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Abstract

Most studies of online learning measure the
performance of a learner by classification ac-
curacy, which is inappropriate for applica-
tions where the data are unevenly distributed
among different classes. We address this lim-
itation by developing online learning algo-
rithm for maximizing Area Under the ROC
curve (AUC), a metric that is widely used for
measuring the classification performance for
imbalanced data distributions. The key chal-
lenge of online AUC maximization is that it
needs to optimize the pairwise loss between
two instances from different classes. This is in
contrast to the classical setup of online learn-
ing where the overall loss is a sum of losses
over individual training examples. We ad-
dress this challenge by exploiting the reser-
voir sampling technique, and present two al-
gorithms for online AUC maximization with
theoretic performance guarantee. Extensive
experimental studies confirm the effective-
ness and the efficiency of the proposed algo-
rithms for maximizing AUC.

1. Introduction

Online learning has been actively studied in ma-
chine learning community (Cesa-Bianchi & Lugosi,
2006), due to its high efficiency to large datasets.
Despite the extensive investigation, most studies
of online learning measure the performance by ei-
ther mistake rate or prediction accuracy. How-
ever, these metrics are not appropriate for applica-
tions where data are class-imbalanced, as argued and
demonstrated in a number of studies (Elkan, 2001;
Cortes & Mohri, 2003). To address this challenge,
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researchers have proposed more meaningful metrics,
such as the Receiver Operating Characteristics (ROC)
curve (Hanley & McNeil, 1982) and the Area Un-
der the ROC curve (AUC) (Hanley & McNeil, 1982).
The ROC curve details the rate of true positives
against false positives over the range of possible thresh-
old values. AUC is a decision threshold indepen-
dent metric that measures the probability for a ran-
domly drawn positive instance to have a higher de-
cision value than a randomly sampled negative in-
stance. Substantial efforts have been devoted to ex-
ploring the ROC and AUC metrics for batch machine
learning tasks (Bradley, 1997; Rakotomamonjy, 2004;
Herschtal & Raskutti, 2004; Brefeld & Scheffer, 2005).
However, to the best of our knowledge, no algorithm
has been proposed to optimize the AUC metric in an
online learning setting.

In this work, we investigate online learning algorithms
for maximizing the AUC metric, referred to as On-
line AUC Maximization or OAM for short. The
key challenge for online AUC maximization is that
AUC is written as a sum of pairwise losses between
instances from different classes, which is quadratic in
the number of received training examples. In contrast,
most online learning studies assume the overall loss is a
linear combination of losses experienced by individual
training examples. Directly applying classical online
learning algorithms to maximize AUC requires mem-
orizing all the received training examples, making it
unattractive for large-scale applications. In this paper,
we propose to overcome this challenge by exploring the
reservoir sampling technique (Vitter, 1985), which al-
lows us to represent all the received training examples
by buffers of fixed size. We develop online learning
algorithms for OAM based on the idea of reservoir
sampling, and present theoretical analysis that bounds
the difference in AUC between the solution computed
by online learning and the optimal solution learned
at hindsight. Extensive experiments confirm the ef-
fectiveness and the efficiency of the proposed OAM
algorithms.
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The rest of the paper is organized as follows. Section
2 reviews the related work of online learning and ex-
isting works for maximizing AUC. Section 3 presents
the problem of online AUC maximization and the pro-
posed algorithms. Section 4 discusses our empirical
evaluations and Section 5 concludes this work.

2. Related Work

Our work is closely related to the studies of online
learning and machine learning with imbalanced data
or known as cost-sensitive learning.

Online Learning. Many algorithms have been pro-
posed for online learning. The most well-known
method is the Perceptron algorithm (Rosenblatt, 1958;
Freund & Schapire, 1999). Many modern online learn-
ing algorithms (Crammer & Singer, 2003; Gentile,
2001; Crammer et al., 2006) are inspired by the max-
imum margin principle that has been successfully ap-
plied to batch mode learning. Many recent studies ex-
plore the connection between online learning and opti-
mization theory (Dredze et al., 2008; Crammer et al.,
2008). Despite the extensive investigation, most stud-
ies of online learning assume the overall loss is a sum of
losses experienced by individual training examples. In
contrast, we consider an online learning problem where
a loss function is quadratic in the number of train-
ing examples, a significantly more challenging problem
than the conventional setup of online learning.

