm, our implementation
is single-threaded, suggesting that significant speed
boosts are still possible.

Because the our algorithm uses the 0-1 loss function, we
expected high robustness towards outliers. To test this,
we added a single outlier at position (10, 0) to the data
from figure 1c. While SVM error rate increased from
7.87% to 7.94% after adding the outlier, the knapsack
algorithm remained steady at 7.87%.

The final row of table 1 shows the results of our algo-
rithm when β (Eq. 5 and 13) is fixed at infinity instead
of chosen via cross-validation. When β goes to infin-
ity, our approach approximates the MAP under the
0-1 loss function. The difference in performance shows
that not all of the improvement of our algorithm was
due to the 0-1 loss function, and it demonstrates the
benefit of computing the means of max-marginals. In
contrast, if β is fixed at one, performance gains remain
statistically significant over the same six datasets.

6. Discussions and Conclusions

The methods introduced in this paper are well-suited
for a number of extensions to the binary classifier
model. First, because Heskes’ algorithm is a discrete
optimization technique, it can be used to handle dis-



Estimating the Bayes Point Using Linear Knapsack Problems

crete or categorical data very naturally. Secondly, it is
popular to consider non-Gaussian priors over weights
~w as a method of feature selection. For example, the
LASSO method minimizes ~w over the l1 norm (Tib-
shirani, 1994). This is equivalent to using Laplace
distributions as priors over ~w. Because belief propaga-
tion does not rely on the convexity of the posterior, the
methods discussed in this paper are equally compatible
with any prior model: minimizing ~w over the l0 or l1
norm is no more difficult that minimizing over the l2
norm. Thirdly, other machine learning tasks such as
transductive Gaussian process classifiers, boosting, or
training neural networks have similar optimization cri-
teria that are eligible for the approach introduced here.
Finally, Bayesian approaches to classification have sev-
eral additional advantages that were not explored in
this paper. In principle, the hyperparameters C and β
can be inferred via probabilistic inference rather than
optimized using cross-validation (Hernández-Lobato &
Hernández-Lobato, 2008). Confidence intervals can
be computed for classifications. These issues are all
subjects for future research.

We hope that the results of this paper will motivate
further efforts to efficiently estimate the Bayes Point
without Gaussian approximation. We expect that
such approaches will be most beneficial under condi-
tions where the posterior distribution P (~w|Z) is highly
non-Gaussian or non-convex. These circumstances
are likely to arise when the data itself is highly non-
Gaussian (resulting in a posterior with a non-Gaussian
shape), or when there are few available training sam-
ples (resulting in a highly discontinuous posterior). We
expect that advances can be made in predicting, from
the data, the likely amount of benefit to pursuing a
more accurate estimate of the Bayes point classifier.
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