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Abstract

Nearest neighboktNN) graphs are widely used
in machine learning and data mining applica-
tions, and our aim is to better understand what
they reveal about the cluster structure of the un-
known underlying distribution of points. More-
over, is it possible to identify spurious structures
that might arise due to sampling variability?

Ouir first contribution is a statistical analysis that
reveals how certain subgraphs ofa\N graph
form a consistent estimator of the cluster tree of
the underlying distribution of points. Our sec-
ond and perhaps most important contribution is
the following finite sample guarantee. We care-
fully work out the tradeoff between aggressive
and conservative pruning and are able to guar-
antee the removal of all spurious cluster struc-
tures at all levels of the tree while at the same
time guaranteeing the recovery of salient clus-
ters. This is the first such finite sample result in
the context of clustering.

Figure 1.A density f (black line) and its cluster tree (dashed).
The CCs of 3 level sets are shown in lighter color at the bottom.

of k-NN graphs. LetG,, be ak-NN graph over am-
sample from a distributioff with densityf. Previous work
(Maier et al, 2009 has shown that the connected compo-
nents (CC) of a given level set gf can be approximated
by the CCs of some subgraph 6f,, provided the level
set satisfies certain boundary conditions. However it re-
mained unclear whether or when all level setsfahight
satisfy these conditions, in other words, whether the CCs
of any level set can be recovered. We show under mild as-
sumptions oryf that CCs of any level set can be recovered
by subgraphs of7,, for n sufficiently large. Interestingly,
11 ducti these subgraphs are obtained in a rather simple way: just
- Introduction remove points from the graph in decreasing order of their
In this work, we consider the nearest neighbbsNN)  %-NN radius (distance to theth nearest neighbor), and we
graph where each sample point is linked to its nearespbtain a nested hierarchy of subgraphs which approximates
neighbors. These graphs are widely used in machine learibe cluster treeof 7, i.e. the nested hierarchy formed by
ing and data mining applications, and interestingly therethe level sets of (see Figurel, also Sectior2.1).

is still much to understand about their expressiveness. gy, second, and perhaps more important contribution is
particular we would like to better understand what such gy providing the first concrete approach in the context of
graph on a finite sample of points might reveal about the;|ystering that guarantees the pruning of all spurious-clus
cluster structure of the underlying distribution of points ter stryctures at any tree level. We carefully work out the
More importantly we are interested in whether one canyadeoff between pruning “aggressively” (and potentially
identify spurious structures that are artifacts of sanlin emoving important clusters) and pruning “conservatively
variability, i.e. spurious structures that are not repnése  (wth the risk of keeping spurious clusters) and derive tun-
tive of the true cluster structure of the distribution. ing settings that require no knowledge of the underlying
Our first contribution is in exposing more of the richnessdistribution beyond an upper bound ¢ We can thus
guarantee in a finite sample setting that (a) all clusters re-
Appearing inProceedings of the&28*" International Conference maining at any level of the pruned tree correspond to CCs
on Machine LearningBellevue, WA, USA, 2011. Copyright 2011 of some level set of, i.e. all spurious clusters are pruned
by the author(s)/lowner(s). away, and (b) salient clusters are still discovered, wheze t
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degree ofsaliencydepends on the sample size We can  obtain the various levels of the empirical cluster tree.
show furthermore that the pruned tree remains a consiste
estimator of the underlying cluster tree, i.e. the CCs of an

level set of f are recovered for sufficiently large. In- . . :
terestingly, the pruning procedure is not tied to thaiN finite sample results are given for a wide range of values of
’ k, namely forlogn < k < n'/©(@_ In both cases the finite

method, but is based on a simple intuition that can be @Psample results establish natural separation conditions un
plied to other cluster tree methods (see Secspn P P

der which the CCs of level sets are recovered (see Theorem
Our results rely on a central “connectedness” lemma (Sect). The result of Chaudhuri & Dasgupta2010 however

tion 5.2) that identifies which CCs of remain connected allows the possibility that some empirical clusters aré jus
in the empirical tree. This is done by analizing the way inartifacts of sampling variability. We provide a simple prun

&haudhuri & Dasgupta2010 provides finite sample re-
sults for a particular setting df ~ logn. In contrast our

which £-NN radii vary along a path in a dense region. ing procedure that ensures that clusters discovered empiri
cally at any level correspond to true clusters at some level
1.1. Related work or the underlying cluster tree. Note that this can be triv-