Cost-sensitive learning. Cost-sensitive learning
has been studied extensively in literature (Elkan, 2001;
Li et al., 2002; Crammer et al., 2006). Several algo-
rithms are developed to train classifiers by maximiz-
ing AUC. Two well-known algorithms are optimiz-
ing the Wilcoxon-Mann-Whitney statistic (Yan et al.,
2003) and RankOpt (Herschtal & Raskutti, 2004) that
adopts a differentiable approximation of AUC as its
objective function. Several studies extend SVM to
optimize the AUC metrics (Rakotomamonjy, 2004;
Brefeld & Scheffer, 2005). In (Joachims, 2005), the
authors present a general framework for optimizing
multivariate nonlinear performance measures, includ-
ing AUC and F1.

Despite the extensive studies in batch cost-sensitive
learning, few work considers cost-sensitive online
learning, except for the study (Crammer et al., 2006).
Although it proposes some simple solution for cost-
sensitive online learning, it does not directly optimize
the AUC metric. To the best of our knowledge, our
work is the first online learning study that aims to
optimize the AUC metric directly.

3. Online AUC Maximization (OAM)

3.1. Problem Definition

We focus on learning a linear classification model for
a binary classification problem with imbalanced data
distributions for the two classes. Without loss of gen-
erality, we assume positive class to be the rare class.
Let us denote by (xt, yt) the training example received
at the t-th trial, where xt ∈ Rd and yt ∈ {−1,+1}, and
by wt ∈ Rn the weight vector learned so far.

We define the AUC measure (Hanley & McNeil, 1982)
for binary classification. Given a dataset D =
{(xi, yi) ∈ Rd × {−1,+1}| i ∈ [T ]}, we divide it
into two sets: the set of positive instances D+ =
{(x+

i ,+1)| i ∈ [T+]} and the set of negative instances
D− = {(x−

j ,−1)| j ∈ [T−]}, where T+ and T− are
the numbers of positive and negative instances, respec-
tively. For a linear classifier w ∈ Rd, its AUC measure
based on the dataset D is defined as follows:

AUC(w) =

∑T+

i=1

∑T−
j=1 I(w·x+

i >w·x−
j )

T+T−

= 1−

∑T+

i=1

∑T−
j=1 I(w·x+

i ≤w·x−
j )

T+T−

where Iπ is the indicator function that outputs 1
if the prediction π holds and 0 otherwise. Thus,
maximizing AUC(w) is equivalent to minimizing∑T+

i=1

∑T−
j=1 I(w·x+

i −w·x−
j ≤0). We replace the indicator

function with its convex surrogate, i.e., the hinge loss
function

ℓ(w,x+
i − x−

j ) = max{0, 1−w · (x+
i − x−

j )},

and find the optimal classifier by minimizing the fol-
lowing objective

1

2
|w|22 + C

T+∑
i=1

T−∑
j=1

ℓ(w,x+
i − x−

j ) (1)

where |w|22/2 is introduced to regularize the complex-
ity of the linear classifier, and C is a positive penalty
parameter of the error term.

3.2. Online Learning Algorithm for AUC
Maximization

Our goal is to develop an online learning algorithm to
efficiently optimize (1). The key challenge arises from
the fact that the overall loss is a sum of losses over
pairwise instances, quadratic in the number of training
examples, making it a significantly more challenging
problem than conventional online learning problems.
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To address this challenge, we rewrite (1) into a sum of
losses for individual instances, i.e.,

1

2
|w|22 + C

T∑
t=1

Lt(w) (2)

where Lt(w) is defined as

Lt(w) = I(yt=+1)h
t
+(w) + I(yt=−1)h

t
−(w) (3)

In the above, ht
±(w) are defined as:

ht
+(w) =

t−1∑
t′=1

I(yt′=−1)ℓ(w,xt − xt′) (4)

ht
−(w) =

t−1∑
t′=1

I(yt′=+1)ℓ(w,xt′ − xt) (5)

Using this representation, we can directly apply
the gradient descent based online learning algo-
rithm (Zinkevich, 2003) and update wt by wt+1 =
wt − C∇Lt(w), where C is the stepsize parameter.
The main problem with this approach is that to com-
pute the gradients ∇Lt(w), we have to store all the
received training examples, making it impractical for
large-scale online learning tasks. We address this chal-
lenge by caching a small number of received training
examples. To this end, we introduce two buffers, B+

and B− of size N+ and N−, for storing the received
positive and negative instances, respectively. For ex-
ample (xt, yt) received at trial t, we first update the
two buffers, and then update the linear classifier wt

by comparing xt to instances in Bt
+ if yt = −1 and to

instances in Bt
− if yt = +1. Algorithm 1 outlines the

overall framework of our approach.

