
Pruning Nearest Neighbor Cluster Trees

Samory Kpotufe SAMORY@TUEBINGEN.MPG.DE

Ulrike von Luxburg ULRIKE .LUXBURG@TUEBINGEN.MPG.DE

Max Planck Institute for Intelligent Systems, Tuebingen, Germany

Abstract

Nearest neighbor (k-NN) graphs are widely used
in machine learning and data mining applica-
tions, and our aim is to better understand what
they reveal about the cluster structure of the un-
known underlying distribution of points. More-
over, is it possible to identify spurious structures
that might arise due to sampling variability?

Our first contribution is a statistical analysis that
reveals how certain subgraphs of ak-NN graph
form a consistent estimator of the cluster tree of
the underlying distribution of points. Our sec-
ond and perhaps most important contribution is
the following finite sample guarantee. We care-
fully work out the tradeoff between aggressive
and conservative pruning and are able to guar-
antee the removal of all spurious cluster struc-
tures at all levels of the tree while at the same
time guaranteeing the recovery of salient clus-
ters. This is the first such finite sample result in
the context of clustering.

1. Introduction

In this work, we consider the nearest neighbor (k-NN)
graph where each sample point is linked to its nearest
neighbors. These graphs are widely used in machine learn-
ing and data mining applications, and interestingly there
is still much to understand about their expressiveness. In
particular we would like to better understand what such a
graph on a finite sample of points might reveal about the
cluster structure of the underlying distribution of points.
More importantly we are interested in whether one can
identify spurious structures that are artifacts of sampling
variability, i.e. spurious structures that are not representa-
tive of the true cluster structure of the distribution.

Our first contribution is in exposing more of the richness
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Figure 1.A density f (black line) and its cluster tree (dashed).
The CCs of 3 level sets are shown in lighter color at the bottom.

of k-NN graphs. LetGn be ak-NN graph over ann-
sample from a distributionF with densityf . Previous work
(Maier et al., 2009) has shown that the connected compo-
nents (CC) of a given level set off can be approximated
by the CCs of some subgraph ofGn, provided the level
set satisfies certain boundary conditions. However it re-
mained unclear whether or when all level sets off might
satisfy these conditions, in other words, whether the CCs
of any level set can be recovered. We show under mild as-
sumptions onf that CCs of any level set can be recovered
by subgraphs ofGn for n sufficiently large. Interestingly,
these subgraphs are obtained in a rather simple way: just
remove points from the graph in decreasing order of their
k-NN radius (distance to thek’th nearest neighbor), and we
obtain a nested hierarchy of subgraphs which approximates
the cluster treeof F , i.e. the nested hierarchy formed by
the level sets off (see Figure1, also Section2.1).

Our second, and perhaps more important contribution is
in providing the first concrete approach in the context of
clustering that guarantees the pruning of all spurious clus-
ter structures at any tree level. We carefully work out the
tradeoff between pruning “aggressively” (and potentially
removing important clusters) and pruning “conservatively”
(with the risk of keeping spurious clusters) and derive tun-
ing settings that require no knowledge of the underlying
distribution beyond an upper bound onf . We can thus
guarantee in a finite sample setting that (a) all clusters re-
maining at any level of the pruned tree correspond to CCs
of some level set off , i.e. all spurious clusters are pruned
away, and (b) salient clusters are still discovered, where the
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degree ofsaliencydepends on the sample sizen. We can
show furthermore that the pruned tree remains a consistent
estimator of the underlying cluster tree, i.e. the CCs of any
level set off are recovered for sufficiently largen. In-
terestingly, the pruning procedure is not tied to thek-NN
method, but is based on a simple intuition that can be ap-
plied to other cluster tree methods (see Section3).

Our results rely on a central “connectedness” lemma (Sec-
tion 5.2) that identifies which CCs off remain connected
in the empirical tree. This is done by analizing the way in
whichk-NN radii vary along a path in a dense region.

1.1. Related work

Recovering the cluster tree of the underlying density is
a clean formalism of hierarchical clustering proposed in
1981 by J. A. Hartigan (Hartigan, 1981). Hartigan showed
in the same seminal paper that the single-linkage algorithm
is a consistent estimator of the cluster tree for densities on
R. For R

d, d > 1 it is known that the empirical cluster
tree of a consistent density estimate is a consistent estima-
tor of the underlying cluster tree (see e.g. (Wong & Lane,
1983)), unfortunately there is no known algorithm for com-
puting this empirical tree. Nonetheless, the idea has led to
the development of interesting heuristics based on first es-
timating density, then approximating the cluster tree of the
density estimate in high dimension (Wong & Lane, 1983;
Stueltze & Nugent, 2010).