. , . ially guaranteed by returning a single cluster at all levels
Recovering the cluster tree of the underlying density IS, \ye additionally guarantee that the algorithm discovers

a clean formalism of hierarchical clustering proposed inggjient modes of the density, where the saliency depends
1981 by J. A. HartiganHartigan 1981). Hartigan showed empirical quantities (see Theor@n
in the same seminal paper that the single-linkage algorithm

is a consistent estimator of the cluster tree for densities oA recent archived papeiR(naldo et al. 2010 also treats

R. ForR?% d > 1 itis known that the empirical cluster the problem of false clusters in cluster tree estimation, bu

tree of a consistent density estimate is a consistent estim&e result is not algorithmic as they only consider the clus-
tor of the underlying cluster tree (see e.§Vong & Lane  ter tree of an empirical density estimate, and do not provide
1983), unfortunately there is no known algorithm for com- @ way to compute this cluster tree.

puting this empirical tree. Nonetheless, the idea has led t§pere exist many pruning heuristics in the literature which
the development of interesting heuristics based on first €Sypically consist of removingmall clusters Kaier et al,

timat?ng density, t.hen' apprloxima_ting the cluster tree ef th 2009 Stueltze & Nugent2010 using some form of thresh-
density estimate in high dimensioW/ong & Lane 1983 ging. The difficulty with these approaches is in how to

Stueltze & Nugent2010). definesmallwithout making strong assumptions on the un-
Many other related work such asRifollet & Vert, known underlying distribution, or on the tree level being
2009 Singhetal. 2009 Maier etal, 2009 pruned (levels correspond to different resolutions ortelus
Rinaldo & Wasserman2010 consider the task of re- Sizes). Moreover, even the assumption that spurious clus-
covering the CCs of a single level set, the closest to théers must be small does not necessarily hold. Consider for
present work being\aier et al, 2009 which uses &-NN example a cluster made up of two large regions connected
graph for level set estimation. As previously discussedby a thin bridge of low mass; the two large regions can eas-
level set estimation however never led to a consistenly appear as two separate clusters in a finite sample. Some
estimator of the cluster tree, since these results typicall more sophisticated methods such &sugltze & Nugent
impose technical requirements on the level set being recor2009 do not rely on cluster size for pruning, instead they
ered but do not work out how or when these requirementgeturn confidence values for the empirical clusters based

might be satisfied by all level sets of a distribution. on various notions of cluster stability; unfortunatelyythe
o . do not provide finite sample guarantees. Our pruning guar-
A recent insightful paper d€haudhuri & Dasgupté2010  gntees the removal of all spurious clusters, large and small

presents the first provably consistent algorithm for estima (see Figure2): we make no assumption on the shape of

ing the cluster tree. At each level of the empirical clus-,sters beyond a smoothness assumption on the density:

ter tree, they retain only those samples whbseN radii ~we provide a simple tuning parameter whose setting re-
are below a scale parameterwhich indexes the level, quires just an upper bound on the density.

CCs at this level are then discovered by building ran
neighborhood graph on the retained samples. This is sim- . )
ilar to an earlier generalization of single-linkage by D. 2. Preliminaries

Wishart (ishart 1969 which however was given with-  Acsume the finite datasé — (X}, is drawn i.i.d.

out a convergence analysis. TheNN tree studied here ¢, o distributionF overR¢ with density functionf.
differs in that, at an equivalent level points are connected

to the subset of theik-nearest neighbors retained at that Ve start with some simple definitions related:t&IN oper-
level. One practical appeal of our method is its simplicity: ations. All balls, unless otherwise specified, denote close
we need only remove points from an initiaNN graph to ~ balls inR?.
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Definition 1 (k-NN radii). For x € X, letry, ,(z) denote ﬁ R
the radius of the smallest ball centeredaatontainingk

points fromX \ {z}. Also, letr,(x) denote the radius of
the smallest ball centered atof 7-massk /n.