There are two key routines in Algorithm 1, i.e., Up-
dateBuffer and UpdateClassifier. Below we dis-
cuss efficient implementations and the theoretic guar-
antees of those implementations.

3.2.1. Update Buffer

The key challenge for buffer updating is to maintain
an accurate “sketch” of history under the constraint of
fixed buffer size. To this end, we deploy the “reservoir
sampling” technique (Vitter, 1985), which is widely
used in data streaming community. Specifically, given
a received training example (xt, yt), we will add it to
the buffer Bt

yt
if |Bt

yt
| < Nyt . Otherwise, with prob-

ability
Nyt

Nt+1
yt

, we update the buffer Bt
yt

by randomly

replacing one instance in Bt
yt

with xt.

The key property of reservoir sampling is that the
instances in the buffers simulate a uniform sampling

Algorithm 1 A Framework for Online AUC Maxi-
mization (OAM)

Input: the penalty parameter C, the maximum
buffer size N+ and N−
Initialize w1 = 0, B1

+ = B1
− = ∅, N1

+ = N1
− = 0

for t = 1, 2, . . . , T do
Receive a training instance (xt, yt)
if yt = +1 then
N t+1

+ = N t
+ + 1, N t+1

− = N t
−, Bt+1

− = Bt
−,

Ct = Cmax(1, N t
−/N−)

Bt+1
+ = UpdateBuffer(Bt

+,xt, N+, N
t+1
+ )

wt+1 = UpdateClassifier(wt,xt, yt, Ct, B
t+1
− )

else
N t+1

− = N t
− + 1, N t+1

+ = N t
+, Bt+1

+ = Bt
+,

Ct = Cmax(1, N t
+/N+)

Bt+1
− = UpdateBuffer(Bt

−,xt, N−, N
t+1
− )

wt+1 = UpdateClassifier(wt,xt, yt, Ct, B
t+1
+ )

end if
end for

from the original dataset. Algorithm 2 outlines the
key steps of the UpdateBuffer routine. The following
lemma directly follows the property of reservoir sam-
pling. Through the paper, we use E[·] to denote the
expectation over the randomly sampled instances in
buffers.

Lemma 1. For any function f : Rd 7→ R and at any
iteration t, we have

1

|Bt
+|

E

 ∑
x∈Bt

+

f(x)

 =
1

N t
+

t∑
i=1

I(yi=+1)f(xi)

1

|Bt
−|

E

 ∑
x∈Bt

−

f(x)

 =
1

N t
−

t∑
i=1

I(yi=−1)f(xi)

3.2.2. Update Classifier

This routine takes five input arguments: the current
classifier wt, training example (xt, yt), buffer B and
a weight Ct which plays similar role as step size. We
present two strategies for updating the classifier wt.

Sequential Updating The first approach is to treat
{(xt,x),x ∈ B} as a sequence of pairwise instances,
and apply an online learning algorithm to update wt

with respect to the sequence of pairwise instances. Al-
gorithm 3 gives the detailed steps of this approach for
updating classifiers. The following lemma gives the
property of the classifier returned by the sequential
updating approach.
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Algorithm 2 A Reservoir Sampling Approach for
UpdateBuffer

Input
• Bt: the current buffer,
• xt: a training instance,
• N : the buffer size
• Nt+1: the number of instances received till trial
t

Output: updated buffer Bt+1

if |Bt| < N then
Bt+1 = Bt ∪ {xt}

else
Sample Z from a Bernoulli distribution with
Pr(Z = 1) = N/Nt+1

if Z = 1 then
Randomly delete an instance from Bt

Bt+1 = Bt ∪ {xt}
end if

end if
Return Bt+1

Lemma 2. Assume |xi|2 ≤ 1 ∀i, then after running
Algorithm 3, for any w, we have

E [Lt(wt)− Lt(w)]

≤ 1

C
E
[
|w −wt|22 − |w −wt+1|22

]
+ C|B|[N t

−yt
]2

where N t
−yt

stands for the number of training examples
received before trial t that belong to class −yt.