Many other related work such as (Rigollet & Vert,
2009; Singh et al., 2009; Maier et al., 2009;
Rinaldo & Wasserman, 2010) consider the task of re-
covering the CCs of a single level set, the closest to the
present work being (Maier et al., 2009) which uses ak-NN
graph for level set estimation. As previously discussed,
level set estimation however never led to a consistent
estimator of the cluster tree, since these results typically
impose technical requirements on the level set being recov-
ered but do not work out how or when these requirements
might be satisfied by all level sets of a distribution.

A recent insightful paper ofChaudhuri & Dasgupta(2010)
presents the first provably consistent algorithm for estimat-
ing the cluster tree. At each level of the empirical clus-
ter tree, they retain only those samples whosek-NN radii
are below a scale parameterr which indexes the level;
CCs at this level are then discovered by building anr-
neighborhood graph on the retained samples. This is sim-
ilar to an earlier generalization of single-linkage by D.
Wishart (Wishart, 1969) which however was given with-
out a convergence analysis. Thek-NN tree studied here
differs in that, at an equivalent levelr, points are connected
to the subset of theirk-nearest neighbors retained at that
level. One practical appeal of our method is its simplicity:
we need only remove points from an initialk-NN graph to

obtain the various levels of the empirical cluster tree.

(Chaudhuri & Dasgupta, 2010) provides finite sample re-
sults for a particular setting ofk ≈ log n. In contrast our
finite sample results are given for a wide range of values of
k, namely forlog n . k . n1/O(d). In both cases the finite
sample results establish natural separation conditions un-
der which the CCs of level sets are recovered (see Theorem
1). The result of (Chaudhuri & Dasgupta, 2010) however
allows the possibility that some empirical clusters are just
artifacts of sampling variability. We provide a simple prun-
ing procedure that ensures that clusters discovered empiri-
cally at any level correspond to true clusters at some level
or the underlying cluster tree. Note that this can be triv-
ially guaranteed by returning a single cluster at all levels,
so we additionally guarantee that the algorithm discovers
salient modes of the density, where the saliency depends
on empirical quantities (see Theorem2).

A recent archived paper (Rinaldo et al., 2010) also treats
the problem of false clusters in cluster tree estimation, but
the result is not algorithmic as they only consider the clus-
ter tree of an empirical density estimate, and do not provide
a way to compute this cluster tree.

There exist many pruning heuristics in the literature which
typically consist of removingsmall clusters (Maier et al.,
2009; Stueltze & Nugent, 2010) using some form of thresh-
olding. The difficulty with these approaches is in how to
definesmallwithout making strong assumptions on the un-
known underlying distribution, or on the tree level being
pruned (levels correspond to different resolutions or cluster
sizes). Moreover, even the assumption that spurious clus-
ters must be small does not necessarily hold. Consider for
example a cluster made up of two large regions connected
by a thin bridge of low mass; the two large regions can eas-
ily appear as two separate clusters in a finite sample. Some
more sophisticated methods such as (Stueltze & Nugent,
2009) do not rely on cluster size for pruning, instead they
return confidence values for the empirical clusters based
on various notions of cluster stability; unfortunately they
do not provide finite sample guarantees. Our pruning guar-
antees the removal of all spurious clusters, large and small
(see Figure2); we make no assumption on the shape of
clusters beyond a smoothness assumption on the density;
we provide a simple tuning parameter whose setting re-
quires just an upper bound on the density.

2. Preliminaries

Assume the finite datasetX = {Xi}n
i=1 is drawn i.i.d.

from a distributionF overRd with density functionf .

We start with some simple definitions related tok-NN oper-
ations. All balls, unless otherwise specified, denote closed
balls inR

d.
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Definition 1 (k-NN radii). For x ∈ X , let rk,n(x) denote
the radius of the smallest ball centered atx containingk
points fromX \ {x}. Also, letrk(x) denote the radius of
the smallest ball centered atx of F-massk/n.

Definition 2 (k-NN and mutualk-NN graphs). The k-
NN graph is that whose vertices are the points inX, and
whereXi is connected toXj iff Xi ∈ B(Xj , θrk(Xj))
or Xj ∈ B(Xi, θrk(Xi)) for someθ > 0. The mu-
tual k-NN graph is that whereXi is connected toXj iff
Xi ∈ B(Xj , θrk(Xj)) andXj ∈ B(Xi, θrk(Xi)).

2.1. Cluster tree

Definition 3 (Connectedness). We sayA ⊂ R
d is con-

nected if for everyx, x′ ∈ A there exists a continuous1−1
functionP : [0, 1] 7→ A whereP (0) = x andP (1) = x′.
P is called a path inA betweenx andx′.

The cluster tree off will be denoted{G(λ)}λ>0, where
G(λ) are the CCs of the level set{x : f(x) ≥ λ}. Notice
that{G(λ)}λ>0 forms a (infinite) tree hierarchy where for
any two componentsA,A′, eitherA ∩ A′ = ∅ or one is a
descendant of the other, i.eA ⊂ A′ or A′ ⊂ A.