Definition 2 (k-NN and mutualk-NN graphs) The k-
NN graph is that whose vertices are the pointsXinand
where X; is connected taX; iff X; € B(X;,0ri(X,))
or X, € B(X;,0ri(X;)) for somefd > 0. The mu-
tual £-NN graph is that whereX; is connected toX; iff
X, € B(Xj,ng(Xj)) ande € B(XZ,QT]C(XZ))

Figure 2.Pruning at work: it reconnects CCs independent of size.
2.1. Cluster tree The dashed lines are reconnection edges from pruning. Shown

. q are two levels of thé&-NN tree of a 500-sample from the 2-modes
Definition 3 (Connectedness)We sayA C R“ is con- mixture0.5A/([0, 0], I2) + 0.5\ ([1, 4], I). Herek = 12,0 = 1,

nected if for every, 2’ € Athere exists acontinuous-1  z — p/\/% whereF = 2.73 is the maximumy, value. From left
functionP : [0,1] — A whereP(0) = z and P(1) = ', to right, level\ = 0.9 has 72 points, and level = 1.3 has 33.
P is called a path inA betweenr andz’.

The cluster tree off will be denoted{G()\)},.,, where  would have kept them connected are missing at leviel
G()) are the CCs of the level sét: : f(x) > A\}. Notice  the empirical tree. These key points haglevalues lower
that{G()\)}, ., forms a (infinite) tree hierarchy where for thanJ, but probably not much lower. By looking down to
any two componentsl, A’, eitherAN A’ = () oroneisa alower level neai we find that4,,, A/, are connected and

descendant of the other, ieC A’ or A’ C A. thus detect the situation. Notice that this intuition is not
tied to thek-NN cluster tree but can be applied to any other
3. Algorithm cluster tree procedure. All that is required is that all p®in

from A (as discussed above) be connected at some level in
Definition 4 (k-NN density estimate)Define the density the tree close to.
estimate at € R? as :

Fulz) = k _ k Algorithm 1 PruneG,,(\)
" nevol (B(m, e (2) nvgrd (@) Given: tuning parameter> 0, same for all levels.
; . g Gn(N) — Gn(N).
whereu, is the volume of the unit ball iR“. if A\ > ¢then N
Connect componentd,,, A;, of G,,()\) if they are part of
Let G, be thek-NN or mutual k-NN graph. ForA > 0 the same component 6f,, (A — g),
defineG,,(\) as the subgraph af,, containing only ver- else

tices in{X; : f,(X;) > A} and corresponding edges. The ~ ConnectallGi(}).

CCs of {G ()}, form a tree: let4,, and A/, be two end if

such CCs, eithed,, N A/, = () or one is a descendant of

the other, i.e. 4,, is a subgraph ofd, or vice versa. To Itis not hard to see that the CCs of the pruned subgraphs

simplify notation, we let the setG,,(\)},., denote the {@,,(A)} still form a tree. We will hence denote the
empirical cluster tree before pruning. A>0

pruned empirical tree b\{én(/\)}A .
>0
Pruning

The pruning procedure (Algorithrit) consists of simple 4. Results Overview
lookups: it reconnects CCs at levelf they are part of the
same CC at level — € where the tuning parametér> 0
controls how aggressively we prune. We show its behaviPA_l) 3F > 0, sup, cpa f(z) < F.
on a finite sample in Figur2. 1 SUPgeR i

We make the following assumptions on the dengity

S . . . (A.2) f is Hoelder-continuous, i.e. there exidtsa > 0
The intuition behind the procedure is the following. Sup- such that for alls, o’ € R,

poseA,, A/, C X are disconnected at some levein the
empirical tree before pruning. However, they ought to be |f(z) — f(a)| < Lz —2/||".

connected, i.e. their vertices belong to the same A&t

the highest level where they are all contained in the underTheorem1 below is a finite sample result that establishes
lying cluster tree. Then, key sample points frofnthat  conditions under which samples from a connected subset
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of R¢ remain connected in the empirical cluster tree, andFor any A C R?, let A,, denote the smallest component

samples from two disconnected subset®6fremain dis-
connected even after pruning. Essentially,aufficiently

large, points from connected subsetsemain connected

below some level. Also, providédis not too large, disjoint

subsetsA and A’ which are separated by a large enough

region of low density (relative ta, £ andé), remain dis-
connected above some level.

We require the following two definitions.