Proof. Sincewi+1 is an optimal solution to (6) and the
objective function in (6) is strongly convex, we have
the following inequality for any w

|w −wi|22 + Ctℓ(w, yt(xt − x)) ≥ |w −wi+1|22
+|wi+1 −wi|22 + Ctℓ(w

i+1, yt(xt − x))

and therefore

Ct

[
ℓ(wi+1, yt(xt − x))− ℓ(w, yt(xt − x))

]
≤

|w −wi|22 − |w −wi+1|22 − |wi+1 −wi|22

Let B =
{
x1
B , . . . ,x

|B|
B

}
. Adding all the inequalities

together, we have

Ct

|B|∑
i=1

ℓ(wi+1, yt(xt − xi
B))− ℓ(w, yt(xt − xi

B))

≤ |w −w1|22 − |w −w|B|+1|22 −
|B|∑
i=1

|wi+1 −wi|22

Using the fact

|ℓ(wi+1, yt(xt − x))− ℓ(w1, yt(xt − x))|

≤ 2|wi+1 −w1|2 ≤ 2

i∑
j=1

|wj+1 −wj |2

we have

Ct

 |B|∑
i=1

ℓ(w1, yt(xt − xi
B))− ℓ(w, yt(xt − xi

B))


≤ |w −w1|22 − |w −wB+1|22

+2

|B|∑
i=1

(
Ct|B||wi+1 −wi|2 − |wi+1 −wi|22

)
≤ |w −w1|22 − |w −wB+1|22 + C2

t |B|3

The last step follows −x2 + 2ax ≤ a2. Define
Dt(−yt) = {xt′ : t

′ ∈ [t− 1], yt′ = −yt}. According
to the theory of Reservoir sampling, each element in
buffer B is a uniform sampling from Dt(−yt). Using
Lemma 1, we have

1

|B|
E

 |B|∑
i=1

ℓ(w1, yt(xt − xi
B))

 =

1

|Dt(−yt)|
∑

x∈Dt(−yt)

ℓ(w1, yt(xt − x))

We complete the proof by using the fact |Dt(−yt)| =
N t

−yt
and the definition of Lt in (3).

The following theorem regarding the regret bound di-
rectly follows Lemma 2.

Theorem 1. After running the Algorithm 1 with (i)
the sequential updating in Algorithm 3 for Update-
Classifier and (ii) the reservoir sampling in Algo-
rithm 2 for UpdateBuffer, for any w, we have

E

[
T∑

t=1

Lt(wt)

]
≤

T∑
t=1

Lt(w)+
|w|22
C

+
C

3

(
N+T

3
+ +N−T

3
−
)

where T+ and T− are the total number of positive
and negative instances received over T trials. For any

|w|2 ≤ D, choosing C =
√
3D/

√
N+T 3

+ +N−T 3
−), we

have

E

[
T∑

t=1

Lt(wt)

]
≤

T∑
t=1

Lt(w) +D
√
3(N+T 3

+ +N−T 3
−)
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Algorithm 3 A Sequential Updating Approach for
UpdateClassifier

Input
• wt: the current classifier,
• (xt, yt): a training example,
• B: the buffer to which (xt, yt) will be compared
• Ct: a parameter that weights the comparison
between (xt, yt) and B

Output: updated classifier wt+1

Initialize w1 = wt and i = 1
for x ∈ B do

Update classifier wi by

wi+1 = argmin
w

|w −wi|22 + Ctℓ(w, yt(xt − x)) (6)

i = i+ 1
end for
Return wt+1 = w|B|+1

Remark. First, since
∑T

t=1 Lt(w) ∼ O(T+T−), it

can be significantly larger than
√

N+T 3
+ +N−T 3

− for

a large T , if D, N+ and N− are assumed to be con-
stant. Second, the result in Theorem 1 may con-
tradict the intuition since the regret bound increases
as the buffer size increases. This is because it only
bounds the expectation. If we construct the high
probability bound, there will be an additional term
O(T+/

√
N+ + T−/

√
N−) due to the variance of the

reservoir sampling. This variance term decreases as
buffer size increases. It is interesting to see that the
optimal buffer size is N+ = O(

√
T+) and N− =

O(
√
T−), which is consistent with our empirical ob-

servation that a larger buffer size does not necessarily
improve the AUC metric.