3. Algorithm

Definition 4 (k-NN density estimate). Define the density
estimate atx ∈ R

d as :

fn(x)
.
=

k

n · vol (B(x, rk,n(x)))
=

k

n · vdrd
k,n(x)

,

wherevd is the volume of the unit ball inRd.

Let Gn be thek-NN or mutualk-NN graph. Forλ > 0
defineGn(λ) as the subgraph ofGn containing only ver-
tices in{Xi : fn(Xi) ≥ λ} and corresponding edges. The
CCs of{Gn(λ)}λ>0 form a tree: letAn andA′

n be two
such CCs, eitherAn ∩ A′

n = ∅ or one is a descendant of
the other, i.e.An is a subgraph ofA′

n or vice versa. To
simplify notation, we let the set{Gn(λ)}λ>0 denote the
empirical cluster tree before pruning.

Pruning

The pruning procedure (Algorithm1) consists of simple
lookups: it reconnects CCs at levelλ if they are part of the
same CC at levelλ − ǫ̃ where the tuning parameterǫ̃ ≥ 0
controls how aggressively we prune. We show its behavior
on a finite sample in Figure2.

The intuition behind the procedure is the following. Sup-
poseAn, A′

n ⊂ X are disconnected at some levelλ in the
empirical tree before pruning. However, they ought to be
connected, i.e. their vertices belong to the same CCA at
the highest level where they are all contained in the under-
lying cluster tree. Then, key sample points fromA that

Figure 2.Pruning at work: it reconnects CCs independent of size.
The dashed lines are reconnection edges from pruning. Shown
are two levels of thek-NN tree of a 500-sample from the 2-modes
mixture0.5N ([0, 0], I2)+0.5N ([1, 4], I2). Herek = 12, θ = 1,
ǫ̃ = F/

√
k whereF = 2.73 is the maximumfn value. From left

to right, levelλ = 0.9 has 72 points, and levelλ = 1.3 has 33.

would have kept them connected are missing at levelλ in
the empirical tree. These key points havefn values lower
thanλ, but probably not much lower. By looking down to
a lower level nearλ we find thatAn, A′

n are connected and
thus detect the situation. Notice that this intuition is not
tied to thek-NN cluster tree but can be applied to any other
cluster tree procedure. All that is required is that all points
from A (as discussed above) be connected at some level in
the tree close toλ.

Algorithm 1 PruneGn(λ)

Given: tuning parameter̃ǫ ≥ 0, same for all levels.
eGn(λ)← Gn(λ).
if λ > ǫ̃ then

Connect componentsAn, A′

n of eGn(λ) if they are part of
the same component ofGn(λ− ǫ̃).

else
Connect alleGn(λ).

end if

It is not hard to see that the CCs of the pruned subgraphs{
G̃n(λ)

}

λ>0
still form a tree. We will hence denote the

pruned empirical tree by
{

G̃n(λ)
}

λ>0
.

4. Results Overview

We make the following assumptions on the densityf .

(A.1) ∃F > 0, supx∈Rd f(x) ≤ F .

(A.2) f is Hoelder-continuous, i.e. there existsL,α > 0
such that for allx, x′ ∈ R

d,

|f(x) − f(x′)| ≤ L ‖x − x′‖α
.

Theorem1 below is a finite sample result that establishes
conditions under which samples from a connected subset
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of R
d remain connected in the empirical cluster tree, and

samples from two disconnected subsets ofR
d remain dis-

connected even after pruning. Essentially, fork sufficiently
large, points from connected subsetsA remain connected
below some level. Also, providedk is not too large, disjoint
subsetsA andA′ which are separated by a large enough
region of low density (relative ton, k and ǫ̃), remain dis-
connected above some level.

We require the following two definitions.

Definition 5 (Envelope ofA ⊂ R
d). Let A ⊂ R

d and for
r > 0, define:A+r

.
= {y : ∃x ∈ A, y ∈ B(x, r)} .

Definition 6 ((ǫ, r)-separated sets ). A,A′ ⊂ R
d are(ǫ, r)-

separated if there exists a separating setS such that every
path inR

d betweenA andA′ intersectsS, and

sup
x∈S+r

f(x) ≤ inf
x∈A∪A′

f(x) − ǫ.

Theorem 1. Supposef satisfies (A.1) and (A.2). LetGn

be thek-NN or mutualk-NN graph. Letδ > 0 and define
ǫk

.
= 11F

√
ln(2n/δ)/k. There existC andC ′ = C ′(F)

such that, for

C
(
max

{
1,
√

2/θ
})d

d ln(n/δ)

≤ k ≤ C ′

(
F

√
ln(n/δ)

)2(α+d)/(3α+d)

n2α/(3α+d) (1)

the following holds with probability at least1 − 3δ simul-
taneously for subsetsA of R

d.

(a) Let A be a connected subset ofR
d, and let λ

.
=

infx∈A f(x) > 2ǫk. All points in A ∩ X belong to
the same CC of̃Gn(λ − 2ǫk).