Definition 5 (Envelope ofA ¢ R9). Let A ¢ R? and for
r>0,define:A;, ={y:3zx € A,y € B(x,r)}.
Definition 6 ((¢, )-separated sets ¥, A’ € R? are (e, r)-
separated if there exists a separating Setuch that every
path inR? between4 and A’ intersectsS, and

sup f(z) <
TES ,

melzglLfJ‘A’ f((L') - ©

Theorem 1. Supposef satisfies (A.1) and (A.2). Lé&t,
be thek-NN or mutualk-NN graph. Lety > 0 and define

er = 11F\/In(2n/d)/k. There exisC andC’ = C'(F)

such that, for
¢ (maX{l, ﬂ/a})ddln(n/(;)
<k<C (F\/W)Q(a+fi)/(3a+d)

the following holds with probability at leagt— 34 simul-
taneously for subsets of R?.

n2a/(3a+d) (1)

(@) Let A be a connected subset &, and let A\ =
infzea f(z) > 2¢,. All points in A N X belong to
the same CC of7,, (A — 2¢x).

(b) LetA and A’ be two disjoints subsets Bf, and define
A = infyeaua f(x). Recall thate > 0 is the tuning
parameter. Supposé and A’ are (e, r)-separated for
€ = 6ep +2¢andr = & (4k /vgn\) %, ThenA N X
and A’ N X are disconnected i, (A — 2¢;).

Theoreml above, although written in terms 6f,, applies
also toG,, by just settingé = 0. The theorem implies
consistency of both pruned and unprurietliN trees un-

of {én()\)}A  containingA 1 X. Fix A > 0. We have
>
lim, . P(VA, A" € G()\), A, is disjoint fromA!,) = 1.

Proof. Let A andA’ be separate components@f)). The
assumptions ensure that all paths betwdeand A’ tra-
verse a compact sétsatisfying\ — max,cgs f(x) = eg >

0 (see Lemma 14 ofGhaudhuri & Dasgupta2010). Let
€ = 6ey, + 2¢ andr = & (4k/vdn)\)1/d. By uniform conti-
nuity of f, there existsV; such that fom > Ny, r is small
enough so thah — max,cs,, f(x) > es/2. Also, there
existsN, > Nj such that fom > N, € < eg/2, in other
wordssup,cg,, f(2) <A —e

SinceG,, () is finite, there exist$V such that fom > N,
all pairsA, A’ have a suitablée, r)-separating set. Thus
by Theorem, for n > N, with probability at least — 34,
VA, A" € G(A\), AnX andA’ N X are fully contained in

G, (X — 2¢;) and are disjoint. They are thus disjoint at any
higher level, sa4,, and A}, are also disjoint.

The above holds for afl > 0, so the statement follows.[]

While Theoreml establishes that a connected sete-
mains connected below some level, it does not guarantee
against parts ofl becoming disconnected at higher levels,
creating spurious clusters. Note that the removal of spuri-
ous clusters can be trivially guaranteed by just letting the
parameteg very large, but the ability of the algorithm to
discover true clusters is necessarily affected. We are-inte
ested in how to set in order to guarantee the removal of
spurious clusters while still recovering important ones.

Theorem?2 guarantees that, by settia@s(2(e;) (recalley

from Theoreml), separate CCs of the empirical cluster tree
correspond to actual clusters of the (unknown) underlying
distribution, i.e. all spurious clusters are removed. Tdte s
ting of € only requires an upper-bourfdon the densityf 1.

Note that, under such a setting, consistency is maintained
per Corollaryl, and in light of Theoreni (b), we can ex-
pect that interesting clusters are discovered. In pa#icul
the following salient modes of are discovered.

Definition 7 ((e, r)-salient mode) An (¢, r)-salient mode

der mild additional conditions. Some such conditions ardS @ leaf noded of the cluster treg{G(A)}, ., which has

illustrated in the corollary below. A nice practical aspeft

an ancestord;, O A (possiblyA itself) satisfying:

the pruning procedure is that consistency is obtained for a

wide range of settings @fandk as functions of.
Corollary 1 (Consistency) Suppose thaf satisfies (A.1)

and (A.2) and that, in additionF is supported on a com-
pact set, and for any > 0, there are finitely many compo-

nents inG(\). Assume that, as — oo, € = é€(n) — 0 and
k/logn — 0 whilek = k(n) satisfies {).

(i) Ay is the ancestor of a single leaf qiG/(\)}, -,
namelyA.

(i) Ayislarge: 3z € Ay, B(x,ri(z)) C Apg.

'We might just usemax;c(,) fo(X;) in practice, which in

light of Lemmal can be a good surrogate fér(see Figure).
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Theoren follows from lemmas and7 below. These two
lemmas also depend on the events described by lerimas
2 and4 which happen with a combined probability of at
leastl — 3.