Finally, to run Algorithm 3 efficiently, the following
proposition gives the closed-form solution to (6).

Proposition 1. For the optimization problem (6), its
closed-form solution is given by wi+1 = wi+τyt[xt−x]
where τ can be computed by:

τ = min

{
Ct

2
,
ℓ(wi, yt(xt − x))

|xt − x|22

}
.

The above proposition is similar to the updating rules
derived in (Crammer et al., 2006).

Gradient Updating The second approach is to
treat Lt(w) as a single loss function and apply the
gradient descent approach to update the solution wt.
This is given in Algorithm 4. The following lemma
gives the property of the classifier returned by the gra-
dient updating approach.

Algorithm 4 A Gradient Updating Approach for
UpdateClassifier

Input
• wt: the current classifier,
• (xt, yt): a training example,
• B: the buffer to which (xt, yt) will be compared
• Ct: a parameter that weights the comparison
between (xt, yt) and B

Output: updated classifier wt+1

Initialize wt+1 = wt

for x ∈ B do
if ytwt · (xt − x) ≤ 1 then
wt+1 = wt+1 + Ctyt(xt − x)/2

end if
end for
Return wt+1

Lemma 3. Assume |xi|2 ≤ 1 ∀i, then after running
Algorithm 4, for any w, we have

E [Lt(wt)− Lt(w)]

≤ 1

C
E
[
|w −wt|22 − |w −wt+1|22

]
+ C|B|[N t

−yt
]2

where N t
−yt

stands for the number of training examples
received before trial t that belong to class −yt.

We skip the proof since it directly follows the prop-
erty of gradient descent methods for online learning
and is very similar to that for Lemma 3. Although
the gradient updating approach gives the same guar-
antee as that of the sequential updating approach, it
simplicity in computation makes it more attractive for
large classification problems. Finally, since the regret
bound of Algorithm 1 using the gradient descent ap-
proach for UpdateClassifier is identical to that using
the sequential updating approach, it is skipped here.

4. Experimental Results

In this section, we evaluate the empirical performance
of the proposed Online AUC Maximization (OAM) al-
gorithms for cost-sensitive online learning tasks.

4.1. Compared Algorithms

We compare the proposed OAM algorithms with the
state-of-the-art online learning algorithms. Since our
study is focused on online learning, for fair comparison,
we do not compare with existing batch AUC studies.
Specifically, the compared algorithms in our experi-
ments include:

• “Perceptron”: the classical perceptron algo-
rithm (Rosenblatt, 1958);
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• “PA”: the Passive-Aggressive algorithm (the PA-I
algorithm) (Crammer et al., 2006);

• “CW-full”: the confidence-based weighted online
learning algorithm (Crammer et al., 2008);

• “CPAPB”: the Prediction-Based Cost-sensitive
Passive-Aggressive algorithm (Crammer et al.,
2006);

• “CPAML”: the Max-Loss Cost-sensitive Passive-
Aggressive algorithm (Crammer et al., 2006);

• “OAMseq”: the proposed OAM algorithm by the
sequential updating approach;

• “OAMgra”: the proposed OAM algorithm by the
gradient descent updating approach;

• “OAMinf”: the proposed OAM algorithm by as-
suming infinite buffer size so that we can ideally
store all the historical examples.

The last OAMinf algorithm is included to examine how
effective is the proposed reservoir sampling approach
used in the OAMseq and OAMgra algorithms.

4.2. Experimental Testbed and Setup
To extensively examine the performance, we conduct
experiments on a variety of benchmark datasets from
web machine learning repositories. Table 1 shows the
details of 12 binary-class datasets used in our experi-
ments. All of these datasets can be downloaded from
LIBSVM website 1 and UCI machine learning reposi-
tory 2. Note that several datasets (segment, satimage,
vowel, letter, poker) are originally multi-class, which
were converted to class-imbalanced binary datasets in
our experiments. These datasets are chosen fairly
randomly in order to cover different properties, e.g.
datasets of various class-imbalance ratios.

For each dataset, we randomly divide it into 5 folds.
We choose 4 folds for training and the remaining one
fold as test set. To reduce the variance in results, for
each dataset, we generate 4 independent 5-fold parti-
tions, leading to a total of 20 runs per dataset. The
reported AUC results are averaged over 20 runs.