(b) LetA andA′ be two disjoints subsets ofR
d, and define

λ = infx∈A∪A′ f(x). Recall that̃ǫ ≥ 0 is the tuning
parameter. SupposeA andA′ are (ǫ, r)-separated for

ǫ = 6ǫk + 2ǫ̃ andr = θ
2 (4k/vdnλ)

1/d. ThenA ∩ X

andA′ ∩ X are disconnected iñGn(λ − 2ǫk).

Theorem1 above, although written in terms of̃Gn, applies
also toGn by just settingǫ̃ = 0. The theorem implies
consistency of both pruned and unprunedk-NN trees un-
der mild additional conditions. Some such conditions are
illustrated in the corollary below. A nice practical aspectof
the pruning procedure is that consistency is obtained for a
wide range of settings of̃ǫ andk as functions ofn.

Corollary 1 (Consistency). Suppose thatf satisfies (A.1)
and (A.2) and that, in addition,F is supported on a com-
pact set, and for anyλ > 0, there are finitely many compo-
nents inG(λ). Assume that, asn → ∞, ǫ̃ = ǫ̃(n) → 0 and
k/ log n → 0 whilek = k(n) satisfies (1).

For any A ⊂ R
d, let An denote the smallest component

of
{

G̃n(λ)
}

λ>0
containingA ∩ X. Fix λ > 0. We have

limn→∞ P (∀A,A′ ∈ G(λ), An is disjoint fromA′
n) = 1.

Proof. Let A andA′ be separate components ofG(λ). The
assumptions ensure that all paths betweenA andA′ tra-
verse a compact setS satisfyingλ−maxx∈S f(x)

.
= ǫS >

0 (see Lemma 14 of (Chaudhuri & Dasgupta, 2010)). Let
ǫ = 6ǫk + 2ǫ̃ andr = θ

2 (4k/vdnλ)
1/d. By uniform conti-

nuity of f , there existsN1 such that forn > N1, r is small
enough so thatλ − maxx∈S+r

f(x) > ǫS/2. Also, there
existsN2 > N1 such that forn > N2, ǫ < ǫS/2, in other
wordssupx∈S+r

f(x) ≤ λ − ǫ.

SinceGn(λ) is finite, there existsN such that forn > N ,
all pairsA,A′ have a suitable(ǫ, r)-separating setS. Thus
by Theorem1, for n > N , with probability at least1− 3δ,
∀A,A′ ∈ G(λ), A ∩ X andA′ ∩ X are fully contained in
G̃n(λ− 2ǫk) and are disjoint. They are thus disjoint at any
higher level, soAn andA′

n are also disjoint.

The above holds for allδ > 0, so the statement follows.

While Theorem1 establishes that a connected setA re-
mains connected below some level, it does not guarantee
against parts ofA becoming disconnected at higher levels,
creating spurious clusters. Note that the removal of spuri-
ous clusters can be trivially guaranteed by just letting the
parameter̃ǫ very large, but the ability of the algorithm to
discover true clusters is necessarily affected. We are inter-
ested in how to set̃ǫ in order to guarantee the removal of
spurious clusters while still recovering important ones.

Theorem2 guarantees that, by settingǫ̃ asΩ(ǫk) (recallǫk

from Theorem1), separate CCs of the empirical cluster tree
correspond to actual clusters of the (unknown) underlying
distribution, i.e. all spurious clusters are removed. The set-
ting of ǫ̃ only requires an upper-boundF on the densityf 1.
Note that, under such a setting, consistency is maintained
per Corollary1, and in light of Theorem1 (b), we can ex-
pect that interesting clusters are discovered. In particular
the following salient modes off are discovered.

Definition 7 ((ǫ, r)-salient mode). An (ǫ, r)-salient mode
is a leaf nodeA of the cluster tree{G(λ)}λ>0 which has
an ancestorAk ⊃ A (possiblyA itself) satisfying:

(i) Ak is the ancestor of a single leaf of{G(λ)}λ>0,
namelyA.

(ii) Ak is large: ∃x ∈ Ak, B(x, rk(x)) ⊂ Ak.

1We might just usemaxi∈[n] fn(Xi) in practice, which in
light of Lemma1 can be a good surrogate forF (see Figure3).
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Figure 3.(LEFT). Number of modes (leaves of the empirical tree)
as we increasẽǫ from 0. The trees are built on 500-samples (re-
sults are averaged over ten such 500-samples) from the 5-modes
mixture

P5
i=1 0.2N (2

√
dei, Id), d = 7. Herek = (log n)1.5,

θ = 1, andF is the maximumfn value over the 10 samples. The
mutualk-NN tree being more sparse is rather brittle and requires
more pruning. (RIGHT) We fix̃ǫ = F/4

√
k, k = (log n)1.5, as

we increasen. Results are averaged over 10 n-samples for each
n, andF is again the maxfn value over the 10 samples for each
n. Thek-NN tree quickly asymptotes at 5 modes. The mutual
k-NN being more brittle, we’re underpruning forn > 500, i.e. ǫ̃
is too small; thus for these settings we would require largern to
obtain the correct number of modes.