5.1. Maintaining Separation

In this section we establish conditions under which points
from two disconnected subsets®f remain disconnected
in the empirical tree, even after pruning.

Figure 3.(LEFT). Number of modes (leaves of the empirical tree) The following is an important lemma which establishes the
as we increase from 0. The trees are built on 500-samples (re- estimation error off,, relative tof on the sampl&X. Al-
sults are averaged over ten such 500-samples) from the 5-modesough of independent interest, we could not find this sort

mixture 37, 0.2\ (2V/de;, I4), d = 7. Herek = (logn)'®,

of finite sample statement in the literature BfNN?, at

0 = 1, and["is the maximumy,, value over the 10 samples. The a5t not under our assumptions. The proof combines intu-

mutualk-NN tree being more sparse is rather brittle and require

more pruning. (RIGHT) We fix = F/4Vk, k = (logn)'®, as

we increasen. Results are averaged over 10 n-samples for eac
n, andF is again the may,, value over the 10 samples for each

Stion from an asymptotic analysis obgvroye & Wagner

977 with concentration bounds from\(gluin & Valiant,

1
I?LQ?Q. The proof for this lemma and the next one are given

n. Thek-NN tree quickly asymptotes at 5 modes. The mutualin (Kpotufe & von Luxburg 2011).

k-NN being more brittle, we're underpruning far> 500, i.e. €
is too small; thus for these settings we would require largty
obtain the correct number of modes.

(iii) Ay is sufficiently separated from other components

at its level: let A\ = inf,ca, f(z); Ar and
({z: f(z) > A} \ Ag) are (¢, r)-separated.

Notice that, under the assumptions of Corollaryevery
mode off is (e, r)-salient for sufficiently largé and1/e.

Theorem 2 (Pruning guarantees)eté > 0. Under the
assumptions of Theoretthe following holds with proba-
bility at least]l — 34.

(a) Suppose the tuning parametér> 3e¢,. Consider
two disjoint CCsA,, and A/, at the same level in

{én()\)} . LetV be the union of vertices of,,
A>0

and A/, and define\ = inf,cy f(z). The vertices of
A,, and those ofd!, are in separate CCs df ().

(b) Lete = 6e, + 2¢ andr = & (4k/vgn\)"/?. There
exists al — 1 map from the set dfe, )-salient modes
to the leaves of the empirical tre[ef?n(k)} :

A>0

The behavior of both thé-NN and mutualk-NN tree, as
guaranteed in Theoref is illustrated in Figure.
5. Analysis

Theoreml follows from lemmas3 and6 below. These two
lemmas depend on the events described by lemin&s

and4 which happen with a combined probability of at least

1 — 30 for a confidence parametér> 0.

Lemma 1. Suppos¢ satisfies (A.1) and (A.2). There exists
C = C(F) such that fors > 0, fore = 11F\/In(2n/d)/k
and

1211n(2n/0)

2(a+d)/(3a+d)
<k<C(Fy@n/3)) 2o (Bockd)

we have with probability at leastl — ¢ that

supy,ex [fn(Xi) = F(Xi)] < e

The next lemma bounds; ,,(X;) in terms ofr;(X;), and
hence, in terms of the density &t .

Lemma 2. Supposef satisfies (A.1) and (A.2). Fix > 0
andletly = {x: f(x) > A}

(@) Letr = i(X/2L)Y®. We havevz,2’ € R,
|z =2 < 2r = |f(z)— f(2)] < A/2. Ifin
additionz € L,, it follows that f(z)/2 < f(z') <
2f().

(b) Supposé < 2~ (@+3)y,(2L0) =4/ \(d+)/ap We have

» o\ 1/d
< i d o v .
Vo € Ly, ri(z) < min ¢ 27, (Ucmf(l"))

For 6 > 0, if in additionk > 1921n(2n/¢), we have
with probability at leasti — § that forall X; € XN L,

2730y (X3) < rin(X0) < 2% (XG).
The main separation lemma is next. It says that iaind

A’ are separated by a sufficiently large low density region,
then they remain separated in the empirical tree.