To make fair comparisons, all algorithms adopt the
same setup. For the CW-full algorithm, we apply a
5-fold cross-validation to the training set to find the
best η ∈ [0.5 : 0.1 : 1]. For the two CPAPB and
CPAML algorithms, a similar 5-fold cross-validation is
applied with a grid search to find the best parameter
C × ρ(+1;−1) ∈ 2[−10:10] × 2[0:10]. For the proposed
OAM algorithms, we fix N− = N+ = 100 for every
case, and adopt the similar 5-fold cross-validation to
find the best penalty parameter C ∈ 2[−10:10].

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
2http://www.ics.uci.edu/~mlearn/MLRepository.html

Table 1. Details of the datasets in our experiments.
Dataset # instances # dimensions T−/T+

sonar 208 60 1.1443
fourclass 862 2 1.8078
svmguide1 3089 4 1.8365
magic04 19020 10 1.8439
german 1000 24 2.3333
svmguide3 1243 22 3.1993
segment 2310 19 6.0000
ijcnn1 141691 22 9.4453
satimage 4435 36 9.6867
vowel 528 10 10.0000
letter 15000 16 26.8810
poker 25010 10 47.7524

After the best parameters are found, all the experi-
ments were conducted over 20 runs of different ran-
dom permutations for each dataset. All the results
were reported by averaging over these 20 runs. For
performance metric, we evaluate the online learning
algorithms by measuring AUC value on the test set.

4.3. Performance Evaluation

Table 2 summarizes the average AUC performance of
the compared algorithms over the 12 datasets. From
the experimental results, we can draw several observa-
tions as follows.

Table 2. Evaluation of average AUC performance.
Algorithm sonar fourclass svmguide1

Perceptron 0.780 ± 0.060 0.690 ± 0.165 0.883 ± 0.140
PA-I 0.790 ± 0.057 0.668 ± 0.168 0.799 ± 0.219
CW-full 0.793 ± 0.059 0.758 ± 0.032 0.922 ± 0.019
CPAPB 0.798 ± 0.059 0.812 ± 0.020 0.891 ± 0.007
CPAML 0.827 ± 0.052 0.812 ± 0.020 0.885 ± 0.008
OAMseq 0.850 ± 0.042 0.831 ± 0.020 0.988 ± 0.003
OAMgra 0.849 ± 0.043 0.826 ± 0.020 0.988 ± 0.002
OAMinf 0.849 ± 0.043 0.831 ± 0.020 0.989 ± 0.002

Algorithm magic04 german svmguide3

Perceptron 0.723 ± 0.069 0.701 ± 0.039 0.696 ± 0.038
PA-I 0.564 ± 0.111 0.701 ± 0.033 0.707 ± 0.037
CW-full 0.746 ± 0.027 0.757 ± 0.025 0.723 ± 0.036
CPAPB 0.730 ± 0.030 0.698 ± 0.034 0.707 ± 0.038
CPAML 0.734 ± 0.026 0.701 ± 0.033 0.707 ± 0.037
OAMseq 0.778 ± 0.029 0.775 ± 0.037 0.760 ± 0.035
OAMgra 0.765 ± 0.032 0.773 ± 0.033 0.755 ± 0.034
OAMinf 0.784 ± 0.026 0.776 ± 0.034 0.768 ± 0.035

Algorithm segment ijcnn1 satimage

Perceptron 0.852 ± 0.024 0.647 ± 0.088 0.605 ± 0.025
PA-I 0.863 ± 0.021 0.531 ± 0.074 0.646 ± 0.024
CW-full 0.896 ± 0.021 0.829 ± 0.021 0.619 ± 0.024
CPAPB 0.888 ± 0.018 0.908 ± 0.012 0.811 ± 0.022
CPAML 0.886 ± 0.021 0.910 ± 0.011 0.828 ± 0.024
OAMseq 0.956 ± 0.013 0.920 ± 0.017 0.919 ± 0.014
OAMgra 0.955 ± 0.014 0.916 ± 0.018 0.911 ± 0.017
OAMinf 0.956 ± 0.013 0.928 ± 0.015 0.921 ± 0.013