(iii) Ak is sufficiently separated from other components
at its level: let λ

.
= infx∈Ak

f(x); Ak and
({x : f(x) ≥ λ} \ Ak) are (ǫ, r)-separated.

Notice that, under the assumptions of Corollary1, every
mode off is (ǫ, r)-salient for sufficiently largek and1/ǫ̃.

Theorem 2 (Pruning guarantees). Let δ > 0. Under the
assumptions of Theorem1, the following holds with proba-
bility at least1 − 3δ.

(a) Suppose the tuning parameterǫ̃ ≥ 3ǫk. Consider
two disjoint CCsAn and A′

n at the same level in{
G̃n(λ)

}

λ>0
. Let V be the union of vertices ofAn

andA′
n, and defineλ

.
= infx∈V f(x). The vertices of

An and those ofA′
n are in separate CCs ofG(λ).

(b) Let ǫ = 6ǫk + 2ǫ̃ and r = θ
2 (4k/vdnλ)

1/d. There
exists a1 − 1 map from the set of(ǫ, r)-salient modes

to the leaves of the empirical tree
{

G̃n(λ)
}

λ>0
.

The behavior of both thek-NN and mutualk-NN tree, as
guaranteed in Theorem2, is illustrated in Figure3.

5. Analysis

Theorem1 follows from lemmas3 and6 below. These two
lemmas depend on the events described by lemmas1, 2
and4 which happen with a combined probability of at least
1 − 3δ for a confidence parameterδ > 0.

Theorem2 follows from lemmas5 and7 below. These two
lemmas also depend on the events described by lemmas1,
2 and4 which happen with a combined probability of at
least1 − 3δ.

5.1. Maintaining Separation

In this section we establish conditions under which points
from two disconnected subsets ofR

d remain disconnected
in the empirical tree, even after pruning.

The following is an important lemma which establishes the
estimation error offn relative tof on the sampleX. Al-
though of independent interest, we could not find this sort
of finite sample statement in the literature onk-NN2, at
least not under our assumptions. The proof combines intu-
ition from an asymptotic analysis of (Devroye & Wagner,
1977) with concentration bounds from (Angluin & Valiant,
1979). The proof for this lemma and the next one are given
in (Kpotufe & von Luxburg, 2011).

Lemma 1. Supposef satisfies (A.1) and (A.2). There exists
C = C(F) such that forδ > 0, for ǫ = 11F

√
ln(2n/δ)/k

and

121 ln(2n/δ)

≤ k ≤ C
(
F

√
ln(2n/δ)

)2(α+d)/(3α+d)

n2α/(3α+d),

we have with probability at least1 − δ that
supXi∈X

|fn(Xi) − f(Xi)| ≤ ǫ.

The next lemma boundsrk,n(Xi) in terms ofrk(Xi), and
hence, in terms of the density atXi.

Lemma 2. Supposef satisfies (A.1) and (A.2). Fixλ > 0
and letLλ

.
= {x : f(x) ≥ λ}.

(a) Let r
.
= 1

2 (λ/2L)1/α. We have∀x, x′ ∈ R
d,

‖x − x′‖ ≤ 2r =⇒ |f(x) − f(x′)| ≤ λ/2. If in
addition x ∈ Lλ, it follows thatf(x)/2 ≤ f(x′) ≤
2f(x).

(b) Supposek ≤ 2−(d+3)vd(2L)−d/αλ(d+α)/αn. We have

∀x ∈ Lλ, rk(x) ≤ min

{
2−3/dr,

(
2k

vdnf(x)

)1/d
}

.

For δ > 0, if in addition k ≥ 192 ln(2n/δ), we have
with probability at least1− δ that for all Xi ∈ X∩Lλ

2−3/drk(Xi) ≤ rk,n(Xi) ≤ 23/drk(Xi).

The main separation lemma is next. It says that ifA and
A′ are separated by a sufficiently large low density region,
then they remain separated in the empirical tree.

2There are however many asymptotic analyses ofk-NN meth-
ods such as (Devroye & Wagner, 1977).
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Lemma 3 (Separation). Supposef satisfies (A.1) and
(A.2). LetGn be thek-NN or mutualk-NN graph. De-
fine ǫk

.
= 11F

√
ln(2n/δ)/k, and letδ > 0. There exists

C = C(F) such that, for

192 ln(2n/δ) ≤ k

≤ C
(
F

√
ln(n/δ)

)2(α+d)/(3α+d)

n2α/(3α+d),

the following holds with probability at least1 − 2δ simul-
taneously for any two disjoint subsetsA,A′ of R

d.