2There are however many asymptotic analyses-hN meth-
ods such adjevroye & Wagner1977).
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Lemma 3 (Separation) Supposef satisfies (A.1) and
(A.2). LetG,, be thek-NN or mutualk-NN graph. De-
finee, = 11F+/In(2n/d)/k, and letd > 0. There exists
C = C(F) such that, for

1921In(2n/0) < k

<C (F\/ln(n/é)

the following holds with probability at leagt— 24 simul-
taneously for any two disjoint subsets A’ of R?.

2(a+d)/(Ba+d)
) p2e/(Gatd)

LetA = inf,cauar f(x). If Aand A" are (e, r)-separated
for € = 6ej, +2¢ andr = & (4k/vgn))"/?, thenAn X and

A’ N X are disconnected iti,, (A — 2¢;, — €) and therefore
in G, (A — 2¢).

Proof. Applying Lemmal, it's immediate that, with prob-
ability at leastl — ¢, all points of anyA U A’ N X are in
G, (X — €) and lower levels, and no point frosy.,. N X
is in G, (A — B¢, — 2€) or higher levels. Thus any path
betweend and A’ in G,,(\ — 2¢; — €) must have an edge
through the centet € S of a ball B(xz,r) C S4,. This
edge must therefore have length greater thanWe just
need to show that no such edge exist&in A — 2¢;, — €).

LetV be the set of points (vertices) @i, (A — 2¢,, — €). By
Lemmal, miny, ey f(X;) > A—3¢,—¢. Given the density
assumption oy, A > 6e, + 2€ sominy,cy f(X;) > A/2
andV C L, . Now, given the range of, Lemma2 holds
for the level sel., . It follows that with probability at least
1—0 (uniform over any such choice dff, A’ since the event

is a function ofZ., ),

3/d 2r
max 7k, (X;) < 2%/ max rg(X;) < —
X eV ’ X; eV 9

Thus, edge lengths i@, (A — 2¢;, — €) are at mosgr. [

5.1.1. DENTIFYING MODES

Lemma 5 (Modes) Supposef satisfies (A.1) and (A.2).
Let G,, be thek-NN or mutualk-NN graph. Let§ > 0.
There exisC andC’ = C’(F) such that, for

CdlIn(n/d)

11’1(71/(5) n2a/(3a+d)

the following holds with probability at least — 35. Let

€ = be, + 26 andr = %(4k/vdn)\)1/d. There exists a
1 — 1 map from the set df, r)-salient modes to the leaves

of the empirical tree{én()\)}bo.

Proof. First, with probability at least — ¢, for any (e, r)-
salient moded, there are samples i from the containing
setAy (as defined in Definitio). To arrive at this we ap-
ply Lemma4 for the clas<C of all possible ballsB € R?,
(for this classSc (2n) < (2n)4*+1). We have with probabil-
ity at leastl — ¢ that for all B, F,,(B) > 0 whenever

Cdln(n/d) - 4(d—i— 1)log(2n) + log(4/9)

n n ’
where C' is appropriately chosen to satisfy the last in-
equality. Now, from the definition ofd,, there ex-
ists  such thatB(z,r,(z)) C A, while we have
F(B(x,rp(z))) = k/n > Cdln(n/d)/n, implying that
Fn(Ar) > Fr(B(z,ri(x))) > 1/n.

As a consequence of the above argument, there is a finite
numberm of (e, r)-salient modes since each contributes
some points to the final sampk. We can therefore ar-
range them a§A7 ., sothatfori < j, we have\; < \;
where\; = inf,c 4i f( ). An injective map can now be
constructed |terat|vely as follows.

<k<cC (F )2(a+d>/(3a+d)

F(B) >

Starting with: = 1, we have by Lemma that, with
probability at leastl — 24, A}, N X is disconnected in
G, (N — 2¢;) from all A7, j > i. LetU be the union of
those CCs oén(/\i — 2¢;;) containing points fromd: N X.

As a corollary to Lemm&, we can guarantee in Lemma We've already established that contains no point from
5 that certain salient modes are recovered by the emplrlcainyAk,] > ¢. Fori > 1, U also contains no point from

cluster tree. For this to happen, we require in Def|n|t|onanyAJ j < i. Thisis because, again by Lemm,aAJ X

7 (ii) that an (e, r)-salient modeA is contained in a suffi-

is disconnected iit,, (\; — 2¢) from A} N X, therefore

ciently large setl;, so that we sample points near the mode. yisconnected froni since all CCs i/ remain connected
We start with the following VC lemma establishing condi- at lower levels. Now, sincé/ is disconnected from all

tions under which subsets Bf' contain samples frorX.
Lemma 4 (Lemma 5.1 of Bousquet et al.2004). Sup-
poseC is a class of subsets &?. LetSc(2n) denote the
2n-shatter coefficient of. Let F,, denote the empirical
distribution overn samples drawn i.i.d fronf. For ¢ > 0,
with probability at leastl — 6,