Algorithm vowel letter poker

Perceptron 0.859 ± 0.055 0.551 ± 0.092 0.502 ± 0.031
PA-I 0.863 ± 0.063 0.533 ± 0.104 0.506 ± 0.028
CW-full 0.870 ± 0.063 0.804 ± 0.025 0.457 ± 0.058
CPAPB 0.887 ± 0.049 0.784 ± 0.056 0.508 ± 0.068
CPAML 0.923 ± 0.032 0.802 ± 0.035 0.524 ± 0.067
OAMseq 0.931 ± 0.046 0.820 ± 0.016 0.592 ± 0.060
OAMgra 0.928 ± 0.046 0.817 ± 0.023 0.586 ± 0.062
OAMinf 0.931 ± 0.041 0.828 ± 0.010 0.594 ± 0.067
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First of all, by examining the three regular online
learning algorithms (Perceptron, PA, CW-full), we
found that CW-full achieved the best performance
among them for most cases, while PA yields the worst
performance. We attribute the poor performance of
PA to its aggressive updating strategy that does not
take into account the class-imbalance issue. This result
indicates the importance of developing cost-sensitive
online learning techniques. This is further verified by
the observation that the two cost-sensitive PA algo-
rithms, CPAPB and CPAML, do achieve considerably
better AUC performance than regular PA algorithm
on most of the datasets.

Second, by comparing the proposed OAM algorithms
against the existing online learning algorithms, we
found that the OAM algorithms significantly surpass
all the existing online learning algorithms on most
datasets. For example, on dataset “svmguide3”, the
AUC values for the baseline online learning algorithms
are lower than 70%, while the OAM algorithms are
able to attain 76% for average AUC. These results
showed that the OAM algorithms are significantly
more effective than regular online learning algorithms
for cost-sensitive learning tasks.

Third, by examining the proposed OAM algorithms,
we found that the two OAM algorithms using fixed
buffer sizes (OAMseq and OAMgra) perform compara-
bly on all the datasets. Further, by comparing these
two algorithms against the OAMinf algorithm using
unlimited buffers, we found that the AUC performance
of the OAM algorithms with fixed buffer sizes are in
general fairly comparable to that of the OAMinf al-
gorithm. These encouraging results showed that the
OAM algorithms of fixed buffer sizes are able to main-
tain an accurate sketch of historical training examples
by exploring the reservoir sampling technique.

To further examine the efficacy of the reservoir sam-
pling technique for OAM, in the next subsection, we
conduct additional experiments to examine the effect
of buffer sizes on the two OAM algorithms.

4.4. Evaluation of Varied Buffer Sizes

Figure 1 evaluates the AUC performance of the two
OAM algorithms (OAMseq and OAMgra) with varied
buffer sizes across several different datasets. Several
observations can be drawn from the results.

First of all, we found that when the buffer size is ex-
tremely small (e.g. buffer size equal to 1), the two
OAM algorithms (OAMseq and OAMgra) achieved the
lowest AUC performance on all datasets. This is rea-
sonable as it is almost impossible to maintain a good

sketch of the history using only such small buffer sizes.

Second, we observe that when we slightly increase the
buffer size to a larger value, the AUC performance
of the OAM algorithms can be boosted considerably.
This shows that the reservoir sampling technique is
able to sample good historical examples with limited
buffer size towards online AUC maximization tasks.

Finally, we found that when the buffer size is large
enough, the AUC performances of OAM algorithms
tend to become saturated, where further increasing
the buffer size has very limited improvement. In some
cases, it may lead to the reduction in AUC. This is
consistent with the remark we made before, i.e., the
optimal buffer size is O(

√
T ) and a larger buffer size

does not necessarily lead to a better AUC performance.

5. Conclusion

This paper studied a new type of online learning prob-
lem, i.e., Online AUC Maximization (OAM), which
aims to online learn a model by maximizing the AUC
metric. It is more challenging than conventional on-
line learning tasks where the goal is often to minimize
the mistake rate of online predictions. The key chal-
lenge of OAM is that it requires to minimize the losses
between any pair of two instances belonging to differ-
ent classes, which usually needs to memorize all the
received training instances in the online learning pro-
cess. To address this challenge, we proposed an ef-
fective framework for OAM by applying the reservoir
sampling technique, which is able to maintain a good
sketch of history in fixed-size buffers. We presented
two different OAM algorithms and theoretically ana-
lyzed the bounds of the proposed algorithms. Finally,
our promising results from extensive experiments val-
idate the empirical efficacy of our algorithms.
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