Let λ = infx∈A∪A′ f(x). If A andA′ are (ǫ, r)-separated

for ǫ = 6ǫk +2ǫ̃ andr = θ
2 (4k/vdnλ)

1/d, thenA∩X and
A′ ∩X are disconnected inGn(λ− 2ǫk − ǫ̃) and therefore
in G̃n(λ − 2ǫk).

Proof. Applying Lemma1, it’s immediate that, with prob-
ability at least1 − δ, all points of anyA ∪ A′ ∩ X are in
Gn(λ − ǫk) and lower levels, and no point fromS+r ∩ X

is in Gn(λ − 5ǫk − 2ǫ̃) or higher levels. Thus any path
betweenA andA′ in Gn(λ − 2ǫk − ǫ̃) must have an edge
through the centerx ∈ S of a ball B(x, r) ⊂ S+r. This
edge must therefore have length greater than2r. We just
need to show that no such edge exists inGn(λ − 2ǫk − ǫ̃).

Let V be the set of points (vertices) inGn(λ−2ǫk − ǫ̃). By
Lemma1, minXi∈V f(Xi) ≥ λ−3ǫk−ǫ̃. Given the density
assumption onS, λ ≥ 6ǫk + 2ǫ̃ sominXi∈V f(Xi) ≥ λ/2
andV ⊂ Lǫk

. Now, given the range ofk, Lemma2 holds
for the level setLǫk

. It follows that with probability at least
1−δ (uniform over any such choice ofA,A′ since the event
is a function ofLǫk

),

max
Xi∈V

rk,n(Xi) ≤ 23/d max
Xi∈V

rk(Xi) ≤
2r

θ
.

Thus, edge lengths inGn(λ− 2ǫk − ǫ̃) are at most2r.

5.1.1. IDENTIFYING MODES

As a corollary to Lemma3, we can guarantee in Lemma
5 that certain salient modes are recovered by the empirical
cluster tree. For this to happen, we require in Definition
7 (ii) that an(ǫ, r)-salient modeA is contained in a suffi-
ciently large setAk so that we sample points near the mode.

We start with the following VC lemma establishing condi-
tions under which subsets ofR

d contain samples fromX.

Lemma 4 (Lemma 5.1 of (Bousquet et al., 2004)). Sup-
poseC is a class of subsets ofR

d. LetSC(2n) denote the
2n-shatter coefficient ofC. Let Fn denote the empirical
distribution overn samples drawn i.i.d fromF . For δ > 0,
with probability at least1 − δ,

sup
A∈C

F(A) −Fn(A)√
F(A)

≤ 2

√
logSC(2n) + log 4/δ

n
.

Lemma 5 (Modes). Supposef satisfies (A.1) and (A.2).
Let Gn be thek-NN or mutualk-NN graph. Letδ > 0.
There existC andC ′ = C ′(F) such that, for

Cd ln(n/δ)

≤ k ≤ C ′

(
F

√
ln(n/δ)

)2(α+d)/(3α+d)

n2α/(3α+d)

the following holds with probability at least1 − 3δ. Let
ǫ = 6ǫk + 2ǫ̃ and r = θ

2 (4k/vdnλ)
1/d. There exists a

1− 1 map from the set of(ǫ, r)-salient modes to the leaves

of the empirical tree
{

G̃n(λ)
}

λ>0
.

Proof. First, with probability at least1 − δ, for any(ǫ, r)-
salient modeA, there are samples inX from the containing
setAk (as defined in Definition7). To arrive at this we ap-
ply Lemma4 for the classC of all possible ballsB ∈ R

d,
(for this classSC(2n) ≤ (2n)d+1). We have with probabil-
ity at least1 − δ that for allB, Fn(B) > 0 whenever

F(B) ≥ Cd ln(n/δ)

n
> 4

(d + 1) log(2n) + log(4/δ)

n
,

where C is appropriately chosen to satisfy the last in-
equality. Now, from the definition ofAk, there ex-
ists x such thatB(x, rk(x)) ⊂ Ak, while we have
F(B(x, rk(x))) = k/n ≥ Cd ln(n/δ)/n, implying that
Fn(Ak) ≥ Fn(B(x, rk(x))) ≥ 1/n.

As a consequence of the above argument, there is a finite
numberm of (ǫ, r)-salient modes since each contributes
some points to the final sampleX. We can therefore ar-
range them as

{
Ai

}m

i=1
so that fori < j, we haveλi ≤ λj

whereλi = infx∈Ai

k

f(x). An injective map can now be
constructed iteratively as follows.

Starting with i = 1, we have by Lemma3 that, with
probability at least1 − 2δ, Ai

k ∩ X is disconnected in
G̃n(λi − 2ǫk) from all Aj

k, j > i. Let U be the union of
those CCs of̃Gn(λi−2ǫk) containing points fromAi

k∩X.
We’ve already established thatU contains no point from
anyAj

k, j > i. For i > 1, U also contains no point from
anyAj

k, j < i. This is because, again by Lemma3, Aj
k ∩X

is disconnected iñGn(λj − 2ǫk) from Ai
k ∩ X, therefore

disconnected fromU since all CCs inU remain connected
at lower levels. Now, sinceU is disconnected from all
Aj

k, j 6= i, we can just mapAi to any leaf rooted inU ,
Ai being the unique image of such a leaf.