F(A) = Fu(A)
F(4)

)+ log4/é

< 2\/log8c(2n
n

sup
AecC

ka # i, we can just mapd® to any leaf rooted ir/,
A’ being the unique image of such a leaf. O

5.2. Maintaining Connectedness

In this section we show that sample points from a connected
subsetA of RY remain connected in the empirical cluster
tree before pruning (therefore also after pruning).

Similar to Chaudhuri & Dasgupta2010, for any two
pointsz,2” € A N X we uncover a path iz, near
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a path P in A that connects the two. The path @4,

following procedure. Lef” be a path inA between: and

(the dashed path depicted below) consists of a sequencé. Definer = min {1,9/\/5}.

T = x,Ta,..

we can find enough sample points to conneandz’.

The balls centered off must be chosen sufficiently small

and consecutively close so that consecutive terms; |
are adjacent inG,,. In (Chaudhuri & Dasgupta2010),

.,x; = x’ of sample points from balls cen-
tered on the patt® in A (the solid path depicted below).
The intuition is thatP is a high density route near which

Starting ati = 1 (z; = xz), setx;.; = 2/
if |x; —2'|| < @min{ry ,(x;),rkn(z")}, and
we’re done, otherwise:

Lety; be the pointinPN B (z;, 727 ry, ,,(z;))
farthest along the patR from x, i.e. P~1(y;) is
highest in the set. Define the half-ball

H(y:) = {z ||z =yl < 727y (@),
(z = yi) - (i — ;i) > 0}.

Pickz;11 in H(y;) N X, and continue.

points are adjacent (at any particular level) whenever theyrhe rest of the argument will proceed inductively as fol-
are less than some scale@part; one can therefore choose lows. First, assume that, € A, and thaty; exists. This

balls of the same radiugr) and consecutively(r) close.

is necessarily the case for, y;. Assumer; 1 # z’. We

In our particular case, no single scale determines adjgcencwill show thatz; . | exists, is also iM_,., and is adjacent to
Adjacency is determined by the various nearest-neighbog, in ,,. It will follow that 1, ; must exist (if the process

radii and this creates a multiscale effect that complicategioes not end) and is distinct from, .

..,y;. We'll then

the analysis. One way to handle (and effectively get rid of)argue that the process must also end.

this multiscale effect is to choose balls éhof the same

radius  corresponding to the smallest possible nearest

neighbor radius iidx,, (restricted taANX). However, in or-

der to get samples in such small balls one would need rath
large sample size, so the idea results in weak bounds.
We instead use an inductive argument which keeps track

the various scales, the intuition being that nearest-eigh
radii have to change slowly along the pdtHrom x to «’.

Lemma 6 (Connectedness)Supposef satisfies (A.1) and

(A.2). LetG,, be thek-NN or mutualk-NN graph. Define
€x = 11F+/In(2n/0)/k and leté > 0. There exisC and
C’ = C'(F) such that, for

C (max {1, ﬁ/a})d dln(n/s)

2(a+d)/(3a+d)
<k<cC (F 1n(n/5)) p2a/(Batd)
the following holds with probability at leagt— 3§ simul-
taneously for all connected subsetsf R,

Let\A =inf,ca f(z) > 2¢,. All points inA N X belong to
the same CC of7,, (A — 2¢x), therefore ofGG,, (A — 2¢).

Proof. First, letC' andC’ be large enough for lemmds
and2 to hold. Definer = 1 (e,/2L)"/*. By Lemma2 (a),

we have thaf (z) > A\ — ¢, /2 foranyz € A,,.. Applying

Lemmal, it follows that with probability at least — §

(uniform over choices ofd), all points of A, N X are in

Gn(\ — 2¢;). We will show thatA N X is connected in
G, (X — 2¢;) possibly through points il . \ A.

In particular, anyzr, 2’ € AN X are connected through a

sequencex; } x; € Ay, N X built according to the

1>17

To see thatr; 1 exists (under the aforementioned assump-
tions), we apply Lemmat for the classC of all possi-

e half-balls H(y) centered aty € R (for this class

Sc(2n) < (2n)29*1). We have with probability at least

of — d thatfor allH(y), F,,(H (y)) > 0 whenever

(8d + 4)log(2n) + 4log(3)

?

F(H

) > CodIn(%) -
n n

whereC) is appropriately chosen to satisfy the last inequal-
ity. We next showF (H (y;)) satisfies the first inequality.

We first apply Lemm&2 on L., D A., (this inclusion
was established earlier). We have with probability at least
1 — ¢ (uniform over allA) that forz; € Ay, rin(x;) <
23/dy) (2;) < r. Thus, for allz € H(y;),
2 —ai|| <2727y (24)
<2- 7279/d) < 2r, (2)
implying by the same Lemntathat f(z) > f(x;)/2. Now,

from Lemmal, f,(x;) < f(x;) + e < 2f(x;). We can
thus write

F(H(y:)) > iwﬂ (B(yi,T2_18/d7“lc7n($i))) (i)
= 792720 vol (B(x4, Ton (24))) fl3)
> 792721 yol (B(xs, rreon(24))) fnlxs)

_ 7_(12—215 > C’Odln(n/é)’ for C > 22100_

n n

)
)

Therefore there is a point; ;1 in H(y;) N X. In addition
ZTir1 € Ay, since it is withinr of y; € A.
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Next we establish that there is an edge betweeandz;

in G,,. To this end we relatey, ,, (1) to 75, (x;) by first
relatingry(z;4+1) to ri(z;). Remember that for € Ay,

we havery(z) < r so that for anyz’ € B(z,ri(z))

we havef(z)/2 < f(z') < 2f(z). Also recall that
we always havé|z; — z;11]] < 2r (see R)), implying
f(ziz1) < 2f(z;). We then have

%f(fi) < % < varf(@ipr) - 2f (Tig1)

< vdrg(ﬂfi.;.l) Af (@),

where for the first two inequalities we used the fact tha
both balls B(z;, ri(x;)) and B(x;+1,r,(2z;1+1)) have the
same mass/n. It follows that

vdr,‘f(xi) .

P (Tig1) > 273 g (2401) > 274y (2)

> 27y, (),

®)

implying Q’Q/drk,n(xi) < min{rgn(2:), ren(Tiv1)}-
We then get
2 2 2
zi — ipall” = [l — wsll” + [[wig1 — yill
— (i — i) - (Tit1 — Yi)
2 2
< @i = yill™ + l[wie1 — vill
< 272 . min {ri’n(mi), T]%}n(xi+1)}
< 02 min {rz,n(xi)’ rl%.,n (xi-Fl)} ’
meaningr; andz;, are adjacent iid7,,.

Finally we argue tha;; must exist. By 8) above we
have

ziv1 —uill < 72_18/d7“k,n(35z‘) < T2_9/d7’k,n($i+1),

in other words the balB (z;41, 72797y, (2,41)) con-
tainsy; € P in its interior. It follows by continuity ofP
that there is a poing; 11 in this ball further along the path
from x; thany;. Thus, recursively all;’s must be dis-
tinct, implying that allz;'s must be distinct. Since all;’s
belong to the finite sampIX the process must eventually
terminate. O

5.2.1. RRUNING OF SPURIOUSBRANCHES

As a corollary to Lemm& we can guarantee in Lemn7a

that the pruning procedure will remove all spurious branch-

ings, and hence, all spurious clusters.

Lemma 7 (Pruning) Letd > 0. Under the assumptions

of Lemma6, the following holds with probability at least

1 — 30, providede > 3¢,

Consider two disjoint CCsl,, and A, at the same level in

{én()\)}A o Let V' be the union of vertices of,, and
>

A’ and define\ = inf,cy f(x). The vertices of4,, and
those ofA/, are in separate CCs af(\).

Proof. Let \,, = mingcy f(z) be the level in the
empirical tree containingA,, A’,. By Lemma 1,

sup,ex |fn(z) — f(z)] < €ep sOX, < XA+ €. Thus,
we must have\ > 2¢, since otherwise\,, < ¢ implying

G, (\,) must have a single connected component.

Now suppose points il were in the same compone#of
G(\). By Lemmas, all of AN X is connected irf7,, (A —
2¢;) and at lower levels. By the last argument—é < A—
2¢;, so the pruning procedure reconnedisandA/,. O
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