5.2. Maintaining Connectedness

In this section we show that sample points from a connected
subsetA of R

d remain connected in the empirical cluster
tree before pruning (therefore also after pruning).

Similar to (Chaudhuri & Dasgupta, 2010), for any two
points x, x′ ∈ A ∩ X we uncover a path inGn near
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a pathP in A that connects the two. The path inGn

(the dashed path depicted below) consists of a sequence
x1 = x, x2, . . . , xi = x′ of sample points from balls cen-
tered on the pathP in A (the solid path depicted below).
The intuition is thatP is a high density route near which
we can find enough sample points to connectx andx′.

x

x
′

The balls centered onP must be chosen sufficiently small
and consecutively close so that consecutive termsxi, xi+1

are adjacent inGn. In (Chaudhuri & Dasgupta, 2010),
points are adjacent (at any particular level) whenever they
are less than some scaler apart; one can therefore choose
balls of the same radiuso(r) and consecutivelyo(r) close.
In our particular case, no single scale determines adjacency.
Adjacency is determined by the various nearest-neighbor
radii and this creates a multiscale effect that complicates
the analysis. One way to handle (and effectively get rid of)
this multiscale effect is to choose balls onP of the same
radius r corresponding to the smallest possible nearest-
neighbor radius inGn (restricted toA∩X). However, in or-
der to get samples in such small balls one would need rather
large sample sizen, so the idea results in weak bounds.
We instead use an inductive argument which keeps track of
the various scales, the intuition being that nearest-neighbor-
radii have to change slowly along the pathP from x to x′.

Lemma 6 (Connectedness). Supposef satisfies (A.1) and
(A.2). LetGn be thek-NN or mutualk-NN graph. Define
ǫk

.
= 11F

√
ln(2n/δ)/k and letδ > 0. There existC and

C ′ = C ′(F) such that, for

C
(
max

{
1,
√

2/θ
})d

d ln(n/δ)

≤ k ≤ C ′

(
F

√
ln(n/δ)

)2(α+d)/(3α+d)

n2α/(3α+d),

the following holds with probability at least1 − 3δ simul-
taneously for all connected subsetsA of R

d.

Letλ
.
= infx∈A f(x) > 2ǫk. All points inA∩X belong to

the same CC ofGn(λ − 2ǫk), therefore ofG̃n(λ − 2ǫk).

Proof. First, letC andC ′ be large enough for lemmas1
and2 to hold. Definer

.
= 1

2 (ǫk/2L)
1/α. By Lemma2 (a),

we have thatf(x) ≥ λ − ǫk/2 for anyx ∈ A+r. Applying
Lemma1, it follows that with probability at least1 − δ
(uniform over choices ofA), all points ofA+r ∩ X are in
Gn(λ − 2ǫk). We will show thatA ∩ X is connected in
Gn(λ − 2ǫk) possibly through points inA+r \ A.

In particular, anyx, x′ ∈ A ∩ X are connected through a
sequence{xi}i>1 , xi ∈ A+r ∩ X built according to the

following procedure. LetP be a path inA betweenx and
x′. Defineτ

.
= min

{
1, θ/

√
2
}

.

Starting ati = 1 (x1 = x), set xi+1 = x′

if ‖xi − x′‖ ≤ θ min {rk,n(xi), rk,n(x′)}, and
we’re done, otherwise:
Let yi be the point inP∩B

(
xi, τ2−9/drk,n(xi)

)

farthest along the pathP from x, i.e. P−1(yi) is
highest in the set. Define the half-ball

H(yi)
.
= {z : ‖z − y‖ < τ2−18/drk,n(xi),

(z − yi) · (xi − yi) ≥ 0}.

Pickxi+1 in H(yi) ∩ X, and continue.

The rest of the argument will proceed inductively as fol-
lows. First, assume thatxi ∈ A+r and thatyi exists. This
is necessarily the case forx1, y1. Assumexi+1 6= x′. We
will show thatxi+1 exists, is also inA+r, and is adjacent to
xi in Gn. It will follow that yi+1 must exist (if the process
does not end) and is distinct fromy1, . . . , yi. We’ll then
argue that the process must also end.

To see thatxi+1 exists (under the aforementioned assump-
tions), we apply Lemma4 for the classC of all possi-
ble half-ballsH(y) centered aty ∈ R

d (for this class
SC(2n) ≤ (2n)2d+1). We have with probability at least
1 − δ that for allH(y), Fn(H(y)) > 0 whenever

F(H(y)) ≥ C0d ln(n
δ )

n
>

(8d + 4) log(2n) + 4 log(4
δ )

n
,

whereC0 is appropriately chosen to satisfy the last inequal-
ity. We next showF(H(yi)) satisfies the first inequality.

We first apply Lemma2 on Lǫk
⊃ A+r (this inclusion

was established earlier). We have with probability at least
1 − δ (uniform over allA) that forxi ∈ A+r, rk,n(xi) ≤
23/drk(xi) ≤ r. Thus, for allz ∈ H(yi),

‖z − xi‖ ≤ 2 · τ2−9/drk,n(xi)

≤ 2 · τ2−9/dr ≤ 2r, (2)

implying by the same Lemma2 thatf(z) ≥ f(xi)/2. Now,
from Lemma1, fn(xi) ≤ f(xi) + ǫk ≤ 2f(xi). We can
thus write

F(H(yi)) ≥
1

4
vol

(
B(yi, τ2−18/drk,n(xi))

)
f(xi)

= τd2−20 vol (B(xi, rk,n(xi))) f(xi)

≥ τd2−21 vol (B(xi, rk,n(xi))) fn(xi)

= τd2−21 k

n
≥ C0d ln(n/δ)

n
, for C ≥ 221C0.

Therefore there is a pointxi+1 in H(yi) ∩ X. In addition
xi+1 ∈ A+r since it is withinr of yi ∈ A.
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Next we establish that there is an edge betweenxi andxi+1

in Gn. To this end we relaterk,n(xi+1) to rk,n(xi) by first
relatingrk(xi+1) to rk(xi). Remember that forz ∈ A+r

we haverk(z) < r so that for anyz′ ∈ B(z, rk(z))
we havef(z)/2 ≤ f(z′) ≤ 2f(z). Also recall that
we always have‖xi − xi+1‖ ≤ 2r (see (2)), implying
f(xi+1) < 2f(xi). We then have

vdr
d
k(xi) ·

1

2
f(xi) ≤

k

n
≤ vdr

d
k(xi+1) · 2f(xi+1)

≤ vdr
d
k(xi+1) · 4f(xi),

where for the first two inequalities we used the fact that
both ballsB(xi, rk(xi)) andB(xi+1, rk(xi+1)) have the
same massk/n. It follows that

rk,n(xi+1) ≥ 2−3/drk(xi+1) ≥ 2−6/drk(xi)

≥ 2−9/drk,n(xi), (3)

implying 2−9/drk,n(xi) ≤ min {rk,n(xi), rk,n(xi+1)}.
We then get

‖xi − xi+1‖2
= ‖xi − yi‖2

+ ‖xi+1 − yi‖2

− (xi − yi) · (xi+1 − yi)

≤ ‖xi − yi‖2
+ ‖xi+1 − yi‖2

≤ 2τ2 · min
{
r2
k,n(xi), r

2
k,n(xi+1)

}

≤ θ2 min
{
r2
k,n(xi), r

2
k,n(xi+1)

}
,

meaningxi andxi+1 are adjacent inGn.

Finally we argue thatyi+1 must exist. By (3) above we
have

‖xi+1 − yi‖ < τ2−18/drk,n(xi) ≤ τ2−9/drk,n(xi+1),

in other words the ballB
(
xi+1, τ2−9/drk,n(xi+1)

)
con-

tainsyi ∈ P in its interior. It follows by continuity ofP
that there is a pointyi+1 in this ball further along the path
from xi than yi. Thus, recursively allyi’s must be dis-
tinct, implying that allxi’s must be distinct. Since allxi’s
belong to the finite sampleX the process must eventually
terminate.

5.2.1. PRUNING OF SPURIOUSBRANCHES

As a corollary to Lemma6 we can guarantee in Lemma7
that the pruning procedure will remove all spurious branch-
ings, and hence, all spurious clusters.

Lemma 7 (Pruning). Let δ > 0. Under the assumptions
of Lemma6, the following holds with probability at least
1 − 3δ, providedǫ̃ ≥ 3ǫk.

Consider two disjoint CCsAn andA′
n at the same level in{

G̃n(λ)
}

λ>0
. Let V be the union of vertices ofAn and

A′
n, and defineλ

.
= infx∈V f(x). The vertices ofAn and

those ofA′
n are in separate CCs ofG(λ).

Proof. Let λn = minx∈V fn(x) be the level in the
empirical tree containingAn, A′

n. By Lemma 1,
supx∈X

|fn(x) − f(x)| ≤ ǫk so λn ≤ λ + ǫk. Thus,
we must haveλ > 2ǫk, since otherwiseλn ≤ ǫ̃ implying
G̃n(λn) must have a single connected component.

Now suppose points inV were in the same componentA of
G(λ). By Lemma6, all of A ∩ X is connected inGn(λ −
2ǫk) and at lower levels. By the last argumentλn− ǫ̃ ≤ λ−
2ǫk so the pruning procedure reconnectsAn andA′

n.
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